請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95542
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃恆獎 | zh_TW |
dc.contributor.advisor | Heng-Chiang Huang | en |
dc.contributor.author | 袁治平 | zh_TW |
dc.contributor.author | Chih-Ping Yuan | en |
dc.date.accessioned | 2024-09-11T16:25:00Z | - |
dc.date.available | 2024-09-12 | - |
dc.date.copyright | 2024-09-11 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-08 | - |
dc.identifier.citation | 中文文獻
洪新原、洪幼力、劉晴(2020)。影響顧客使用理財機器人之因素。資訊管理學報, 27(3),341-375。 國家發展委員會(2022)。中華民國人口推估(2022年至2070年)」報告。取自https://pop-proj.ndc.gov.tw/News.aspx?n=3&sms=10347 張魁元、李傳房(2021)。AI機器人導入高齡者居家陪伴倫理議題之研究。工業設計,(144),17-22。https://www.airitilibrary.com/Article/Detail?DocID=20714963-202106-202205230007-202205230007-17-22 衛生福利部國民健康署(2020。國民營養健康狀況變遷調查成果報告 2013-2016。取自 https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=3999&pid=11145 衛生福利部護理及健康照護司(2023)。近五年護理人員空缺率及離職率。取自 https://nurse.mohw.gov.tw/cp-72-580-2b84b-2.html 英文文獻 Besirli, A., Erden, S. C., Atilgan, M., Varlihan, A., Habaci , M. F., Yeniceri, T., Isler, A. C., Gumus, M., Kizileroglu, S., Ozturk, G., Ozer, O. A., & Ozdemir, H. M. Aneesh K Mishr (2021). The Relationship between Anxiety and Depression Levels with Perceived Stress and Coping Strategies in Health Care Workers during the COVID-19 Pandemic. The Medical Bulletin of Sisli Etfal Hospital, 55(1), 1-11. https://doi.org/10.14744/SEMB.2020.57259. Bland, J. M., & Altman, D. G. (1997). Statistics notes: Cronbach's alpha. BMJ,314(7080), 572. https://doi.org/10.1136/bmj.314.7080.572 Bobo, W. V., Grossardt, B. R., Virani, S., St Sauver, J. L., Boyd, C. M., & Rocca, W. A. (2022). Association of Depression and Anxiety With the Accumulation of Chronic Conditions. JAMA Network Open, 5(5), e229817. https://doi.org/10.1001/jamanetworkopen.2022.9817 Cai, T., Huang, Q., & Yuan, C. (2021). Profiles of instrumental, emotional, and informational support in Chinese breast cancer patients undergoing chemotherapy: a latent class analysis. BMC Women's Health, 21(1). https://doi.org/10.1186/s12905-021-01307-3 Cancel, D., & Gerhardt, D. (2019). Conversational marketing: How the world's fastest growing companies use chatbots to generate leads 24/7/ 365 (and how you can too). John Wiley & Sons. Carver, C. S., Scheier, M. F., & Weintraub, D. K. (1989). Assessing Coping. Strategies: A Theoretically Based Approach. Journal of Personality and Social Psychology, 56(2), 267–283. https://doi.org/10.1037//0022-3514.56.2.267 Carver, C. S. (1997). You Want to Measure Coping but Your Protocol’s Too. Long: Consider the Brief COPE. Int J Behav Med., 4(1), 92–100. https://doi.org/10.1207/s15327558ijbm0401_6 Cauberghe, V., Van Wesenbeeck, I., De Jans, S., Hudders, L., & Ponnet, K. (2021). How adolescents use social media to cope with feelings of loneliness and anxiety during COVID-19 lockdown. Cyberpsychology, behavior, and social networking, 24(4), 250-257. https://doi.org/10.1089/cyber.2020.0478. Chang, H. H., Lu, Y. Y., & Lin, S. C. (2020). An Elaboration Likelihood Model of. Consumer Respond Action to Facebook Second-Hand Marketplace: Impulsiveness as a Moderator. Information & Management, 57(2). 103171. https://doi.org/10.1016/j.im.2019.103171 Chebat, J. C., Davidow, M., & Codjovi, I. (2005). Silent Voices: Why. Some Dissatisfied Consumers Fail to Complain. Journal of Service Research, 7(4). 328-342 https://doi.org/10.1177/1094670504273965 Cohen, J, Cohen, P, West, S. G., and Aiken, L. S. 2003. Applied Multiple Regression/. Correlation Analysis for the Behavioral Sciences (3rd ed.). Hillsdale, NJ: Lawrence Erlbaum. Cuijpers, P., Marks, I. M., Straten, A. V., & Cavanagh, K. (2009).Computer-Aided Psychotherapy for Anxiety Disorders: A Meta-Analytic. Review. Cognitive Behavior Therapy, 38(2), 66–82. https://doi.org/10.1080/16506070802694776 Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User. Acceptance of Information Technology. MIS Quarterly, 13(3), 319–340. https://doi.org/doi:10.2307/249008 Duan, Y., Edwards, J. S, & Dwivedi, Dwivedi, Y. K. (2019). Artificial Intelligence for. Decision Making in the Era of Big Data - Evolution, Challenges and Research Agenda. International Journal of Information Management , 48, 63–71. https://doi.org/10.1016/J.IJINFOMGT.2019.01.021 Ebrahim, R., Ghoneim, A., Irani, Z., & Fan, Y. (2016). A Brand Preference and. Repurchase Intention Model: The Role of Consumer Experience. Journal of Marketing Management, 32(13–14), 1230–1259. https://doi.org/10.1080/0267257X.2016.1150322 Eldesouky, L., Ellis, K., Goodman, F., & Khadr, Z. (2023). Daily emotion regulation and emotional well-being: A replication and extension in Egypt. Current Research in Ecological and Social Psychology, 4, 100106 https://doi.org/10.1016/j.cresp.2023.100106 Elyoseph, Z., Hadar-Shoval, D., Asraf, K., & Lvovsky, M. (2023). ChatGPT outperforms humans in emotional awareness evaluations. Frontiers in Psychology, 14, 1199058. https://doi.org/10.3389/fpsyg.2023.1199058 Emor, A. M., & Pangemanan, S. S. (2015). Analyzing Brand Equity on Purchase. Intention Through Brand Preference of Samsung Smartphone User In Mandao. Journal EMBA, 3(2), 124–131. https://doi.org/10.35794/emba.3.2.2015.8468 Farhat, F. (2024). ChatGPT as a complementary mental health resource: a boon or a bane. Annals of Biomedical Engineering, 52(5), 1111-1114. https://doi.org/10.1007/s10439-023-03326-7 Filieri, R., & Mcleay, F. (2014). E-WOM and Accommodation: An Analysis of the. Factors That Influence Travelers’ Adoption of Information from Online Reviews. Journal of Travel Research, 53(1), 44–57. https://doi.org/10.1177/00472875134812 Fitzpatrick, K. K., Darcy, A., & Vierhile, M. (2017). Delivering cognitive behavior therapy to young adults with symptoms of depression and anxiety using a fully automated conversational agent (Woebot): a randomized controlled trial. JMIR mental health, 4(2), e7785. https://doi.org/10.2196/mental.7785 Flurey, C. a., Hewlett, S., Rodham, K., White, A., & Noddings, R. (2018). Coping. Strategies, Psychological Impact, and Support Preferences of Men With Rheumatoid Arthritis: A Multicenter Survey. Arthritis Care & Research, 70(6), 851–860. https://doi.org/10.1002/acr.23422 Folkman, S., & Lazarus, R. S. (1980). An Analysis of Coping in a Middle-Aged. Community Sample. Journal of Health and Social Behavior, 21(3), 219–239. https://doi.org/10.1177/00472875134812 Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with. unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50. https://doi.org/10.1177/002224378101800104 Gao, X., Xu, X. Y., Tayyab, S. M. U., & Li, Q. (2021). How the live streaming commerce viewers process the persuasive message: An ELM perspective and the moderating effect of mindfulness. Electronic Commerce Research and Applications, 49, 101087. https://doi.org/10.1016/j.elerap.2021.101087 Gibbs, J. L., Ellison, N. B., & Lai, C. H. (2011). First comes love, then comes Google: An investigation of uncertainty reduction strategies and self-disclosure in online dating. Communication Research, 38(1), 70–100. https://doi.org/10.1177/0093650210377091 Gol, A. R., & Cook, S. W. (2004). Exploring the underlying dimensions of coping: A. concept mapping approach. Journal of Social and Clinical Psychology, 23(2), 155–171. https://doi.org/10.1521/jscp.23.2.155.31021 Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial nets. In Advances in Neural Information Processing Systems 27, 139–144. Nabity-Grover, T., Cheung, C. M., & Thatcher, J. B. (2020). Inside out and outside in: How the COVID-19 pandemic affects self-disclosure on social media. International journal of information management, 55, 102188. https://doi.org/10.1016/j.ijinfomgt.2020.102188 Hair, J. F. (2009). Multivariate data analysis (7th ed.). Prentice-Hall Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet.Journal of Marketing Theory and Practice, 19(2), 139–152.https://doi.org/10.2753/mtp1069-6679190202 Hair, J. F., Sarstedt, M., Hopkins, L., & Kuppelwieser, V. G. (2014). Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. European Business Review, 26(2), 106–121. https://doi.org/10.1108/ebr-10-2013-0128 Huang, H. Y. (2016). Examining the Beneficial Effects of Individual’s Self-Disclosure on the Social Network Site. Computers in Human Behavior, 57, 122–132. https://doi.org/10.1016/j.chb.2015.12.030 Huang, Y., Loux, T., Huang, X., & Feng, X. (2023). The relationship between chronic diseases and mental health: A cross-sectional study. Mental Health & Prevention, 32, 200307. https://doi.org/10.1016/j.mhp.2023.200307 Hughes, M. E., Waite, L. J., Hawkley, L. C., & Cacioppo, J. T. (2016). A Short Scale for Measuring Loneliness in Large Surveys. Research on Aging, 26(6), 655–672. https://doi.org/10.1177/0164027504268574 Islam, A. N., Mäntymäki, M., Laato, S., & Turel, O. (2022). Adverse consequences of. emotional support seeking through social network sites in coping with stress from a global pandemic. International Journal of Information Management, 62, 102431. https://doi.org/10.1016/j.ijinfomgt.2021.102431 Ledbetter, A. M. (2009). Measuring online communication attitude: Instrument development and validation. Communication Monographs, 76(4), 463–486. https://doi.org/10.1080/03637750903300262 Lee, W. J. (2020). Unravelling consumer responses to omni-channel approach. Journal of theoretical and applied electronic commerce research, 15(3), 37-49. https://doi.org/10.4067/s0718-18762020000300104 Lapidot-Lefler, N., & Barak, A. (2015). The benign online disinhibition effect: Could situational factors induce self-disclosure and prosocial behaviors?. Cyberpsychology: Journal of Psychosocial Research on Cyberspace, 9(2), Article 3. https://doi.org/10.5817/CP2015-2-3 Li, Y., Zhang, C., Shelby, L., & Huan, T. C. (2022). Customers’ self-image congruity and brand. preference: A moderated mediation model of self-brand connection and self-motivation. Journal of Product & Brand Management, 31(5), 798–807. https://doi.org/10.1108/jpbm-07-2020-2998 Longoni, C., Bonezzi, A., & Morewedge, C. K. (2019). Resistance to medical artificial. intelligence. Journal of Consumer Research, 46(4), 629–650. https://doi.org/10.1093/jcr/ucz013 Man, M. A., Toma, C., Motoc, N. S., Necrelescu, O. L., Bondor, C. I., Chis, A. F., ... &. Rajnoveanu, R. M. (2020). Disease perception and coping with emotional distress during COVID-19 pandemic: a survey among medical staff. International journal of environmental research and public health, 17(13), 4899. https://doi.org/10.3390/ijerph17134899 Mesko, B. (2023). The ChatGPT (generative artificial intelligence) revolution has made. artificial intelligence approachable for medical professionals. Journal of medical Internet research, 25.1-5, e48392. https://doi.org/10.2196/48392 Mishra, A. K., & Varma, A. R. (2023). A Comprehensive Review of the Generalized Anxiety Disorder. Cureus, 15(9), e46115. https://doi.org/10.7759/cureus.46115 Nelson, R. R., Todd, P. A., & Wixom, B. H. (2005). Antecedents of information and system quality: an empirical examination within the context of data warehousing. Journal of management information systems, 21(4), 199–235. https://doi.org/10.1080/07421222.2005.11045823 Nikbin, D., Ismail, I., Marimuthu, M., & Abu-Jarad, I. Y. (2011). The effects of perceived service fairness on satisfaction, trust, and behavioural intentions. Singapore Management Review, 33(2), 58-73. Pennycook, G., & Rand, D. G. (2022). Accuracy prompts are a replicable and generalizable approach for reducing the spread of misinformation. Nature communications, 13(1), 2333. https://doi.org/10.1038/s41467-022-30073-5 Pool, J. K., Asian, S., Abareshi, A., & Mahyari, H. K. (2018). An examination of the interplay between country-of-origin, brand equity, brand preference and purchase intention toward global fashion brands. International Journal of Business Forecasting and Marketing Intelligence, 4(1), 43–63. https://doi.org/10.1504/IJBFMI.2018.088628 Poorisat, T., Detenber, B. H., Boster, F. J., & Li, B. J. (2019). Effects of message completeness and source expertise in online health discussion boards. International Journal of Communication, 13, 465–488. Prentice, C., Weaven, S., & Wong, I. A. (2020). Linking AI quality performance and. customer engagement: The moderating effect of AI preference. International Journal of Hospitality Management, 90, 102629. https://doi.org/10.1016/j.ijhm.2020.102629 Rand, K. L., Cohee, A. A., Monahan, P. O., Wagner, L. I., & Champion, V. L. (2019). Coping among breast cancer survivors: a confirmatory factor analysis of the brief COPE. Journal of nursing measurement, 27(2), 259–276. https://doi.org/10.1891/1061-3749.27.2.259 Ringle, C. M., Sarstedt, M., & Straub, D. W. (2012). Editor's comments: A critical look at the use of PLS-SEM in" MIS Quarterly". MIS quarterly, 36(1), iii-xiv. https://doi.org/10.2307/41410402 Roy, S. K., Devlin, J. F., & Sekhon, H. (2015). The impact of fairness on trustworthiness and trust in banking. Journal of Marketing Management, 31(9–10), 996–1017. https://doi.org/10.1080/0267257X.2015.1036101 Shin, D., & Park, Y. J. (2019). Role of fairness, accountability, and transparency in algorithmic affordance. Computers in Human Behavior, 98, 277–284. https://doi.org/10.1016/j.chb.2019.04.019 Shin, D. D. (2023). Algorithms, humans, and interactions: how do algorithms interact with people? Designing meaningful AI experiences. Routledge. Shin, D., Koerber, A., & Lim, J. S. (2024). Impact of misinformation from generative AI on user information processing: How people understand misinformation from generative AI. New Media & Society, 0(0). https://doi.org/10.1177/14614448241234040 Spitzer, R. L., Kroenke, K., Williams, J. B., & Löwe, B. (2006). A brief measure for assessing. generalized anxiety disorder: the GAD-7. Archives of internal medicine, 166(10), 1092-1097. https://doi.org/10.1001/archinte.166.10.1092 Starke, C., Baleis, J., Keller, B., & Marcinkowski, F. (2022). Fairness perceptions of algorithmic decision-making: A systematic review of the empirical literature. Big Data & Society, 9(2). https://doi.org/10.1177/20539517221115189 Stanisławski, K. (2019). The coping circumplex model: An integrative model of the structure of coping with stress. Frontiers in psychology, 10, 694. https://doi.org/10.3389/fpsyg.2019.00694 Ta, V., Griffith, C., Boatfield, C., Wang, X., Civitello, M., Bader, H., ... & Loggarakis, A. (2020). User experiences of social support from companion chatbots in everyday contexts: thematic analysis. Journal of medical Internet research, 22(3), e16235. Thomas, M. J., Wirtz, B. W., & Weyerer, J. C. (2019). Influencing factors of online. reviews: an empirical analysis of determinants of purchase intention. International Journal of Electronic Business, 15(1), 43–71. https://doi.org/10.1504/IJEB.2019.099062 Thomas, M. J., Wirtz, B. W., & Weyerer, J. C. (2019). Determinants of Online Review Credibility and Its Impact on Consumers’ Purchase Intention. Journal of electronic commerce research, 20(1), 1–20. Tsarenko, Y., & Strizhakova, Y. (2013). Coping with service failures: The role of emotional. intelligence, self‐efficacy and intention to complain. European Journal of Marketing, 47(1/2), 71–92. https://doi.org/10.1108/03090561311285466 Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., & Kaiser, Ł. (2017). Attention is all you need. Advances in neural information processing systems, 30. Kordzadeh, N. (2014). Communicating personal health information in virtual health communities: An integration of privacy calculus model and affective commitment. The University of Texas at San Antonio. Kim, Y. J., & Han, J. (2014). Why smartphone advertising attracts customers: A model. of web advertising, flow, and personalization. Computers in Human Behavior, 33, 256–269. https://doi.org/10.1016/j.chb.2014.01.015 Xie, Z., & Wang, Z. (2024). Longitudinal Examination of the Relationship Between Virtual Companionship and Social Anxiety: Emotional Expression as a Mediator and Mindfulness as a Moderator. Psychology Research and Behavior Management, 765–782. https://doi.org/10.2147/PRBM.S447487 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95542 | - |
dc.description.abstract | 台灣在2025年即將邁入超高齡化社會,老年化及慢性病的人口逐年上升,但台灣目前醫護人力正面臨緊缺的狀態,慢性病病患的照護的需求只會日益增加。然而生成式AI(Generative AI, GenAI)在ChatGPT問世之後,該技術的應用受到廣大的討論。此現象讓研究者感到好奇,GenAI技術性的突破,是否符合慢性病病患的臨床需求。因此,本研究從慢性病病患必須面對長期心理的壓力與挫折的角度出發,針對心理學的因應策略審視過往的文獻,提出一個結合因應策略中兩個主要的策略:「問題聚焦因應策略」及「情緒聚焦因應策略」與相關變數之模型,藉此探討慢性病病患是否會因為GenAI提供因應策略中的兩種面向的相關因子,進而提升對於AI健康聊天機器人的偏好與使用意願。
本研究於 2024年 6 月 10 日至 6 月 24 日期間,透過便利抽樣法於社群平台發放 SurveyCake 平台問卷連結以蒐集相關樣本,最終有效樣本數為 187 筆(回應率 64.71%)。研究中使用描述統計分析、結構方程式模型分析進行資料分析,並發現:若AI健康聊天機器人可提供「問題聚焦因應策略」及「情緒聚焦因應策略」,慢性病病患對其偏好程度將有正向的影響,而這樣的偏好程度會進而影響其使用意願。此外,情緒聚焦因應策略的影響程度略高於問題聚焦因應策略。另外,研究中也發現:年齡、教育與焦慮程度並不會影響患者對於AI健康聊天機器人的偏好與使用意願。 整體而言,本研究透過病患因應壓力與焦慮的策略,來進一步探討GenAI是否符合慢性病病患的需求,而研究中也證實無論是問題聚焦因應策略或情緒聚焦因應策略,確實都能提升病患的偏好程度,且不受其對於疾病之焦慮程度而有所影響。本研究試圖提供GenAI於醫學衛教上可行之應用方向,同時也強調GenAI可透過有效的應對策略來滿足慢性病病患需求的潛力。 | zh_TW |
dc.description.abstract | In 2025, Taiwan is approaching a super-aged society with a growing elderly population and an increasing prevalence of chronic diseases. However, Taiwan’s healthcare system is facing severe shortages in personnel, and the demand for care for chronic disease patients is only set to rise. Following the emergence of Generative AI (GenAI), particularly ChatGPT, extensive discussion has arisen regarding its applications. This phenomenon has sparked curiosity among researchers about whether the technological breakthroughs of GenAI meet the clinical needs of chronic disease patients.
Therefore, this study begins from the perspective of the long-term psychological stress and challenges faced by chronic disease patients. It reviews the literature on psychological coping strategies and proposes a model that integrates two primary coping strategies: “problem-focused coping” and “emotion-focused coping,” along with related variables. The study explores whether chronic disease patients’ preferences for AI health chatbots and their willingness to use them can be enhanced by GenAI’s provision of these coping strategies. From June 10 to June 24, 2024, the study employed convenience sampling via SurveyCake platform links distributed on social media to collect relevant samples. The final dataset included 187 valid responses (with a response rate of 64.71%). Data analysis utilized descriptive statistics and structural equation modeling. The findings indicate that the provision of “problem-focused coping” and “emotion-focused coping” strategies by AI health chatbots positively influences chronic disease patients’ preferences for these technologies, affecting their willingness to use them. Additionally, the impact of emotion-focused coping strategies is slightly more substantial than that of problem-focused coping strategies. Furthermore, the study found that age, education, and anxiety level do not significantly influence patients’ preferences for or willingness to use AI health chatbots. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-11T16:25:00Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-09-11T16:25:00Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 II
中文摘要 III ABSTRACT IV 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與問題 3 第三節 研究流程 3 第二章 文獻探討 6 第一節 生成式人工智慧在健康管理的研究 6 第二節 病患焦慮與生成式人工智慧 7 第三節 因應策略 8 第四節 問題聚焦因應策略 9 第五節 情緒聚焦因應策略 12 第六節 偏好程度和使用意願 15 第三章 研究方法 18 第一節 影片設計 18 第二節 問卷設計及抽樣 22 第三節 變數定義與衡量與研究架構 25 第四節 資料分析方法 33 第四章 研究結果 35 第一節 描述統計分析 35 第二節 結構方程模式分析結果 40 第五章 結論與建議 49 第一節 主要研究發現 49 第二節 學術貢獻與實務意涵 50 第三節 研究限制與未來研究方向 51 參考文獻 53 中文文獻 53 英文文獻 54 附錄:問卷內容 64 | - |
dc.language.iso | zh_TW | - |
dc.title | 生成式AI與醫療衛教:探討慢性病病患之科技介入與焦慮處理策略 | zh_TW |
dc.title | Generative AI and Health Education: Exploring Technological Interventions and Anxiety Coping Strategies for Chronic Disease Patients | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 潘令妍 | zh_TW |
dc.contributor.coadvisor | Ling-Yen Pan | en |
dc.contributor.oralexamcommittee | 王仕茹;胡凱焜 | zh_TW |
dc.contributor.oralexamcommittee | Shih-Ju Wang;Kai-Kun Hu | en |
dc.subject.keyword | 生成式AI,醫療衛教,慢性病病患,問題聚焦因應策略,情緒聚焦因應策略,聊天機器人,偏好,使用意願, | zh_TW |
dc.subject.keyword | Generative AI,healthcare education,chronic disease patients,problem-focused coping strategies,emotion-focused coping strategies,chatbot,preference,use intention, | en |
dc.relation.page | 71 | - |
dc.identifier.doi | 10.6342/NTU202403976 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-08-12 | - |
dc.contributor.author-college | 進修推廣學院 | - |
dc.contributor.author-dept | 生物科技管理碩士在職學位學程 | - |
顯示於系所單位: | 生物科技管理碩士在職學位學程 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 3.02 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。