Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95501
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王尚禮zh_TW
dc.contributor.advisorShan-Li Wangen
dc.contributor.author何心媮zh_TW
dc.contributor.authorHsin-Yu Hoen
dc.date.accessioned2024-09-11T16:12:37Z-
dc.date.available2024-12-27-
dc.date.copyright2024-09-11-
dc.date.issued2024-
dc.date.submitted2024-08-06-
dc.identifier.citationAasfar, A., Bargaz, A., Yaakoubi, K., Hilali, A., Bennis, I., Zeroual, Y. and Meftah Kadmiri, I. 2021. Nitrogen Fixing Azotobacter Species as Potential Soil Biological Enhancers for Crop Nutrition and Yield Stability. Frontiers in Microbiology 12.
Aeropowder. 2024. PluumoPlus Sustainability. https://www.pluumoplus.com/sustainability (accessed August 6, 2024).
Alltech. 2021. Allzyme FDについて、鶏の羽毛(フェザー)は養鶏産業における廃棄物問題か、もしくは価値のある飼料原料か?http://global.alltech.com/sites/default/files/documents/Allzyme%20FD_%E3%82%AA%E3%83%AB%E3%83%86%E3%83%83%E3%82%AF%E3%83%BB%E3%82%B8%E3%83%A3%E3%83%91%E3%83%B3.pdf (accessed August 6, 2024).
Attard, E., Poly, F., Commeaux, C., Laurent, F., Terada, A., Smets, B.F., Recous, S. and Roux, X.L. 2010. Shifts between Nitrospira- and Nitrobacter-like nitrite oxidizers underlie the response of soil potential nitrite oxidation to changes in tillage practices. Environmental Microbiology 12(2), 315-326.
Avrahami, S., Liesack, W. and Conrad, R. 2003. Effects of temperature and fertilizer on activity and community structure of soil ammonia oxidizers. Environmental Microbiology 5(8), 691-705.
Bach, H.J., Hartmann, A., Schloter, M. and Munch, J.C. 2001. PCR primers and functional probes for amplification and detection of bacterial genes for extracellular peptidases in single strains and in soil. Journal of Microbiological Methods 44(2), 173-182.
Bagnoud, A., Guye-Humbert, S., Schloter-Hai, B., Schloter, M. and Zopfi, J. 2019. Environmental factors determining distribution and activity of anammox bacteria in minerotrophic fen soils. FEMS Microbiology Ecology 96(2).
Bebout, G.E., Lazzeri, K.E. and Geiger, C.A. 2016. Pathways for nitrogen cycling in Earth's crust and upper mantle: A review and new results for microporous beryl and cordierite. 101(1), 7-24.
Beringer, J.E. and Johnston, A.W.B. 1984. The significance of symbiotic nitrogen fixation in plant production. Critical Reviews in Plant Sciences 1(4), 269-286.
Bhari, R., Kaur, M. and Sarup Singh, R. 2021. Chicken Feather Waste Hydrolysate as a Superior Biofertilizer in Agroindustry. Current Microbiology 78(6), 2212-2230.
Biederbeck, V.O., Curtin, D., Bouman, O.T., Campbell, C.A. and Ukrainetz, H. 1996. Soil microbial and biochemical properties after ten years of fertilization with urea and anhydrous ammonia. Canadian Journal of Soil Science 76(1), 7-14.
Bodirsky, B.L., Popp, A., Lotze-Campen, H., Dietrich, J.P., Rolinski, S., Weindl, I., Schmitz, C., Müller, C., Bonsch, M., Humpenöder, F., Biewald, A. and Stevanovic, M. 2014. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nature Communications 5(1), 3858.
Boushy, A.R.Y.E. and Van Der Poel, A.F.B. (2012) Poultry Feed from Waste: Processing and use, Springer US.
Browne, H.P., Almeida, A., Kumar, N., Vervier, K., Adoum, A.T., Viciani, E., Dawson, N.J.R., Forster, S.C., Cormie, C., Goulding, D. and Lawley, T.D. 2021. Host adaptation in gut Firmicutes is associated with sporulation loss and altered transmission cycle. Genome Biology 22(1), 204.
Bushong, J.T., Roberts, T.L., Ross, W.J., Norman, R.J., Slaton, N.A. and Wilson, C.E. 2008. Evaluation of Distillation and Diffusion Techniques for Estimating Hydrolyzable Amino Sugar-Nitrogen as a Means of Predicting Nitrogen Mineralization. Soil Science Society of America Journal 72(4), 992-999.
Bustin, S.A., Benes, V., Garson, J.A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M.W., Shipley, G.L., Vandesompele, J. and Wittwer, C.T. 2009. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4), 611-622.
Cameron, K.C., Di, H.J. and Moir, J.L. 2013. Nitrogen losses from the soil/plant system: a review. Annals of Applied Biology 162(2), 145-173.
Caranto, J.D. and Lancaster, K.M. 2017. Nitric oxide is an obligate bacterial nitrification intermediate produced by hydroxylamine oxidoreductase. Proceedings of the National Academy of Sciences 114(31), 8217-8222.
Carter, M.R. and Stewart, B.A. 1995. Structure of Organic Matter Storage in Agricultural Soils. Stewart, B.A. (ed), pp. 3-11, CRC Press, Boca Raton, FL, USA.
Carvalho, T.L.G., Balsemão-Pires, E., Saraiva, R.M., Ferreira, P.C.G. and Hemerly, A.S. 2014. Nitrogen signalling in plant interactions with associative and endophytic diazotrophic bacteria. Journal of Experimental Botany 65(19), 5631-5642.
Cassity-Duffey, K., Cabrera, M., Franklin, D., Gaskin, J. and Kissel, D. 2020. Effect of soil texture on nitrogen mineralization from organic fertilizers in four common southeastern soils. Soil Science Society of America Journal 84(2), 534-542.
Cassity‐Duffey, K., Cabrera, M., Gaskin, J., Franklin, D., Kissel, D. and Saha, U. 2020. Nitrogen mineralization from organic materials and fertilizers: Predicting N release. Soil Science Society of America Journal 84(2), 522-533.
Cecchetti, A.R., Stiegler, A.N., Gonthier, E.A., Bandaru, S.R.S., Fakra, S.C., Alvarez-Cohen, L. and Sedlak, D.L. 2022. Fate of Dissolved Nitrogen in a Horizontal Levee: Seasonal Fluctuations in Nitrate Removal Processes. Environmental Science & Technology 56(4), 2770-2782.
Chaney, K. and Swift, R.S. 1984. The influence of organic matter on aggregate stability in some British soils. Journal of Soil Science 35(2), 223-230.
Chen, R., Senbayram, M., Blagodatsky, S., Myachina, O., Dittert, K., Lin, X., Blagodatskaya, E. and Kuzyakov, Y. 2014. Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories. Global Change Biology 20(7), 2356-2367.
Cheng, Y., Wang, J., Chang, S.X., Cai, Z., Müller, C. and Zhang, J. 2019. Nitrogen deposition affects both net and gross soil nitrogen transformations in forest ecosystems: A review. Environmental Pollution 244, 608-616.
Coskun, D., Britto, D.T., Shi, W. and Kronzucker, H.J. 2017. Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition. Nature Plants 3(6), 17074.
Cotrufo, M.F., Wallenstein, M.D., Boot, C.M., Denef, K. and Paul, E. 2013. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Global Change Biology 19(4), 988-995.
Cui, J., Zhao, C., Feng, L., Han, Y., Du, H., Xiao, H. and Zheng, J. 2021. Pectins from fruits: Relationships between extraction methods, structural characteristics, and functional properties. Trends in Food Science & Technology 110, 39-54.
Di Domenico Ziero, H., Ampese, L.C., Sganzerla, W.G., Torres-Mayanga, P.C., Timko, M.T., Mussatto, S.I. and Forster-Carneiro, T. 2022. Subcritical water hydrolysis of poultry feathers for amino acids production. The Journal of Supercritical Fluids 181, 105492.
Djuric Ilic, D., Eriksson, O., Ödlund, L. and Åberg, M. 2018. No zero burden assumption in a circular economy. Journal of Cleaner Production 182, 352-362.
Elrys, A.S., Wang, J., Metwally, M.A.S., Cheng, Y., Zhang, J.-B., Cai, Z.-C., Chang, S.X. and Müller, C. 2021. Global gross nitrification rates are dominantly driven by soil carbon-to-nitrogen stoichiometry and total nitrogen. Global Change Biology 27(24), 6512-6524.
Fan, H.-J. 2012. The Problem of Using World Reference Base (WRB) Soil Classification System in Taiwan Representative Soils and the Correlation between WRB and Soil Taxonomy.
Fierer, N., Jackson, J.A., Vilgalys, R. and Jackson, R.B. 2005. Assessment of Soil Microbial Community Structure by Use of Taxon-Specific Quantitative PCR Assays. Applied and Environmental Microbiology 71(7), 4117-4120.
Firrman, J., Liu, L., Mahalak, K., Tanes, C., Bittinger, K., Tu, V., Bobokalonov, J., Mattei, L., Zhang, H. and Van den Abbeele, P. 2022. The impact of environmental pH on the gut microbiota community structure and short chain fatty acid production. FEMS Microbiology Ecology 98(5).
Fontaine, S., Mariotti, A. and Abbadie, L. 2003. The priming effect of organic matter: a question of microbial competition? Soil Biology and Biochemistry 35(6), 837-843.
Fowler, D., Coyle, M., Skiba, U., Sutton, M.A., Cape, J.N., Reis, S., Sheppard, L.J., Jenkins, A., Grizzetti, B., Galloway, J.N., Vitousek, P., Leach, A., Bouwman, A.F., Butterbach-Bahl, K., Dentener, F., Stevenson, D., Amann, M. and Voss, M. 2013. The global nitrogen cycle in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences 368(1621), 20130164.
Franssen, H.J., Vijn, I., Yang, W.C. and Bisseling, T. 1992. Developmental aspects of the Rhizobium-legume symbiosis. Plant Molecular Biology 19(1), 89-107.
Fu, M.H., Xu, X.C. and Tabatabai, M.A. 1987. Effect of pH on nitrogen mineralization in crop-residue-treated soils. Biology and Fertility of Soils 5(2).
Gale, E.S., Sullivan, D.M., Cogger, C.G., Bary, A.I., Hemphill, D.D. and Myhre, E.A. 2006. Estimating Plant‐Available Nitrogen Release from Manures, Composts, and Specialty Products. Journal of Environmental Quality 35(6), 2321-2332.
Gale, W.J., Cambardella, C.A. and Bailey, T.B. 2000. Root-Derived Carbon and the Formation and Stabilization of Aggregates. Soil Science Society of America Journal 64(1), 201-207.
Garcia, S.L., Jangid, K., Whitman, W.B. and Das, K.C. 2011. Transition of microbial communities during the adaption to anaerobic digestion of carrot waste. Bioresource Technology 102(15), 7249-7256.
García-Robledo, E., Corzo, A. and Papaspyrou, S. 2014. A fast and direct spectrophotometric method for the sequential determination of nitrate and nitrite at low concentrations in small volumes. Marine Chemistry 162, 30-36.
Geisseler, D., Smith, R., Cahn, M. and Muramoto, J. 2021. Nitrogen mineralization from organic fertilizers and composts: Literature survey and model fitting. Journal of Environmental Quality 50(6), 1325-1338.
Gruber, N. and Galloway, J.N. 2008. An Earth-system perspective of the global nitrogen cycle. Nature 451(7176), 293-296.
Guggenberger, G., Christensen, B.T. and Zech, W. 1994. Land-use effects on the composition of organic matter in particle-size separates of soil: I. Lignin and carbohydrate signature. European Journal of Soil Science 45(4), 449-458.
Haindl, R., Schick, S. and Kulozik, U. 2021. Influence of Cultivation pH on Composition, Diversity, and Metabolic Production in an In Vitro Human Intestinal Microbiota. Fermentation 7(3), 156.
Hall, J.M., Paterson, E. and Killham, K. 1998. The effect of elevated CO2 concentration and soil pH on the relationship between plant growth and rhizosphere denitrification potential. Global Change Biology 4(2), 209-216.
Harris, E., Diaz-Pines, E., Stoll, E., Schloter, M., Schulz, S., Duffner, C., Li, K., Moore, K.L., Ingrisch, J., Reinthaler, D., Zechmeister-Boltenstern, S., Glatzel, S., Brüggemann, N. and Bahn, M. 2021. Denitrifying pathways dominate nitrous oxide emissions from managed grassland during drought and rewetting. Science Advances 7(6), eabb7118.
Henneron, L., Bernard, L., Hedde, M., Pelosi, C., Villenave, C., Chenu, C., Bertrand, M., Girardin, C. and Blanchart, E. 2015. Fourteen years of evidence for positive effects of conservation agriculture and organic farming on soil life. Agronomy for Sustainable Development 35(1), 169-181.
Hessen, D.O., Ågren, G.I., Anderson, T.R., Elser, J.J. and de Ruiter, P.C. 2004. Carbon Sequestration in Ecosystems: The Role of Stoichiometry. Ecology 85(5), 1179-1192.
Hong, H., Fan, H., Chalamaiah, M. and Wu, J. 2019. Preparation of low-molecular-weight, collagen hydrolysates (peptides): Current progress, challenges, and future perspectives. Food Chemistry 301, 125222.
Huang, L., Riggins, C.W., Rodríguez-Zas, S., Zabaloy, M.C. and Villamil, M.B. 2019. Long-term N fertilization imbalances potential N acquisition and transformations by soil microbes. Science of The Total Environment 691, 562-571.
Huang, R., Wang, Y., Liu, J., Gao, J., Zhang, Y., Ni, J., Xie, D., Wang, Z. and Gao, M. 2020. Partial substitution of chemical fertilizer by organic materials changed the abundance, diversity, and activity of nirS-type denitrifying bacterial communities in a vegetable soil. Applied Soil Ecology 152, 103589.
Imaizumi, A. 2023. Poultry and Products Annual. Foreign Agricultural Service, U.S.D.o.A. (ed), Tokyo, Japan.
Jastrow, J.D. 1996. Soil aggregate formation and the accrual of particulate and mineral-associated organic matter. Soil Biology and Biochemistry 28(4), 665-676.
Javed, T., I, I., Singhal, R.K., Shabbir, R., Shah, A.N., Kumar, P., Jinger, D., Dharmappa, P.M., Shad, M.A., Saha, D., Anuragi, H., Adamski, R. and Siuta, D. 2022. Recent Advances in Agronomic and Physio-Molecular Approaches for Improving Nitrogen Use Efficiency in Crop Plants. Frontiers in Plant Science 13.
Kempers, A.J. and Zweers, A. 1986. Ammonium determination in soil extracts by the salicylate method. Communications in Soil Science and Plant Analysis 17(7), 715-723.
Krapp, A. 2015. Plant nitrogen assimilation and its regulation: a complex puzzle with missing pieces. Current Opinion in Plant Biology 25, 115-122.
Kuypers, M.M.M., Marchant, H.K. and Kartal, B. 2018. The microbial nitrogen-cycling network. Nature Reviews Microbiology 16(5), 263-276.
Lee, S., Jung, Y.-J., Moon, J., Lee, J.-Y., Kim, H., Yang, J.-E., Lee, H., Jung, J. and Kim, H.-R. 2022. Comparison and Selection of Conventional PCR Primer Sets for Studies Associated with Nitrogen Cycle Microorganisms in Surface Soil. Applied Sciences 12(20), 10314.
Lehnert, N., Musselman, B.W. and Seefeldt, L.C. 2021. Grand challenges in the nitrogen cycle. Chemical Society Reviews 50(6), 3640-3646.
Li, Q. 2019. Progress in Microbial Degradation of Feather Waste. Frontiers in Microbiology 10.
Li, Y., Chapman, S.J., Nicol, G.W. and Yao, H. 2018. Nitrification and nitrifiers in acidic soils. Soil Biology and Biochemistry 116, 290-301.
Li, Z., Tang, Z., Song, Z., Chen, W., Tian, D., Tang, S., Wang, X., Wang, J., Liu, W., Wang, Y., Li, J., Jiang, L., Luo, Y. and Niu, S. 2022. Variations and controlling factors of soil denitrification rate. Glob Chang Biol 28(6), 2133-2145.
Li, Z., Zeng, Z., Tian, D., Wang, J., Fu, Z., Zhang, F., Zhang, R., Chen, W., Luo, Y. and Niu, S. 2020. Global patterns and controlling factors of soil nitrification rate. Global Change Biology 26(7), 4147-4157.
Liu, X., Eusterhues, K., Thieme, J., Ciobota, V., Höschen, C., Mueller, C.W., Küsel, K., Kögel-Knabner, I., Rösch, P., Popp, J. and Totsche, K.U. 2013. STXM and NanoSIMS investigations on EPS fractions before and after adsorption to goethite. Environ Sci Technol 47(7), 3158-3166.
Livak, K.J. and Schmittgen, T.D. 2001. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 25(4), 402-408.
Lladó, S., López-Mondéjar, R. and Baldrian, P. 2017. Forest Soil Bacteria: Diversity, Involvement in Ecosystem Processes, and Response to Global Change. Microbiology and Molecular Biology Reviews 81(2), e00063-00016.
Loll, M.J. and Bollag, J.-M. 1983. Advances in Agronomy. Brady, N.C. (ed), pp. 351-382, Academic Press.
Luo, Z., Liu, J., Jia, T., Chai, B. and Wu, T. 2020. Soil Bacterial Community Response and Nitrogen Cycling Variations Associated with Subalpine Meadow Degradation on the Loess Plateau, China. Appl Environ Microbiol 86(9).
Mühling, M., Woolven-Allen, J., Murrell, J.C. and Joint, I. 2008. Improved group-specific PCR primers for denaturing gradient gel electrophoresis analysis of the genetic diversity of complex microbial communities. The ISME Journal 2(4), 379-392.
Martin, J.P. 1945. Microorganisms and Soil Aggregation: I. Origin and Nature of Some of the Aggregating Substances. Soil Science 59(2).
Marty, B., Zimmermann, L., Burnard, P.G., Wieler, R., Heber, V.S., Burnett, D.L., Wiens, R.C. and Bochsler, P. 2010. Nitrogen isotopes in the recent solar wind from the analysis of Genesis targets: Evidence for large scale isotope heterogeneity in the early solar system. Geochimica et Cosmochimica Acta 74(1), 340-355.
Matzel, W. and Lippold, H. 1990. N application to winter wheat at tillering and shooting: N balance at different growth stages. Fertilizer research 26, 139-144.
McNamara, N.P., Black, H.I.J., Beresford, N.A. and Parekh, N.R. 2003. Effects of acute gamma irradiation on chemical, physical and biological properties of soils. Applied Soil Ecology 24(2), 117-132.
Meinhardt, K.A., Bertagnolli, A., Pannu, M.W., Strand, S.E., Brown, S.L. and Stahl, D.A. 2015. Evaluation of revised polymerase chain reaction primers for more inclusive quantification of ammonia‐oxidizing archaea and bacteria. Environmental Microbiology Reports 7(2), 354-363.
Mohsenipour, M., Shahid, S. and Ebrahimi, K. 2015. Nitrate Adsorption on Clay Kaolin: Batch Tests. Journal of Chemistry 2015, 1-7.
Moorhead, D.L. and Sinsabaugh, R.L. 2006. A Theoretical Model of Litter Decay and Microbial Interaction. Ecological Monographs 76(2), 151-174.
Muema, E.K., Cadisch, G., Röhl, C., Vanlauwe, B. and Rasche, F. 2015. Response of ammonia-oxidizing bacteria and archaea to biochemical quality of organic inputs combined with mineral nitrogen fertilizer in an arable soil. Applied Soil Ecology 95, 128-139.
Myrold, D.D. and Bottomley, P.J. 2008. Nitrogen in Agricultural Systems, pp. 157-172.
Ohbayashi, T., Wang, Y., Aoyagi, L.N., Hara, S., Tago, K. and Hayatsu, M. 2023. Diversity of the Hydroxylamine Oxidoreductase (HAO) Gene and Its Enzyme Active Site in Agricultural Field Soils. Microbes and Environments 38(4), n/a.
Ohkubo, Y., Tanaka, M., Tabata, R., Ogawa-Ohnishi, M. and Matsubayashi, Y. 2017. Shoot-to-root mobile polypeptides involved in systemic regulation of nitrogen acquisition. Nature Plants 3(4), 17029.
Ouyang, Y., Evans, S.E., Friesen, M.L. and Tiemann, L.K. 2018. Effect of nitrogen fertilization on the abundance of nitrogen cycling genes in agricultural soils: A meta-analysis of field studies. Soil Biology and Biochemistry 127, 71-78.
Paes, L.A.B., Bezerra, B.S., Deus, R.M., Jugend, D. and Battistelle, R.A.G. 2019. Organic solid waste management in a circular economy perspective – A systematic review and SWOT analysis. Journal of Cleaner Production 239, 118086.
Pandey, A., Suter, H., He, J.-Z., Hu, H.-W. and Chen, D. 2018. Nitrogen Addition Decreases Dissimilatory Nitrate Reduction to Ammonium in Rice Paddies. Applied and Environmental Microbiology 84(17), e00870-00818.
Pandey, C.B., Kumar, U., Kaviraj, M., Minick, K.J., Mishra, A.K. and Singh, J.S. 2020. DNRA: A short-circuit in biological N-cycling to conserve nitrogen in terrestrial ecosystems. Science of The Total Environment 738, 139710.
Pang, P.C., Hedlin, R.A. And Cho, C.M. 1973. Transformation and Movement of Band-Applied Urea, Ammonium Sulfate, and Ammonium Hydroxide During Incubation in Several Manitoba Soils. Canadian Journal of Soil Science 53(3), 331-341.
Philippot, L., Bru, D., Saby, N.P.A., Čuhel, J., Arrouays, D., Šimek, M. and Hallin, S. 2009. Spatial patterns of bacterial taxa in nature reflect ecological traits of deep branches of the 16S rRNA bacterial tree. Environmental Microbiology 11(12), 3096-3104.
Reddy, N. and Santosh, M.S. 2016. Protein Byproducts. Singh Dhillon, G. (ed), pp. 255-274, Academic Press.
Roberson, E.B., Shennan, C., Firestone, M.K. and Sarig, S. 1995. Nutritional Management of Microbial Polysaccharide Production and Aggregation in an Agricultural Soil. Soil Science Society of America Journal 59(6), 1587-1594.
Roberts, T.L., Norman, R.J., Slaton, N.A., Wilson, C.E., Ross, W.J. and Bushong, J.T. 2009. Direct Steam Distillation as an Alternative to the Illinois Soil Nitrogen Test. Soil Science Society of America Journal 73(4), 1268-1275.
Robertson, G.P. and Groffman, P.M. 2015. Soil microbiology, ecology and biochemistry. Paul, E.A. (ed), pp. 421-446, Academic Press, Burlington, Massachusetts, USA.
Six, J., Bossuyt, H., Degryze, S. and Denef, K. 2004. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research 79(1), 7-31.
Soil Science Division Staff. 2017. Soil Survey Manual, USDA Handb. ed., Government Printing Office, Washington, D.C.
Stein, L.Y. and Klotz, M.G. 2016. The nitrogen cycle. Current Biology 26(3), R94-R98.
Stevens, C.J. 2019. Nitrogen in the environment. Science 363(6427), 578-580.
Stevens, W.B., Hoeft, R.G. and Mulvaney, R.L. 2005. Fate of Nitrogen-15 in a Long-Term Nitrogen Rate Study: I. Interactions with Soil Nitrogen. Agronomy Journal 97(4), 1037-1045.
Tan, C. 2022. Poultry facility aims to repurpose chicken feathers, blood into useful materials, SPH Media Trust, Singapore.
Tao, R., Wakelin, S.A., Liang, Y. and Chu, G. 2017. Response of ammonia-oxidizing archaea and bacteria in calcareous soil to mineral and organic fertilizer application and their relative contribution to nitrification. Soil Biology and Biochemistry 114, 20-30.
Tesfaye, T., Sithole, B. and Ramjugernath, D. 2017. Valorisation of chicken feathers: a review on recycling and recovery route—current status and future prospects. Clean Technologies and Environmental Policy 19(10), 2363-2378.
Thomson, A.J., Giannopoulos, G., Pretty, J., Baggs, E.M. and Richardson, D.J. 2012. Biological sources and sinks of nitrous oxide and strategies to mitigate emissions. Philosophical Transactions of the Royal Society B: Biological Sciences 367(1593), 1157-1168.
Tokida, T. 2021. Increasing measurement throughput of methane emission from rice paddies with a modified closed-chamber method. Journal of Agricultural Meteorology 77(2), 160-165.
Tripathi, R., Nayak, A.K., Bhattacharyya, P., Shukla, A.K., Shahid, M., Raja, R., Panda, B.B., Mohanty, S., Kumar, A. and Thilagam, V.K. 2014. Soil aggregation and distribution of carbon and nitrogen in different fractions after 41years long-term fertilizer experiment in tropical rice–rice system. Geoderma 213, 280-286.
Tsuboi, S., Yamamura, S., Imai, A., Satou, T. and Iwasaki, K. 2014. Linking Temporal Changes in Bacterial Community Structures with the Detection and Phylogenetic Analysis of Neutral Metalloprotease Genes in the Sediments of a Hypereutrophic Lake. Microbes and Environments 29(3), 314-321.
Udom, B.E., Nuga, B.O. and Adesodun, J.K. 2016. Water-stable aggregates and aggregate-associated organic carbon and nitrogen after three annual applications of poultry manure and spent mushroom wastes. Applied Soil Ecology 101, 5-10.
Ulug, S.K., Jahandideh, F. and Wu, J. 2021. Novel technologies for the production of bioactive peptides. Trends in Food Science & Technology 108, 27-39.
USDA. 2011. Carbon to Nitrogen Ratios in Cropping Systems. Center, E.N.T.S. (ed), USDA NRCS, Greensboro, NC.
Wang, Z., Li, Y., Zheng, W., Ji, Y., Duan, M. and Ma, L. 2023. Ammonia oxidizing archaea and bacteria respond to different manure application rates during organic vegetable cultivation in Northwest China. Scientific Reports 13(1).
Watson, C.A., Atkinson, D., Gosling, P., Jackson, L.R. and Rayns, F.W. 2002. Managing soil fertility in organic farming systems. Soil Use and Management 18(s1), 239-247.
Wehrmann, J. and Scharpf, H.C. 1986. The Nmin-method – an aid to integrating various objectives of nitrogen fertilization. Zeitschrift für Pflanzenernährung und Bodenkunde 149(4), 428-440.
Wieczorek, A.S., Schmidt, O., Chatzinotas, A., Von Bergen, M., Gorissen, A. and Kolb, S. 2019. Ecological Functions of Agricultural Soil Bacteria and Microeukaryotes in Chitin Degradation: A Case Study. Frontiers in Microbiology 10.
Wrage, N., Velthof, G.L., Laanbroek, H.J. and Oenema, O. 2004. Nitrous oxide production in grassland soils: assessing the contribution of nitrifier denitrification. Soil Biology and Biochemistry 36(2), 229-236.
Yang, Y., Liu, H. and Lv, J. 2022. Response of N2O emission and denitrification genes to different inorganic and organic amendments. Scientific Reports 12(1).
Zhang, J., Sun, W., Zhong, W. and Cai, Z. 2014. The substrate is an important factor in controlling the significance of heterotrophic nitrification in acidic forest soils. Soil Biology and Biochemistry 76, 143-148.
Zhang, M.-M., Alves, R.J.E., Zhang, D.-D., Han, L.-L., He, J.-Z. and Zhang, L.-M. 2017a. Time-dependent shifts in populations and activity of bacterial and archaeal ammonia oxidizers in response to liming in acidic soils. Soil Biology and Biochemistry 112, 77-89.
Zhang, M., Cheng, G., Feng, H., Sun, B., Zhao, Y., Chen, H., Chen, J., Dyck, M., Wang, X., Zhang, J. and Zhang, A. 2017b. Effects of straw and biochar amendments on aggregate stability, soil organic carbon, and enzyme activities in the Loess Plateau, China. Environmental Science and Pollution Research 24(11), 10108-10120.
Zhang, X., Yang, Q., Zhang, Q., Jiang, X., Wang, X., Li, Y., Zhao, J. and Qu, K. 2020. Rapid detection of cytochrome cd1-containing nitrite reductase encoding gene nirS of denitrifying bacteria with loop-mediated isothermal amplification assay. Scientific Reports 10(1).
National Academy for Educational Research, Entry for田間容水量, https://terms.naer.edu.tw/detail/ddf48cfc4e8aaa5a2211a450c74c9656/ (accessed August 6, 2024).
許元昆. 1995. 家禽電宰廠副產物(羽毛)之回收利用. 飼料營養1995.09[民84.09]卷, 65-68.
陳仁炫and鄒裕民. 2008. 土壤與肥料分析手册(一):土壤化學性質分析, 中華土壤肥料學會.
陳寧, 葉鎮中, 賴冠丞and陳添寶. 2018.【雞豬遇水劫】畜牧業在極端氣候下的防災難題《我們的島 our island》. 陳寧, 葉鎮中, 賴冠丞and陳添寶(eds), 財團法人公共電視文化事業基金會.
葉瑞涵, 李孟儒, 吳鈴彩, 朱家德and凃榮珍. 2021. 雞隻副產物之再利用技術. 畜產研究2021-54-4-259-272.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95501-
dc.description.abstract全球雞養殖業每年產生數百萬噸的雞羽毛,造成嚴重的環境問題。雞羽毛富含角蛋白,經過亞臨界水萃取,這些角蛋白可以被轉化為高氮含量的蛋白質水解液。氮是作物生長所需之巨量元素,化學肥料施用解決了作物氮肥供應的問題,但是化學氮肥大量施用卻也導致了嚴重的環境問題。因此,本研究的目的是要探討雞羽毛水解液的氮在土壤中的轉變機制,並評估其是否具有做為有機氮肥的潛力,以期解決雞羽毛廢棄物和化學氮肥施用所導致的環境問題。本研究於不同pH和質地的土壤進行60天的土壤孵育實驗,分析土壤樣品中總氮、可水解氮、銨態氮、亞硝酸態氮、硝酸態氮及氧化亞氮通量等氮物種,以及總碳、細菌群落和參與氮轉變過程的重要功能性基因(AOA amoA, AOB amoA, nirS, and nirK)隨時間的變化,並將雞羽毛水解液與尿素進行比較。孵育實驗結束後,分析土壤團粒的穩定性。結果表明,雞羽毛水解液的氮礦化作用比尿素緩慢。在黏土含量較高的酸性土壤中,生物有效性氮(可水解氮、銨態氮、亞硝酸態氮和硝酸態氮的總和)增加較少。硝化作用只在中性土壤中發生,而未在酸性土壤中發生。在中性土壤中,自營性硝化菌在硝化過程中扮演至關重要的角色。此外,雞羽毛的施用使nirS/nirK比率下降,顯示反硝化菌群的組成發生了變化。至於土壤健康指標,雞羽毛的施用使細菌群落的組成產生些微變化,但細菌總數並沒有顯著的變化。此外,土壤有機質的分解和土壤團粒的穩定性也沒有顯著的變化。這項研究表明,雞羽毛水解液可以作為有機氮肥,因為其與化學氮肥相比,對環境的影響似乎更低。zh_TW
dc.description.abstractMillions of tons of chicken feathers are generated globally each year, posing significant environmental problems. Fortunately, chicken feathers are rich in keratin, which can be converted into protein hydrolysate by subcritical fluid extraction. This hydrolysate with high nitrogen (N) content has the potential to serve as an organic nitrogen fertilizer. Nitrogen is one of the macronutrients for plant growth. Since the 20th century, an increased demand for synthetic nitrogen fertilizers driven by the flourishing human population has led to severe environmental issues. Thus, understanding the mutual influence between chicken-feather hydrolysate (CFH) and soil offers a possible solution to address both feather waste problems and the environmental issues tied to synthetic nitrogen fertilizers. In this study, CFH was incubated in soils with different pH and texture for 60 days to investigate how CFH transforms in soil and how the soil is affected by CFH. N species (total N, hydrolysable N, ammonium, nitrite, nitrate, nitrous oxide), total carbon, nitrogen functional genes (AOA amoA, AOB amoA, nirS, and nirK), and bacteria community were measured over time. After the incubation ended, water-stable aggregate was measured. The findings on nitrogen dynamics of CFH revealed that the mineralization rate of CFH into ammonium nitrogen was slower than that of urea. In acidic soils with a higher clay content, there were less increases in bioavailable nitrogen. Nitrification occurred only in neutral soils but not in acidic ones. In neutral pH soils, autotrophic nitrifiers played a crucial role in the nitrification process. Additionally, applying CFH decreased the nirS/nirK ratio, indicating changes in the composition of the denitrifying microbial community. About soil health indicators, CFH application led to a minor shift in the composition of the bacterial community without significantly affecting the total bacteria abundance. Furthermore, there were no substantial change in the decomposition of soil organic matter and the stability of soil aggregates. This study suggests that CFH can function as an organic nitrogen fertilizer, as its environmental impact appears lower compared to synthetic nitrogen fertilizers.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-11T16:12:37Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-11T16:12:37Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 ii
摘要 iii
Abstract iv
Table of Contents vi
List of Figures ix
List of Tables xiii
List of Abbreviations xiv
Chapter 1: Introduction 1
Chapter 2: Literature Review 3
2.1 The Importance of Circular Economy 3
2.2 Chicken Feather 3
2.2.1 Chicken Feather as a Waste 3
2.2.2 Chicken Feather Management 4
2.2.3 Subcritical Water Extraction of Chicken Feather 5
2.3 The N Cycle 7
2.4 Organic Nitrogen Transformation in Soil 11
2.4.1 Mineralization 11
2.4.2 Nitrification 12
2.4.3 Denitrification 14
2.5 Effects of Fertilizers on Soil Health 16
2.5.1 Carbon to Nitrogen (C/N) Ratio and Soil Microorganisms 16
2.5.2 Priming Effect 16
2.5.3 Soil Organic Matter (SOM) and Aggregate Stability 17
2.5.4 Soil Microorganisms and Aggregate Stability 18
Chapter 3: Material and Methods 19
3.1 Chicken-Feather Hydrolysate 19
3.2 Soil Properties 19
3.3 Incubation experiment design 20
3.4 Chemical Analysis 22
3.4.1 Total Organic Carbon (TOC) and Total Nitrogen (TN) 22
3.4.2 Hydrolysable Nitrogen (Hyd-N) 22
3.4.3 Ammonium (NH4+-N) 23
3.4.4 Nitrite (NO2--N) and Nitrate (NO3--N) 23
3.5 N2O Fluxes Measurement 24
3.6 Bacterial analysis 25
3.6.1 DNA extraction from soil samples 25
3.6.2 Preparation of Standard Plasmids 26
3.6.3 Quantitative PCR (qPCR) 26
3.7 Water-stable Aggregate 28
3.8 Electron Probe Micro Analysis 28
3.9 Data and Statistical Analyses 29
Chapter 4: Results and Discussion 32
4.1 Nitrogen Transformation of CFH in Soil 32
4.1.1 In Low pH, Low Clay Content Soil 32
4.1.2 In Low pH, High Clay Content Soil 39
4.1.3 In Neutral pH, Low Clay Content Soil 47
4.1.4 In Neutral pH, High Clay Content Soil 55
4.2 Effects of CFH on Soil Health 62
4.2.1 Bacterial Community 62
4.2.2 Total Organic Carbon 65
4.2.3 Aggregate Stability 67
4.2.4 Chemical Composition and Structure of Aggregate 69
Chapter 5: Conclusion 72
References 74
-
dc.language.isoen-
dc.subject團粒穩定性zh_TW
dc.subject脫氮作用zh_TW
dc.subject礦化作用zh_TW
dc.subject雞羽毛zh_TW
dc.subject硝化作用zh_TW
dc.subjectnitrogen mineralizationen
dc.subjectchicken featheren
dc.subjectnitrificationen
dc.subjectaggregate stabilityen
dc.subjectdenitrificationen
dc.title雞羽毛水解液在土壤中的氮轉變及其對土壤團粒穩定性和菌群的影響zh_TW
dc.titleNitrogen Transformation Dynamics of Chicken-Feather Hydrolysate in Soil and Its Effects on Aggregate Stability and Bacteria Community of Soilen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee浅野眞希;田村憲司;岡根泉zh_TW
dc.contributor.oralexamcommitteeMaki Asano;Kenji Tamura;Izumi Okaneen
dc.subject.keyword雞羽毛,礦化作用,硝化作用,脫氮作用,團粒穩定性,zh_TW
dc.subject.keywordchicken feather,nitrogen mineralization,nitrification,denitrification,aggregate stability,en
dc.relation.page88-
dc.identifier.doi10.6342/NTU202403602-
dc.rights.note未授權-
dc.date.accepted2024-08-10-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept農業化學系-
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
7.8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved