Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95492
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙基揚zh_TW
dc.contributor.advisorChi-Yang Chaoen
dc.contributor.author陳貝妮zh_TW
dc.contributor.authorBei-Ni Chenen
dc.date.accessioned2024-09-11T16:09:42Z-
dc.date.available2024-09-12-
dc.date.copyright2024-09-11-
dc.date.issued2024-
dc.date.submitted2024-08-09-
dc.identifier.citation1.Ng, W.K., et al., Commercial Anion Exchange Membranes (AEMs) for Fuel Cell and Water Electrolyzer Applications: Performance, Durability, and Materials Advancement. Separations, 2023. 10(8): p. 424.
2.You, B., et al., Efficient H2 evolution coupled with oxidative refining of alcohols via a hierarchically porous nickel bifunctional electrocatalyst. ACS Catalysis, 2017. 7(7): p. 4564-4570.
3.Liu, D., et al., High-performance urea electrolysis towards less energy-intensive electrochemical hydrogen production using a bifunctional catalyst electrode. Journal of materials chemistry A, 2017. 5(7): p. 3208-3213.
4.Adam, D.B., et al., Iodide Oxidation Reaction Catalyzed by Ruthenium–Tin Surface Alloy Oxide for Efficient Production of Hydrogen and Iodine Simultaneously. ACS Sustainable Chemistry & Engineering, 2021. 9(26): p. 8803-8812.
5.Hu, C., L. Zhang, and J. Gong, Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy & Environmental Science, 2019. 12(9): p. 2620-2645.
6.Surendran, S., et al., Electrospun carbon nanofibers encapsulated with NiCoP: a multifunctional electrode for supercapattery and oxygen reduction, oxygen evolution, and hydrogen evolution reactions. Advanced Energy Materials, 2018. 8(20): p. 1800555.
7.Zeng, K. and D. Zhang, Recent progress in alkaline water electrolysis for hydrogen production and applications. Progress in energy and combustion science, 2010. 36(3): p. 307-326.
8.Zhang, H., et al., Bifunctional heterostructured transition metal phosphides for efficient electrochemical water splitting. Advanced functional materials, 2020. 30(34): p. 2003261.
9.Veeramani, K., et al., Hydrogen and value-added products yield from hybrid water electrolysis: A critical review on recent developments. Renewable and Sustainable Energy Reviews, 2023. 177: p. 113227.
10.Yap, F.M., et al., Self‐Supported Earth‐Abundant Carbon‐Based Substrates in Electrocatalysis Landscape: Unleashing the Potentials Toward Paving the Way for Water Splitting and Alcohol Oxidation. Advanced Energy Materials, 2023: p. 2303614.
11.Li, Y., et al., MnO2 electrocatalysts coordinating alcohol oxidation for ultra‐durable hydrogen and chemical productions in acidic solutions. Angewandte Chemie, 2021. 133(39): p. 21634-21642.
12.Patil, S.J., et al., Fluorine Engineered Self‐Supported Ultrathin 2D Nickel Hydroxide Nanosheets as Highly Robust and Stable Bifunctional Electrocatalysts for Oxygen Evolution and Urea Oxidation Reactions. Small, 2022. 18(7): p. 2103326.
13.Zhang, Y., et al., Multifunctional Nickel Sulfide Nanosheet Arrays for Solar‐Intensified Oxygen Evolution Reaction. Small, 2020. 16(33): p. 2002550.
14.Bai, J., et al., Nanocatalysts for electrocatalytic oxidation of ethanol. ChemSusChem, 2019. 12(10): p. 2117-2132.
15.Kuang, M., et al., Efficient nitrate synthesis via ambient nitrogen oxidation with Ru‐doped TiO2/RuO2 electrocatalysts. Advanced Materials, 2020. 32(26): p. 2002189.
16.Adam, D.B., et al., Engineering self-supported ruthenium-titanium alloy oxide on 3D web-like titania as iodide oxidation reaction electrocatalyst to boost hydrogen production. Applied Catalysis B: Environmental, 2022. 316: p. 121608.
17.Peng, S.-M., et al., Fast charge transfer between iodide ions and a delocalized electron system on the graphite surface for boosting hydrogen production. Journal of Materials Chemistry A, 2022. 10(45): p. 23982-23989.
18.Etesami, M. and N. Mohamed, Electrooxidation of ethylene glycol using gold nanoparticles electrodeposited on pencil graphite in alkaline medium. Science China Chemistry, 2012. 55: p. 247-255.
19.Ayele, A.A., et al., Electrochemical oxidation of ethylene glycol on TiO2-supported platinum single-atom catalyst into valuable chemicals in alkaline media. Applied Catalysis A: General, 2022. 646: p. 118861.
20.Ye, Y.-S., J. Rick, and B.-J. Hwang, Water soluble polymers as proton exchange membranes for fuel cells. Polymers, 2012. 4(2): p. 913-963.
21.Kraytsberg, A. and Y. Ein-Eli, Review of advanced materials for proton exchange membrane fuel cells. Energy & Fuels, 2014. 28(12): p. 7303-7330.
22.Bunazawa, H. and Y. Yamazaki, Influence of anion ionomer content and silver cathode catalyst on the performance of alkaline membrane electrode assemblies (MEAs) for direct methanol fuel cells (DMFCs). Journal of Power Sources, 2008. 182(1): p. 48-51.
23.Shao, Z.-G., P. Joghee, and I.-M. Hsing, Preparation and characterization of hybrid Nafion–silica membrane doped with phosphotungstic acid for high temperature operation of proton exchange membrane fuel cells. Journal of Membrane Science, 2004. 229(1-2): p. 43-51.
24.Giffin, G.A., et al., Characterization of sulfated-zirconia/Nafion® composite membranes for proton exchange membrane fuel cells. Journal of Power Sources, 2012. 198: p. 66-75.
25.Stenina, I., et al., Ion mobility in Nafion-117 membranes. Desalination, 2004. 170(1): p. 49-57.
26.Peng, J., et al., The ion and water transport properties of K+ and Na+ form perfluorosulfonic acid polymer. Electrochimica Acta, 2018. 282: p. 544-554.
27.Jalani, N.H. and R. Datta, The effect of equivalent weight, temperature, cationic forms, sorbates, and nanoinorganic additives on the sorption behavior of Nafion®. Journal of membrane science, 2005. 264(1-2): p. 167-175.
28.Hsu, W.Y. and T.D. Gierke, Elastic theory for ionic clustering in perfluorinated ionomers. Macromolecules, 1982. 15(1): p. 101-105.
29.Henkensmeier, D., et al., Overview: State-of-the art commercial membranes for anion exchange membrane water electrolysis. Journal of Electrochemical Energy Conversion and Storage, 2021. 18(2): p. 024001.
30.Park, J.E., et al., High-performance anion-exchange membrane water electrolysis. Electrochimica Acta, 2019. 295: p. 99-106.
31.Vincent, I., A. Kruger, and D. Bessarabov, Development of efficient membrane electrode assembly for low cost hydrogen production by anion exchange membrane electrolysis. International Journal of Hydrogen Energy, 2017. 42(16): p. 10752-10761.
32.Pavel, C.C., et al., Highly efficient platinum group metal free based membrane‐electrode assembly for anion exchange membrane water electrolysis. Angewandte Chemie International Edition, 2014. 53(5): p. 1378-1381.
33.Henkensmeier, D., et al., Polybenzimidazolium‐Based Solid Electrolytes. Macromolecular Materials and Engineering, 2011. 296(10): p. 899-908.
34.Wang, L., et al., High performance anion exchange membrane electrolysis using plasma-sprayed, non-precious-metal electrodes. ACS applied energy materials, 2019. 2(11): p. 7903-7912.
35.Liu, Z., et al., The effect of membrane on an alkaline water electrolyzer. International Journal of Hydrogen Energy, 2017. 42(50): p. 29661-29665.
36.Vaghari, H., et al., Recent advances in application of chitosan in fuel cells. Sustainable Chemical Processes, 2013. 1: p. 1-12.
37.Santos, V.P., et al., Seafood waste as attractive source of chitin and chitosan production and their applications. International journal of molecular sciences, 2020. 21(12): p. 4290.
38.Wan, Y., et al., Ionic conductivity and related properties of crosslinked chitosan membranes. Journal of Applied Polymer Science, 2003. 89(2): p. 306-317.
39.Zhang, Y., et al., Implantation of Nafion® ionomer into polyvinyl alcohol/chitosan composites to form novel proton-conducting membranes for direct methanol fuel cells. Journal of Power Sources, 2009. 194(2): p. 730-736.
40.Chik, C.E.N.C.E., et al., Extraction and Characterization of Litopenaeus vannamei's Shell as Potential Sources of Chitosan Biopolymers. Journal of Renewable Materials, 2023. 11(3).
41.Rosli, N.A.H., et al., Review of chitosan-based polymers as proton exchange membranes and roles of chitosan-supported ionic liquids. International journal of molecular sciences, 2020. 21(2): p. 632.
42.Mukoma, P., B. Jooste, and H. Vosloo, Synthesis and characterization of cross-linked chitosan membranes for application as alternative proton exchange membrane materials in fuel cells. Journal of Power Sources, 2004. 136(1): p. 16-23.
43.Chávez, E.L., et al., Theoretical studies of ionic conductivity of crosslinked chitosan membranes. International Journal of hydrogen energy, 2010. 35(21): p. 12141-12146.
44.Wang, J., et al., Tuning the performance of direct methanol fuel cell membranes by embedding multifunctional inorganic submicrospheres into polymer matrix. Journal of Power Sources, 2009. 188(1): p. 64-74.
45.Ahmed, S., et al., Novel sulfonated multi‐walled carbon nanotubes filled chitosan composite membrane for fuel‐cell applications. Journal of Applied Polymer Science, 2019. 136(22): p. 47603.
46.Ahmed, S., et al., Tuning the performance of nanofiller reinforced phosphorylated chitosan-based proton exchange membrane. Journal of The Electrochemical Society, 2023. 170(2): p. 024501.
47.Shao, L., et al., Graphene oxide cross-linked chitosan nanocomposite membrane. Applied Surface Science, 2013. 280: p. 989-992.
48.Liu, Y., et al., Enhancement of proton conductivity of chitosan membrane enabled by sulfonated graphene oxide under both hydrated and anhydrous conditions. Journal of Power Sources, 2014. 269: p. 898-911.
49.Bai, H., et al., Anhydrous proton exchange membranes comprising of chitosan and phosphorylated graphene oxide for elevated temperature fuel cells. Journal of membrane science, 2015. 495: p. 48-60.
50.Tsai, H.S., et al., Preparation and properties of sulfopropyl chitosan derivatives with various sulfonation degree. Journal of applied polymer science, 2010. 116(3): p. 1686-1693.
51.Shirdast, A., A. Sharif, and M. Abdollahi, Effect of the incorporation of sulfonated chitosan/sulfonated graphene oxide on the proton conductivity of chitosan membranes. Journal of Power Sources, 2016. 306: p. 541-551.
52.Wang, J.-L., et al., Synthesis and characterization of novel anion exchange membranes containing bi-imidazolium-based ionic liquid for alkaline fuel cells. Solid State Ionics, 2015. 278: p. 144-151.
53.Wan, Y., et al., Quaternized-chitosan membranes for possible applications in alkaline fuel cells. Journal of Power Sources, 2008. 185(1): p. 183-187.
54.Roberts, G.A. and K.E. Taylor, Chitosan gels, 3. The formation of gels by reaction of chitosan with glutaraldehyde. Die Makromolekulare Chemie: Macromolecular Chemistry and Physics, 1989. 190(5): p. 951-960.
55.Wan, Y., et al., Anion-exchange membranes composed of quaternized-chitosan derivatives for alkaline fuel cells. Journal of power sources, 2010. 195(12): p. 3785-3793.
56.Wan, Y., et al., Chitosan-based electrolyte composite membranes: II. Mechanical properties and ionic conductivity. Journal of Membrane Science, 2006. 284(1-2): p. 331-338.
57.Liu, G., et al., Composite membranes from quaternized chitosan reinforced with surface-functionalized PVDF electrospun nanofibers for alkaline direct methanol fuel cells. Journal of membrane science, 2020. 611: p. 118242.
58.Ni, J., et al., LDH nanosheets anchored on bacterial cellulose-based composite anion exchange membranes for significantly enhanced strength and ionic conductivity. Applied Clay Science, 2022. 217: p. 106391.
59.Xiang, Y., et al., Alternatively chitosan sulfate blending membrane as methanol-blocking polymer electrolyte membrane for direct methanol fuel cell. Journal of Membrane Science, 2009. 337(1-2): p. 318-323.
60.Spinelli, V.A., M.C. Laranjeira, and V.T. Fávere, Preparation and characterization of quaternary chitosan salt: adsorption equilibrium of chromium (VI) ion. Reactive and Functional Polymers, 2004. 61(3): p. 347-352.
61.Chang, H.-C., Sulfonated Chitosan Derivatives for Ion Conductivity Membrans in Hydrogen Energy Applications, in Department of Materials Science and Engineering College of Engineering. 2022, National Taiwan University. p. 102.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95492-
dc.description.abstract大多數的氫氣產生過程涉及在離子導電膜兩側進行水電解,從而同時產生氧氣和氫氣。然而,水分解是一個昂貴的過程,需高過電位,且副產品氧氣價值較低。在本研究中,氧氣析出反應(OER)被碘化物氧化反應(IOR)或乙二醇氧化反應(EGOR)所取代,以降低過電位,從而降低電力消耗。此外,IOR產生的I2和I3-或EGOR產生的HOCH2COOH和HCOOH等有價值的副產品將提高氫氣生產的經濟效益。無論操作系統如何,離子導電膜是影響系統性能和穩定性的關鍵組件,同時也是設備成本的重要因素。
在IOR系統中,水溶液中的KI溶液經氧化產生I3-,並同時產生多餘的鉀離子(K+),這些鉀離子需要迅速通過離子導電膜到達氫氣析出反應(HER)的一側,以確保快速的氫氣產生。因此,需要一種高效的鉀離子導電膜(PCM),該膜具有低碘離子(I-)滲透性。對於EGOR系統,HER側產生氫氣(H2)和氫氧根離子(OH-),這些OH-通過陰離子交換膜(AEM)到達EGOR側,為乙二醇(EG)的氧化提供OH-。因此,需要一種穩定的AEM,該膜具有高氫氧根導電性和低乙二醇滲透性。
在本研究中,我們旨在開發基於幾丁聚醣衍生物的低成本和環保的離子導電膜,以高效綠色氫氣生產。幾丁聚醣是一種可再生、環境友好且價格低廉的多醣,可以很方便地在幾丁聚醣上接枝各種功能基團,以賦予其所需的離子導電性並調整膜的機械性能。在碘化物氧化反應(IOR)系統中,高密度接枝的鉀磺酸根被引入到幾丁聚醣主鏈上,以提供鉀離子導電的磺酸化幾丁聚醣(SCS-K)。在乙二醇氧化反應(EGOR)系統中,四級銨鹽被接枝到幾丁聚醣主鏈上,以產生導電氫氧根的季銨化幾丁聚醣(QCS)。SCS/QCS高度水溶,通過環保的水基過程,使用戊二醛(GA)和醛基功能化氧化石墨烯(FGO)對SCS/QCS進行交聯,可以製備相應的複合膜。將多孔尼龍膜(PA)夾在兩層緊密排列的SCS/QCS複合膜之間,所形成的三層鉀離子導電膜(PCM)/陰離子交換膜(AEM)具有良好的離子導電性、高機械強度、良好的尺寸穩定性和低I-/EGOR滲透性。我們自製的多層PCM/AEM全電池展示出與商用Nafion/Sustanion膜相媲美的高效氫氣生產能力,證明了這些膜的實用性。
zh_TW
dc.description.abstractMost hydrogen evolution processes involve water electrolysis at both sides of an ion conducting membrane, and which simultaneous generation of oxygen and hydrogen. However, water splitting is an expensive process requiring high overpotential, and the byproduct oxygen is non-profitable. In this research, oxygen evolution reaction (OER) is replaced with either iodide oxidation reaction (IOR) or ethylene glycol oxidation reaction (EGOR) to reduce overpotential to lower the electricity consumption. Additionally, valuable by-products, such as I2 and I3- from IOR, or HOCH2COOH and HCOOH from EGOR will be generated to increase economic benefits of hydrogen production. Regardless the operation system, the ion conducting membrane is the key component affecting the performance and stability of the system, while also determinative to the infrastructure cost.
In the IOR system, aqueous KI solution undergoes oxidation to generate I3- and excess potassium ions (K+) are concurrently produced, which need to pass through the ion conducting membrane to the hydrogen evolution reaction (HER) side promptly to ensure fast H2 production. Therefore, an efficient potassium ion conducting membrane (PCM) with low I- permeation is necessary. For the EGOR system, the HER side produces H2 and OH-, which passes through an anion exchange membrane (AEM) to the EGOR side to provide OH- for the oxidation of ethylene glycol (EG). Hereby, an stable AEM with high hydroxide conductivity and low EG crossover is required.
In this study, we aim to develop low-cost and eco friendly ion conducting membranes based on chitosan derivatives for efficient green hydrogen production. Chitosan is a bio-renewable, environmental friendly and inexpensive polysaccharide, and a wide variety of functional groups can be feasibly grafted onto CS to incorporate desirable ion conductivity and tailor the mechanical properties of the membranes. In the IOR system, potassium sulfonates are introduced to chitosan backbone in high grafting density to afford K+ conductive sulfonated chitosan (SCS-K). For the EGOR system, quaternary ammonium salts are grafted onto chitosan backbone to produce hydroxide conducting quaternized chitosan (QCS). SCS/QCS is highly water-soluble and the corresponding composite membranes could be fabricated via environmental friendly water-based processes by crosslinking SCS/QCS with glutaraldehyde (GA) and aldehyde functionalized graphene oxide (FGO). By sandwiching mesoporous Nylon membrane (PA) between two densely packed SCS/QCS composite membranes, the three-layer PCM/AEM exhibit good ion conductivity, high mechanical strength, good dimensional stability, and low I-/EGOR crossover. The full cells empolying our custom-made multi-layer PCM/AEM demonstrate highly efficient hydrogen production comparable with commercial Nafion/Sustanion membranes, proving the practicality of these membranes.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-11T16:09:42Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-11T16:09:42Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝辭 i
中文摘要 ii
英文摘要 iv
目次 vi
圖次 ix
表次 xiv
第1章 緒論 1
1.1 研究背景 1
1.2 研究目的與架構 3
第2章 文獻回顧 6
2.1 電解水產氫 6
2.1.1 替代陽極氧化反應(Alternative Anodic Oxidation Reaction) 8
2.1.2 碘離子氧化反應(IOR) 9
2.1.3 乙二醇氧化反應(EGOR) 12
2.2 用於電解產氫的商用質子交換膜 13
2.3 用於電解產氫的商用陰離子交換膜 16
2.4 幾丁聚醣應用於離子傳導膜 19
2.4.1 幾丁聚醣應用於質子交換膜 21
2.4.2 幾丁聚醣應用於陰離子交換膜 30
第3章 實驗步驟與原理 34
3.1 實驗藥品與材料 34
3.2 實驗儀器 36
3.3 材料製備 37
3.3.1 磺酸化幾丁聚醣之合成 37
3.3.2 季銨化幾丁聚醣之合成 38
3.3.3 官能化氧化石墨烯之合成 39
3.3.4 鉀離子傳導膜的製備 40
3.3.5 陰離子傳導膜的製備 41
3.4 材料分析 43
3.4.1 化學結構之鑑定 43
3.4.2 膜材機械強度分析 45
3.4.3 膜材膨潤比量測 45
3.4.4 膜材表面及截面形貌分析 46
3.4.5 離子傳導度量測 46
3.4.6 碘離子滲透率量測 47
3.4.7 乙二醇滲透率量測 49
3.4.8 電化學量測 50
3.4.9 IOR陽極產物碘分析及陰極產氫收集 52
3.4.10 EGOR陽極產物分析及陰極產氫收集 52
第4章 結果與討論 53
4.1 磺酸化幾丁聚醣(SCS)之合成 53
4.2 官能化氧化石墨烯之修飾 56
4.3 鉀離子傳導材之製備 59
4.3.1 膜材SEM表面及截面形貌 61
4.3.2 複合膜的機械性質 63
4.3.3 膜材吸水率與尺寸安定性 65
4.3.4 複合膜鉀離子傳導度 68
4.3.5 碘離子滲透度 69
4.4 複合膜應用於IOR/HER系統 72
4.4.1 IOR/HER電池穩定性 72
4.5 季銨化幾丁聚醣(QCS)之合成 77
4.6 沉澱滴定法測定QCS之胺基取代度 80
4.7 陰離子傳導膜材之製備 81
4.7.1 膜材吸水率與尺寸安定性 81
4.7.2 複合膜的機械性質 87
4.7.3 膜材SEM表面及截面形貌 88
4.7.4 氫氧離子傳導度 90
4.7.5 乙二醇滲透率 92
4.8 QCS-PA複合膜應用於EGOR/HER系統 94
4.8.1 EGOR/HER電池性能與穩定性 94
第五章 結論 96
第六章 未來展望 98
附錄 99
參考文獻 100
-
dc.language.isozh_TW-
dc.subject陰離子交換膜zh_TW
dc.subject磺酸化幾丁聚醣zh_TW
dc.subject水電解zh_TW
dc.subject離子傳導複合膜zh_TW
dc.subject季銨化幾丁聚醣zh_TW
dc.subject氫氣生成zh_TW
dc.subject功能化氧化石墨烯zh_TW
dc.subject陽離子交換膜zh_TW
dc.subjection conducting composite membraneen
dc.subjectwater electrolysisen
dc.subjecthydrogen evolutionen
dc.subjectquaternized chitosanen
dc.subjectsulfonated chitosanen
dc.subjectfunctionalized graphene oxideen
dc.subjectcation exchange membraneen
dc.subjectanion exchange membraneen
dc.title應用於高值化產氫系統之幾丁聚醣衍生物多層離子傳導膜zh_TW
dc.titleChitosan-based Multi-layer Ion Conducting Membranes for Value-Added Hydrogen Evolution Systemsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蘇威年;呂幸江;董崇民zh_TW
dc.contributor.oralexamcommitteeWei-Nien Su;Shing-Jiang Lue;Trong-Ming Donen
dc.subject.keyword水電解,氫氣生成,季銨化幾丁聚醣,磺酸化幾丁聚醣,功能化氧化石墨烯,陽離子交換膜,陰離子交換膜,離子傳導複合膜,zh_TW
dc.subject.keywordwater electrolysis,hydrogen evolution,quaternized chitosan,sulfonated chitosan,functionalized graphene oxide,cation exchange membrane,anion exchange membrane,ion conducting composite membrane,en
dc.relation.page103-
dc.identifier.doi10.6342/NTU202403330-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-12-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
dc.date.embargo-lift2029-08-12-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
5.38 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved