Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95500
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊哲人zh_TW
dc.contributor.advisorJer-Ren Yangen
dc.contributor.author梁書誠zh_TW
dc.contributor.authorShu-Cheng Liangen
dc.date.accessioned2024-09-11T16:12:17Z-
dc.date.available2024-09-12-
dc.date.copyright2024-09-11-
dc.date.issued2024-
dc.date.submitted2024-08-08-
dc.identifier.citation[1] J.R. Davis, Aluminum and aluminum alloys, ASM international1993.
[2] S. Ringer, K. Hono, Microstructural evolution and age hardening in aluminium alloys: atom probe field-ion microscopy and transmission electron microscopy studies, Materials characterization 44(1-2) (2000) 101-131.
[3] S. Caraher, I. Polmear, S.P. Ringer, Effects of Cu and Ag on precipitation in Al-4Zn-3Mg (wt.%), International Conference on Aluminium Alloys (ICAA) 1998, 1998.
[4] J.W. Bob Hussey, Light Alloys: Directory and Databook, Springer New York, NY1998.
[5] G. Waterloo, V. Hansen, J. Gjønnes, S.R. Skjervold, Effect of predeformation and preaging at room temperature in Al–Zn–Mg–(Cu,Zr) alloys, Materials Science and Engineering: A 303(1) (2001) 226-233.
[6] A. Aghabalaeivahid, M. Shalvandi, Microstructure-based crystal plasticity modeling of AA2024-T3 aluminum alloy defined as the α-Al, θ-Al2Cu, and S-Al2CuMg phases based on real metallographic image, Materials Research Express 8(10) (2021) 106521.
[7] P. Dong, S. Chen, K. Chen, Effects of Cu content on microstructure and properties of super-high-strength Al-9.3Zn-2.4Mg-xCu-Zr alloy, Journal of Alloys and Compounds 788 (2019) 329-337.
[8] I. Polmear, The ageing characteristics of complex Al-Zn-Mg alloys-distinctive effects of copper and silver on the ageing mechanism, Journal of the Institute of Metals 89(2) (1960) 51-59.
[9] R.B. Nicholson, J. Nutting, The metallography of precipitation in an Al-16% Ag alloy, Acta Metallurgica 9(4) (1961) 332-343.
[10] E.F. Kazakova, Y.I. Rusnyak, A study of rapidly hardened aluminum alloys with iron and vanadium, Metal Science and Heat Treatment 51(9) (2009) 436-439.
[11] H. Löffler, I. Kovács, J. Lendvai, Decomposition processes in Al-Zn-Mg alloys, Journal of Materials Science 18(8) (1983) 2215-2240.
[12] G.E. Totten, D.S. MacKenzie, Handbook of aluminum: vol. 1: physical metallurgy and processes, CRC press2003.
[13] I. Polmear, Aluminium alloys--A century of age hardening, Materials forum, 2004, p. 13.
[14] J.-F. Nie, 20 - Physical Metallurgy of Light Alloys, in: D.E. Laughlin, K. Hono (Eds.), Physical Metallurgy (Fifth Edition), Elsevier, Oxford, 2014, pp. 2009-2156.
[15] M. Staley, M. Tiryakioglu, Physical metallurgy and the effect of the alloying additions in aluminum alloys, Handbook of Aluminum Volume1. ç Physical Metallurgy and Processes. CRC Press, New York (2003) 81-211.
[16] T. Gladman, Precipitation hardening in metals, Materials Science and Technology 15(1) (1999) 30-36.
[17] M.F. Ibrahim, A.M. Samuel, F.H. Samuel, A preliminary study on optimizing the heat treatment of high strength Al–Cu–Mg–Zn alloys, Materials & Design 57 (2014) 342-350.
[18] M.F. Ashby, Work hardening of dispersion-hardened crystals, Philosophical Magazine 14(132) (1966) 1157-1178.
[19] G. Sha, A. Cerezo, Early-stage precipitation in Al–Zn–Mg–Cu alloy (7050), Acta Materialia 52(15) (2004) 4503-4516.
[20] L. Berg, J. Gjønnes, V.x. Hansen, X. Li, M. Knutson-Wedel, D. Schryvers, L. Wallenberg, GP-zones in Al–Zn–Mg alloys and their role in artificial aging, Acta materialia 49(17) (2001) 3443-3451.
[21] J.D. Embury, R.B. Nicholson, The nucleation of precipitates: The system Al-Zn-Mg, Acta Metallurgica 13(4) (1965) 403-417.
[22] C. Panseri, T. Federighi, Isochronal annealing of vacancies in aluminium, The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics 3(35) (1958) 1223-1240.
[23] A. Guinier, Structure of age-hardened aluminium-copper alloys, Nature 142 (1938) 569-570.
[24] G.D. Preston, Structure of age-hardened aluminium-copper alloys, Nature 142 (1938) 570-570.
[25] R. Nicholson, J. Nutting, Direct observation of the strain field produced by coherent precipitated particles in an age-hardened alloy, The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics 3(29) (1958) 531-535.
[26] R. Graf, An X-Ray study of the precipitation phenomenon in an Al-Zn-Mg alloy containing 7% Zn and 3% Mg, Compt. rend 242 (1956) 1311.
[27] R. Graf, An X-ray study of the precipitation phenomenon in an Al—Zn—Mg alloy with 9% Zn and 1% Mg (AZ 9 Gl), Compt rend 244 (1957) 337.
[28] K. Stiller, P. Warren, V. Hansen, J. Angenete, J. Gjønnes, Investigation of precipitation in an Al–Zn–Mg alloy after two-step ageing treatment at 100 and 150 C, Materials Science and Engineering: A 270(1) (1999) 55-63.
[29] A. Chatterjee, L. Qi, A. Misra, In situ transmission electron microscopy investigation of nucleation of GP zones under natural aging in Al-Zn-Mg alloy, Scripta Materialia 207 (2022) 114319.
[30] A. Lervik, E. Thronsen, J. Friis, C.D. Marioara, S. Wenner, A. Bendo, K. Matsuda, R. Holmestad, S.J. Andersen, Atomic structure of solute clusters in Al–Zn–Mg alloys, Acta Materialia 205 (2021) 116574.
[31] H. Jiao, C. Li, The HREM study of precipitates in an Al− Zn− Mg alloy, Advanced Performance Materials 2(3) (1995) 305-309.
[32] X. Jiang, J. Tafto, B. Noble, B. Holme, Differential scanning calorimetry and electron diffraction investigation on low-temperature aging in Al-Zn-Mg alloys, Metallurgical and Materials Transactions A 31(2) (2000) 339-348.
[33] T.-F. Chung, Y.-L. Yang, B.-M. Huang, Z. Shi, J. Lin, T. Ohmura, J.-R. Yang, Transmission electron microscopy investigation of separated nucleation and in-situ nucleation in AA7050 aluminium alloy, Acta Materialia 149 (2018) 377-387.
[34] X. Li, V. Hansen, J. Gjønnes, L. Wallenberg, HREM study and structure modeling of the η′ phase, the hardening precipitates in commercial Al–Zn–Mg alloys, Acta materialia 47(9) (1999) 2651-2659.
[35] B.C. Muddle, S.P. Ringer, I.J. Polmear, HIGH STRENGTH MICROALLOYED ALUMINIUM ALLOYS, in: H. Sakaki, H. Ohno, S. Kawai, H. Matsunami, M. Aono, H. Koinuma, B. Raveau, M.K. Wu, D.K. Finnemore, K. Togano, S. Sōmiya, M. Doyama, R. Roy (Eds.), Superconductors, Surfaces and Superlattices, Elsevier1994, pp. 999-1023.
[36] J. Gjønnes, C.J. Simensen, An electron microscope investigation of the microstructure in an aluminium-zinc-magnesium alloy, Acta Metallurgica 18(8) (1970) 881-890.
[37] J.H. Auld, S.M. Cousland, STRUCTURE OF THE METASTABLE eta prime PHASE IN ALUMINIUM-ZINC MAGNESIUM ALLOYS, J Aust Inst Met 19(3) (1974) 194-199.
[38] H. Hunsicker, Development of Al-Zn-Mg-CU alloys for aircraft, Philosophical Transactions for the Royal Society of London. Series A, Mathematical and Physical Sciences (1976) 359-376.
[39] J. Yan, L. Chunzhi, Y. Minggao, On the η′ precipitate phase in 7050 aluminium alloy, Materials Science and Engineering: A 141(1) (1991) 123-128.
[40] A. Yamamoto, K. Minami, U. Ishihara, H. Tsubakino, Calorimetric and Resistivity Study of Formation and Redissolution of Precipitates in 7050 Aluminum Alloy, Materials Transactions, JIM 39(1) (1998) 69-74.
[41] F. Cao, J. Zheng, Y. Jiang, B. Chen, Y. Wang, T. Hu, Experimental and DFT characterization of η′ nano-phase and its interfaces in AlZnMgCu alloys, Acta Materialia 164 (2019) 207-219.
[42] Y. Komura, K. Tokunaga, STRUCTURAL STUDIES OF STACKING VARIANTS IN MG-BASE FRIAUF-LAVES PHASES, Acta Crystallogr. Sect. B-Struct. Commun. 36(JUL) (1980) 1548-1554.
[43] J.B. Friauf, The Crystal Structure of Magnesium Di-Zincide, Physical Review 29(1) (1927) 34-40.
[44] P.A. Tracery, The nature and morphology of precipitate in AL-Zn-Mg alloys, J. Inst. Met. 96 (1968) 228-235.
[45] N. Ryum, Precipitation Kinetics in an Al-Zn-Mg-Alloy, International Journal of Materials Research 66(6) (1975) 338-343.
[46] H.P. Degischer, W. Lacom, A. Zahra, C.Y. Zahra, Decomposition Processes in an Al-5% Zn-1% Mg Alloy, Part Il: Electronmicroscopic Investigations 71(4) (1980) 231-238.
[47] A. Deschamps, Y. Bréchet, Nature and distribution of quench-induced precipitation in an Al-Zn-Mg-Cu Alloy, Scripta Materialia 39(11) (1998) 1517-1522.
[48] A. Bendo, K. Matsuda, A. Lervik, T. Tsuru, K. Nishimura, N. Nunomura, R. Holmestad, C.D. Marioara, K. Shimizu, H. Toda, M. Yamaguchi, An unreported precipitate orientation relationship in Al-Zn-Mg based alloys, Materials Characterization 158 (2019) 109958.
[49] T.-F. Chung, Y.-L. Yang, M. Shiojiri, C.-N. Hsiao, W.-C. Li, C.-S. Tsao, Z. Shi, J. Lin, J.-R. Yang, An atomic scale structural investigation of nanometre-sized η precipitates in the 7050 aluminium alloy, Acta Materialia 174 (2019) 351-368.
[50] A. Lervik, C.D. Marioara, M. Kadanik, J.C. Walmsley, B. Milkereit, R. Holmestad, Precipitation in an extruded AA7003 aluminium alloy: Observations of 6xxx-type hardening phases, Materials & Design 186 (2020) 108204.
[51] T.-F. Chung, Y.-L. Yang, C.-L. Tai, M. Shiojiri, C.-N. Hsiao, C.-S. Tsao, W.-C. Li, Z. Shi, J. Lin, H.-R. Chena, J.-R. Yang, HR-STEM investigation of atomic lattice defects in different types of η precipitates in creep-age forming Al–Zn–Mg–Cu aluminium alloy, Materials Science and Engineering: A 815 (2021) 141213.
[52] A. Deschamps, Y. Brechet, Influence of predeformation and ageing of an Al–Zn–Mg alloy—II. Modeling of precipitation kinetics and yield stress, Acta Materialia 47(1) (1998) 293-305.
[53] T.-F. Chung, M. Kawasaki, P. Wang, K. Nishio, M. Shiojiri, W.-C. Li, C.-N. Hsiao, J.-R. Yang, Atomic-resolution energy dispersive X-ray spectroscopy mapping of η precipitates in an Al-Mg-Zn-Cu alloy, Materials Characterization 166 (2020) 110448.
[54] W. Yang, S. Ji, M. Wang, Z. Li, Precipitation behaviour of Al–Zn–Mg–Cu alloy and diffraction analysis from η′ precipitates in four variants, Journal of alloys and compounds 610 (2014) 623-629.
[55] C. Cao, D. Zhang, L. Zhuang, J. Zhang, Improved age-hardening response and altered precipitation behavior of Al-5.2Mg-0.45Cu-2.0Zn (wt%) alloy with pre-aging treatment, Journal of Alloys and Compounds 691 (2017) 40-43.
[56] N. Takata, M. Ishihara, A. Suzuki, M. Kobashi, Microstructure and strength of a novel heat-resistant aluminum alloy strengthened by T-Al6Mg11Zn11 phase at elevated temperatures, Materials Science and Engineering: A 739 (2019) 62-70.
[57] X. Zhang, Z. Han, L. Xu, H. Ni, X. Hu, H. Zhou, Y. Zou, J. Wang, Evolution of precipitate and precipitate/matrix interface in Al-Zn-Mg-Cu (-Ag) alloys, Journal of Materials Science & Technology 138 (2023) 157-170.
[58] Y. Zou, X. Wu, S. Tang, Y. Wang, K. Zhao, L. Cao, The effect of pre-ageing/stretching on the ageing-hardening behavior of Al–Zn–Mg–Cu alloys correlated with Zn/Mg ratio, Materials Science and Engineering: A 830 (2022) 142331.
[59] Y. Geng, D. Zhang, J. Zhang, L. Zhuang, Early-stage clustering and precipitation behavior in the age-hardened Al–Mg–Zn(-Cu) alloys, Materials Science and Engineering: A 856 (2022) 144015.
[60] Y. Zou, L. Cao, X. Wu, S. Tang, M. Guo, Synergetic effect of natural ageing and pre-stretching on the ageing behavior in Tʹ/ηʹ phase-strengthened Al-Zn-Mg-Cu alloys, Journal of Materials Science & Technology 146 (2023) 240-251.
[61] Y.-Y. Li, L. Kovarik, P.J. Phillips, Y.-F. Hsu, W.-H. Wang, M.J. Mills, High-resolution characterization of the precipitation behavior of an Al–Zn–Mg–Cu alloy, Philosophical magazine letters 92(4) (2012) 166-178.
[62] C.D. Marioara, W. Lefebvre, S.J. Andersen, J. Friis, Atomic structure of hardening precipitates in an Al–Mg–Zn–Cu alloy determined by HAADF-STEM and first-principles calculations: relation to η-MgZn2, Journal of Materials Science 48(10) (2013) 3638-3651.
[63] X. Zhang, J. Wang, Atomistic mechanism of η’-to-η transformation in Al-Zn-Mg-Cu alloys, Scripta Materialia 231 (2023) 115474.
[64] A. Kverneland, V. Hansen, R. Vincent, K. Gjønnes, J. Gjønnes, Structure analysis of embedded nano-sized particles by precession electron diffraction. η′-precipitate in an Al–Zn–Mg alloy as example, Ultramicroscopy 106(6) (2006) 492-502.
[65] J.Z. Liu, J.H. Chen, X.B. Yang, S. Ren, C.L. Wu, H.Y. Xu, J. Zou, Revisiting the precipitation sequence in Al–Zn–Mg-based alloys by high-resolution transmission electron microscopy, Scripta Materialia 63(11) (2010) 1061-1064.
[66] J.Z. Liu, J.H. Chen, D.W. Yuan, C.L. Wu, J. Zhu, Z.Y. Cheng, Fine precipitation scenarios of AlZnMg(Cu) alloys revealed by advanced atomic-resolution electron microscopy study Part I: Structure determination of the precipitates in AlZnMg(Cu) alloys, Materials Characterization 99 (2015) 277-286.
[67] X. Zhang, X. Deng, H. Zhou, J. Wang, Atomic-scale study on the precipitation behavior of an Al–Zn–Mg–Cu alloy during isochronal aging, Journal of Materials Science & Technology 108 (2022) 281-292.
[68] A. Bendo, K. Matsuda, S. Lee, K. Nishimura, N. Nunomura, H. Toda, M. Yamaguchi, T. Tsuru, K. Hirayama, K. Shimizu, H. Gao, K. Ebihara, M. Itakura, T. Yoshida, S. Murakami, Atomic scale HAADF-STEM study of η′ and η1 phases in peak-aged Al–Zn–Mg alloys, Journal of Materials Science 53(6) (2018) 4598-4611.
[69] Y. Ou, Y. Jiang, Y. Wang, Z. Liu, A. Lervik, R. Holmestad, Vacancy and solute co-segregated η1 interface in over-aged Al-Zn-Mg alloys, Acta Materialia 218 (2021) 117082.
[70] K. Xiang, F.J.H. Ehlers, X. Lei, X. Yang, L. Ding, C. Wang, Q. Liu, Z. Jia, Five-fold symmetry structure inhibiting the growth of an otherwise perfect η2 phase in Al-Zn-Mg-Cu alloys, Scripta Materialia 236 (2023) 115664.
[71] T. Yang, J. Lu, K. Li, Y. Kong, Z. Zhang, Q. Long, X. Lan, Q. Lu, Y. Du, Discovery of a bulk C36-type MgZn2 structure step by step transformed from the C14 prototype laves phase structure, Journal of Materials Science 57(4) (2022) 2999-3009.
[72] A. Deschamps, F. Livet, Y. Bréchet, Influence of predeformation on ageing in an Al–Zn–Mg alloy—I. Microstructure evolution and mechanical properties, Acta Materialia 47(1) (1998) 281-292.
[73] D.L. Sun, D.Z. Yang, Y. Hong, T.C. Lei, Effect of Prior Cold Deformation on Aging Behavior of AL-2.73wt-% LI Alloy, in: P.O. Kettunen, T.K. LepistÖ, M.E. Lehtonen (Eds.), Strength of Metals and Alloys (ICSMA 8), Pergamon, Oxford, 1989, pp. 591-596.
[74] K. Matsuda, S. Tada, S. Ikeno, in Proc. of the 4th ICAA, Georgia Institute of Technology Atlanta, 1994.
[75] S.P. Ringer, B.C. Muddle, I.J. Polmear, Effects of cold work on precipitation in Al-Cu-Mg-(Ag) and Al-Cu-Li-(Mg-Ag) alloys, Metallurgical and Materials Transactions A 26(7) (1995) 1659-1671.
[76] A. Deschamps, Y. Bréchet, P. Guyot, F. Livet, On the influence of dislocations on precipitation in Al-Zn-Mg alloy, Zeitschrift fuer Metallkunde 88 (1997) 601-606.
[77] S. Kilic, I. Kacar, M. Sahin, F. Ozturk, O. Erdem, Effects of Aging Temperature, Time, and Pre-Strain on Mechanical Properties of AA7075, Materials Research 22 (2019).
[78] D. Wang, D.R. Ni, Z.Y. Ma, Effect of pre-strain and two-step aging on microstructure and stress corrosion cracking of 7050 alloy, Materials Science and Engineering: A 494(1) (2008) 360-366.
[79] D. Wang, Z.Y. Ma, Effect of pre-strain on microstructure and stress corrosion cracking of over-aged 7050 aluminum alloy, Journal of Alloys and Compounds 469(1) (2009) 445-450.
[80] K.-z. He, Q. Li, S.-d. Liu, X.-m. Zhang, K.-c. Zhou, Influence of pre-stretching on quench sensitive effect of high-strength Al−Zn−Mg−Cu-Zr alloy sheet, Journal of Central South University 28(9) (2021) 2660-2669.
[81] G. Sha, Y. Wang, X. Liao, Z. Duan, S. Ringer, T. Langdon, Influence of equal-channel angular pressing on precipitation in an Al–Zn–Mg–Cu alloy, Acta Materialia 57(10) (2009) 3123-3132.
[82] P. Ma, C. Liu, Q. Chen, Q. Wang, L. Zhan, J. Li, Natural-ageing-enhanced precipitation near grain boundaries in high-strength aluminum alloy, Journal of Materials Science & Technology 46 (2020) 107-113.
[83] Z. Ma, J.D. Robson, Understanding the effect of deformation combined with heat treatment on age hardening of Al–Zn–Mg–Cu alloy AA7075, Materials Science and Engineering: A 878 (2023) 145212.
[84] F. Viana, A. Pinto, H. Santos, A. Lopes, Retrogression and re-ageing of 7075 aluminium alloy: microstructural characterization, Journal of Materials Processing Technology 92 (1999) 54-59.
[85] E. Van Cappellen, A. Bright, J.R. Jinschek, 浩. 伊野家, B. Freitag, 球面収差補正TEMを中心とする技術, 表面科学 34(5) (2013) 234-239.
[86] A. Thust, W.M.J. Coene, M. Op de Beeck, D. Van Dyck, Focal-series reconstruction in HRTEM: simulation studies on non-periodic objects, Ultramicroscopy 64(1) (1996) 211-230.
[87] T. Marlaud, A. Deschamps, F. Bley, W. Lefebvre, B. Baroux, Influence of alloy composition and heat treatment on precipitate composition in Al–Zn–Mg–Cu alloys, Acta Materialia 58(1) (2010) 248-260.
[88] M. Sezgin, B. Sankur, Survey over image thresholding techniques and quantitative performance evaluation, Journal of Electronic Imaging 13(1) (2004).
[89] J. Majimel, G. Molénat, M.J. Casanove, D. Schuster, A. Denquin, G. Lapasset, Investigation of the evolution of hardening precipitates during thermal exposure or creep of a 2650 aluminium alloy, Scripta Materialia 46(2) (2002) 113-119.
[90] C.L. Tai, Y.X. Lin, C.Y. Tseng, T.F. Chung, Y.L. Yang, T.C. Tsao, S.Y. Lu, P.H. Chiu, T.C. Su, C.Y. Chen, S.L. Lee, J.R. Yang, Effects of different combinations of artificial ageing and warm forming on Ω phase and S phase evolutions in an Al-5.1Cu-1.0Mg-0.4Ag high strength aluminum alloy, Materials Science and Engineering: A 897 (2024).
[91] M. Kanno, I. Araki, Q. Cui, Precipitation behaviour of 7000 alloys during retrogression and reaging treatment, Materials Science and Technology 10(7) (1994) 599-603.
[92] S. Lim, S. Yun, S.W. Nam, Improved quench sensitivity in modified aluminum alloy 7175 for thick forging applications, Materials Science and Engineering: A 371(1-2) (2004) 82-90.
[93] J.A. Wert, Q. Liu, N. Hansen, Dislocation boundaries and active slip systems, Acta Metallurgica et Materialia 43(11) (1995) 4153-4163.
[94] N. Hansen, X. Huang, Microstructure and flow stress of polycrystals and single crystals, Acta Materialia 46(5) (1998) 1827-1836.
[95] Q. Liu, D. Juul Jensen, N. Hansen, Effect of grain orientation on deformation structure in cold-rolled polycrystalline aluminium, Acta Materialia 46(16) (1998) 5819-5838.
[96] F. De Geuser, A. Deschamps, Precipitate characterisation in metallic systems by small-angle X-ray or neutron scattering, Comptes Rendus Physique 13(3) (2012) 246-256.
[97] Z.M. Wang, G.J. Shiflet, Growth of δ′ on dislocations in a dilute Al-Li alloy, Metallurgical and Materials Transactions A 29(8) (1998) 2073-2085.
[98] M. Bignon, Z. Ma, J.D. Robson, P. Shanthraj, Interactions between plastic deformation and precipitation in Aluminium alloys: A crystal plasticity model, Acta Materialia 247 (2023) 118735.
[99] J.D. Robson, Deformation Enhanced Diffusion in Aluminium Alloys, Metallurgical and Materials Transactions A 51(10) (2020) 5401-5413.
[100] Z. Ma, E. Cooksey-Nash, D. Barbier, J.D. Robson, Microstructural stability and paint bake response of pre-aged AA7075, Materials Characterization 200 (2023) 112862.
[101] Y. Fan, X. Tang, S. Wang, B. Chen, Comparisons of Age Hardening and Precipitation Behavior in 7075 Alloy Under Single and Double-Stage Aging Treatments, Metals and Materials International 27(10) (2021) 4204-4215.
[102] W.J. Poole, H.R. Shercliff, T. Castillo, Process model for two step age hardening of 7475 aluminium alloy, Materials Science and Technology 13(11) (1997) 897-904.
[103] S. Cheng, Y.H. Zhao, Y.T. Zhu, E. Ma, Optimizing the strength and ductility of fine structured 2024 Al alloy by nano-precipitation, Acta Materialia 55(17) (2007) 5822-5832.
[104] S.J. Andersen, C.D. Marioara, J. Friis, S. Wenner, R. Holmestad, Precipitates in aluminium alloys, Adv. Phys.-X 3(1) (2018) 790-813.
[105] T.-F. Chung, Y.-L. Yang, M. Shiojiri, C.-N. Hsiao, W.-C. Li, J.-R. Yang, Intrinsic twin boundary of η-MgZn2 precipitates in the AA7050 aluminium alloy, Procedia Manufacturing 37 (2019) 201-206.
[106] K. Stiller, P.J. Warren, V. Hansen, J. Angenete, J. Gjønnes, Investigation of precipitation in an Al–Zn–Mg alloy after two-step ageing treatment at 100° and 150°C, Materials Science and Engineering: A 270(1) (1999) 55-63.
[107] T. Engdahl, V. Hansen, P.J. Warren, K. Stiller, Investigation of fine scale precipitates in Al–Zn–Mg alloys after various heat treatments, Materials Science and Engineering: A 327(1) (2002) 59-64.
[108] X. Lei, G. Xu, K. Xiang, L. Ding, X. Yang, Z. Jia, Q. Liu, Structural analysis of η14 phase and its forming mechanism in Al-Zn-Mg-Cu alloy, Materials Characterization 206 (2023) 113453.
[109] K. Xiang, L. Ding, Z. Jia, X. Yang, Q. Liu, Z. Hao, Phase transition induced by synchroshear in Al-Zn-Mg-Cu alloy, Scripta Materialia 212 (2022) 114577.
[110] L. Mei, M.J. Yang, X.P. Chen, Q.Q. Jin, Y.Q. Wang, Y.M. Li, Precipitate evolution and properties of an Al–Zn–Mg–Cu alloy processed by thermomechanical treatment, Materials Science and Engineering: A 867 (2023) 144716.
[111] T. Yang, Y. Kong, J. Lu, Z. Zhang, M. Yang, N. Yan, K. Li, Y. Du, Self-accommodated defect structures modifying the growth of Laves phase, Journal of Materials Science & Technology 62 (2021) 203-213.
[112] S. Liu, H. Hou, W. Shao, J. Yang, Z. Wang, Q. Yang, J. Llorca, Revisiting the precipitation mechanisms of Guinier-Preston zones, η′, and η precipitates in Al-Zn-Mg alloys, Acta Materialia 268 (2024) 119789.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95500-
dc.description.abstract本研究探討材料微結構與機械性質之關聯,以7系列鋁合金作為研究對象。7系列鋁合金透過奈米析出物η、η’ 提高機械強度,本研究透過掃描/穿透式電子顯微鏡(Scanning/Transmission Electron Microscope, S/TEM)觀察析出物分布、尺寸與形貌,並藉由高解析穿透式影像(HR-TEM)解析η的複雜方位關係,與高解析掃描式電子顯微鏡(HR-STEM)拍攝η原子級影像,深入探索其中的缺陷及雙晶關係。
本研究的第一部分探討施加應變對於AA7075鋁合金中析出物的影響,分析其對於機械性質的影響,並提出改良製程以有效提高降伏強度。研究中發現,時效前的預變形(Pre-stretching)所導入的差排,會在後續時效析出過程中,導致析出物在差排上的粗化,從而對析出強化產生負面效果。為了解決這一問題,本研究提出了時效中期變形(Interrupted-stretching)製程,能有效減少析出物的粗化程度,在相同應變量6%的情況下,提高AA7075合金降伏強度43 MPa。
本研究的第二部分針對η原子級影像進行深入分析,在析出物η中辨認了三種雙晶關係,並且因為雙晶關係產生新的析出物種類η17。此外,研究還發現η(C14結構)具有C15結構的前驅物,並且通過原位相轉變(In-situ transformation)機制進行轉變。前驅物的揭示解釋了η多種方位關係及其中缺陷(包括疊差Stacking Faults和雙晶Twins)的起源。
zh_TW
dc.description.abstractThis study investigates the relationship between microstructure and mechanical properties of AA7xxx series aluminum alloys. These alloys enhance mechanical strength through nano-precipitates η and η’. Using Scanning/Transmission Electron Microscopy (S/TEM), the distribution, size, and morphology of the precipitates were observed. High-Resolution Transmission Electron Microscopy (HR-TEM) was used to analyze the complex orientation relationships of η, and High-Resolution Scanning Transmission Electron Microscopy (HR-STEM) captured atomic-level images of η, exploring defects and twinning relationships in detail.
The first part of this study examines the effect of applied strain on the precipitation evolution in AA7075 aluminum alloy and its impact on mechanical properties. A process improvement is proposed to effectively increase the yield strength. It was found that dislocations introduced by pre-stretching before aging lead to coarsening of precipitates along dislocations during subsequent aging, negatively affecting precipitation strengthening. An interrupted-stretching process during mid-aging was proposed to mitigate precipitate coarsening. With the same 6% strain, this process can improve the yield strength by 43 MPa in the present AA7075 alloy.
The second part of this study provides an in-depth analysis of atomic-level images of η precipitates, identifying three types of twinning relationships. These relationships resulted in a new precipitate orientation relationship, η17. Additionally, it was discovered that η (C14 structure) has a precursor with C15 structure, which transforms via an in-situ transformation mechanism. The revelation of this precursor explains the various orientation relationships of η and the origins of defects, including stacking faults and twins.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-11T16:12:17Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-11T16:12:17Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsContents
口試委員會審定書 i
中文摘要 ii
Abstract iii
誌謝 v
Contents vi
List of Figures ix
List of Tables xvi
Chapter 1 Introduction 1
Chapter 2 Literature Review 3
2.1 Brief introduction to aluminum alloys 3
2.2 Introduction to AA7xxx alloys 4
2.3 Solute effects in AA7075 alloys 5
2.3.1 Major addition: Zn, Mg, Cu 6
2.3.2 Minor addition: Ag, Mn, Cr, Ti, Zr, V, Fe and Si 7
2.4 Heat treatment for AA7xxx alloys 8
2.5 Precipitation hardening 10
2.6 Precipitate evolution in AA7075 aluminum alloys 12
2.6.1 GPI and GPII Zone 13
2.6.2 η’ and η 15
2.6.3 Atomic structures of η’, and other precursors of η 19
2.6.4 Atomic structure of η 23
2.6.5 Defects in η bulk and η / Al interface 23
2.7 Effect of deformation on age-hardenable aluminum alloys 28
2.7.1 Introduction of pre-deformation on aluminum alloys 28
2.7.2 Pre-deformation impacts on yield strength and hardness 29
2.7.3 Pre-deformation impacts on stress corrosion cracking (SCC) resistance and quenching sensitivity 30
2.7.4 Pre-deformation impacts on microstructural effects 31
2.7.5 Mechanism explanation, and strategies against the adverse effects of pre-deformation 34
Chapter 3 Experimental Procedures and Analysis Methods 36
3.1 Material 36
3.2 Heat treatments 36
3.3 Hardness test 37
3.4 Tensile test 38
3.5 Field emission scanning / transmission electron microscope (FE-S/TEM) 39
3.5.1 Sample preparation 39
3.5.2 Bright field and dark field image 39
3.5.3 High resolution transmission electron microscopy (HRTEM) 40
3.5.4 Scanning transmission electron microscope (STEM): annular-dark-field (ADF) and high angle annular-dark-field (HAADF) 40
3.6 Diffraction pattern simulation 41
3.7 HAADF image simulation 41
3.8 Precipitate quantification 42
Chapter 4 Deformation Effects on Precipitation 44
4.1 Simulated diffraction patterns of η types and morphologies of η’ and η2 44
4.2 Mechanical properties: hardness and tensile test results 47
4.3 TEM Microstructure: Unstretched-20 h and PS2%-20 h 50
4.4 TEM Microstructural evolution: PS6% 55
4.5 TEM Microstructure: IS6%-20h 63
4.6 Discussion: Pre-deformation and interrupted-deformation effects 64
Chapter 5 Atomic-Resolution Analysis of Precipitation Evolution 66
5.1 HAADF-STEM image simulation of Laves phases 66
5.2 Atomic structure of η1: zig-zag structure, stacking faults, and hexagonal defect chains 67
5.3 [11"2" 0]η Axis-angle pair relationship between η precipitates under typical low-index Al zones 72
5.4 C15 precursor and Laves phases transformation induced twinning in η precipitates 75
5.4.1 In-situ transformation: from C15 precursor to C14-η 75
5.4.2 C-{20"2" 5}{20"23" }twin by double synchroshear from C15 precursor 80
5.4.3 B-{20"2" 1}twin by double synchroshear from twinned C15 precursor 86
5.5 Discussion: atomic scale observation of η 88
5.5.1 Comparison of the observed C15 precursor ηp to previous HAADF results 88
5.5.2 C15 Precursors, B-twin and C-twin 90
5.5.3 Twin formation mechanisms: C15 precursor and stacking fault regions 94
5.5.4 Origins of η type complexity and defects: transformation from C15 precursors, and basal shifting mechanism 97
5.5.5 Lave phase transformation and stacking faults in C14-η structure in Al-Zn-Mg-Cu Alloys 100
5.5.6 Morphologies of η1 101
5.6 Other twinning type observation: {1"2" 12}η twinning 102
Chapter 6 General Conclusion 103
Chapter 7 Future Works 104
Reference 105
-
dc.language.isoen-
dc.subject預變形zh_TW
dc.subjectAA7075鋁合金zh_TW
dc.subjectAl-Zn-Mg-Cuzh_TW
dc.subject奈米級析出物zh_TW
dc.subjectη相zh_TW
dc.subject雙球面像差校正掃描式電子顯微鏡zh_TW
dc.subject拉弗斯相zh_TW
dc.subject方位關係zh_TW
dc.subject原位相轉變zh_TW
dc.subject穿透式電子顯微鏡zh_TW
dc.subject原子級影像zh_TW
dc.subjectOrientation relationshipsen
dc.subjectTransmission electron microscopyen
dc.subjectη phaseen
dc.subjectNanoscale precipitatesen
dc.subjectAl-Zn-Mg-Cuen
dc.subjectAA7075 aluminum alloysen
dc.subjectIn-situ transformationen
dc.subjectCs-corrected scanning-transmission electron microscopyen
dc.subjectAtomic-resolution imageen
dc.subjectLaves phasesen
dc.subjectPre-stretchingen
dc.title變形對AA7075鋁合金顯微結構的影響及 η相析出物中相變誘導雙晶之原子級研究zh_TW
dc.titleDeformation Effects on AA7075 Microstructure and Atomic Study of Transformation-Induced Twinning in η Precipitatesen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鍾采甫;王涵聖;陳志遠;蕭健男zh_TW
dc.contributor.oralexamcommitteeTsai-Fu Chung;Han-Shen Wang;Chih-Yuan Chen;Chien-Nan Hsiaoen
dc.subject.keywordAA7075鋁合金,Al-Zn-Mg-Cu,奈米級析出物,η相,預變形,拉弗斯相,方位關係,原位相轉變,穿透式電子顯微鏡,雙球面像差校正掃描式電子顯微鏡,原子級影像,zh_TW
dc.subject.keywordAA7075 aluminum alloys,Al-Zn-Mg-Cu,Nanoscale precipitates,η phase,Pre-stretching,Laves phases,Orientation relationships,In-situ transformation,Transmission electron microscopy,Cs-corrected scanning-transmission electron microscopy,Atomic-resolution image,en
dc.relation.page117-
dc.identifier.doi10.6342/NTU202402950-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-10-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
dc.date.embargo-lift2029-07-31-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
32.73 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved