Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95483
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林劭品zh_TW
dc.contributor.advisorShau-Ping Linen
dc.contributor.author吳佳勳zh_TW
dc.contributor.authorChia-Hsun Wuen
dc.date.accessioned2024-09-10T16:18:22Z-
dc.date.available2024-09-11-
dc.date.copyright2024-09-10-
dc.date.issued2024-
dc.date.submitted2024-08-10-
dc.identifier.citationAapola, U., Liiv, I., & Peterson, P. (2002). Imprinting regulator DNMT3L is a transcriptional repressor associated with histone deacetylase activity. Nucleic acids research, 30(16), 3602-3608.
Aravin, A. A., Sachidanandam, R., Bourc'his, D., Schaefer, C., Pezic, D., Toth, K. F., . . . Hannon, G. J. (2008). A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Molecular cell, 31(6), 785-799.
Aravin, A. A., Sachidanandam, R., Girard, A., Fejes-Toth, K., & Hannon, G. J. (2007). Developmentally regulated piRNA clusters implicate MILI in transposon control. Science, 316(5825), 744-747. doi:10.1126/science.1142612
Aravin, A. A., van der Heijden, G. W., Castañeda, J., Vagin, V. V., Hannon, G. J., & Bortvin, A. (2009). Cytoplasmic compartmentalization of the fetal piRNA pathway in mice. PLoS genetics, 5(12), e1000764.
Bošković, A., & Torres-Padilla, M.-E. (2013). How mammals pack their sperm: a variant matter. Genes & Development, 27(15), 1635-1639.
Bourc'his, D., & Bestor, T. H. (2004). Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature, 431(7004), 96-99.
Bourc'his, D. b., Xu, G.-L., Lin, C.-S., Bollman, B., & Bestor, T. H. (2001). Dnmt3L and the establishment of maternal genomic imprints. Science, 294(5551), 2536-2539.
Buchan, J. R. (2014). mRNP granules: assembly, function, and connections with disease. RNA biology, 11(8), 1019-1030.
Carmell, M. A., Girard, A., Van De Kant, H. J., Bourc'his, D., Bestor, T. H., de Rooij, D. G., & Hannon, G. J. (2007). MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Developmental cell, 12(4), 503-514.
Chen, W., Brown, J. S., He, T., Wu, W.-S., Tu, S., Weng, Z., . . . Lee, H.-C. (2022). GLH/VASA helicases promote germ granule formation to ensure the fidelity of piRNA-mediated transcriptome surveillance. Nature communications, 13(1), 5306.
Chiarini-Garcia, H., & Russell, L. D. (2001). High-resolution light microscopic characterization of mouse spermatogonia. Biology of Reproduction, 65(4), 1170-1178.
Cobb, J., & Handel, M. A. (1998). Dynamics of meiotic prophase I during spermatogenesis: from pairing to division. Paper presented at the Seminars in cell & developmental biology.
Cui, X., Jing, X., Wu, X., Yan, M., Li, Q., Shen, Y., & Wang, Z. (2016). DNA methylation in spermatogenesis and male infertility. Experimental and therapeutic medicine, 12(4), 1973-1979.
Dai, P., Wang, X., Gou, L.-T., Li, Z.-T., Wen, Z., Chen, Z.-G., . . . Su, H. (2019). A translation-activating function of MIWI/piRNA during mouse spermiogenesis. Cell, 179(7), 1566-1581. e1516.
Dai, P., Wang, X., & Liu, M.-F. (2020). A dual role of the PIWI/piRNA machinery in regulating mRNAs during mouse spermiogenesis. Science China. Life sciences, 63(3), 447-449.
Dettin, L., Ravindranath, N., Hofmann, M.-C., & Dym, M. (2003). Morphological characterization of the spermatogonial subtypes in the neonatal mouse testis. Biology of Reproduction, 69(5), 1565-1571.
Ding, D., Liu, J., Dong, K., Melnick, A. F., Latham, K. E., & Chen, C. (2019). Mitochondrial membrane-based initial separation of MIWI and MILI functions during pachytene piRNA biogenesis. Nucleic acids research, 47(5), 2594-2608.
Ding, D., Liu, J., Dong, K., Midic, U., Hess, R. A., Xie, H., . . . Chen, C. (2017). PNLDC1 is essential for piRNA 3′ end trimming and transposon silencing during spermatogenesis in mice. Nature communications, 8(1), 819.
Ding, D., Liu, J., Midic, U., Wu, Y., Dong, K., Melnick, A., . . . Chen, C. (2018). TDRD5 binds piRNA precursors and selectively enhances pachytene piRNA processing in mice. Nature communications, 9(1), 127.
Dong, J., Wang, X., Cao, C., Wen, Y., Sakashita, A., Chen, S., . . . Luo, M. (2019). UHRF1 suppresses retrotransposons and cooperates with PRMT5 and PIWI proteins in male germ cells. Nature communications, 10(1), 4705.
Du, G., Oatley, M. J., Law, N. C., Robbins, C., Wu, X., & Oatley, J. M. (2021). Proper timing of a quiescence period in precursor prospermatogonia is required for stem cell pool establishment in the male germline. Development, 148(9), dev194571.
Eddy, E. (1976). Germ plasm and the differentiation of the germ cell line. International review of cytology, 43, 229-280.
Fayomi, A. P., & Orwig, K. E. (2018). Spermatogonial stem cells and spermatogenesis in mice, monkeys and men. Stem cell research, 29, 207-214.
Ginsburg, M., Snow, M. H., & McLaren, A. (1990). Primordial germ cells in the mouse embryo during gastrulation. Development, 110(2), 521-528.
Gou, L.-T., Dai, P., Yang, J.-H., Xue, Y., Hu, Y.-P., Zhou, Y., . . . Hua, M.-M. (2014). Pachytene piRNAs instruct massive mRNA elimination during late spermiogenesis. Cell research, 24(6), 680-700.
Guibert, S., Forné, T., & Weber, M. (2012). Global profiling of DNA methylation erasure in mouse primordial germ cells. Genome research, 22(4), 633-641.
Hajkova, P., Erhardt, S., Lane, N., Haaf, T., El-Maarri, O., Reik, W., . . . Surani, M. A. (2002). Epigenetic reprogramming in mouse primordial germ cells. Mechanisms of development, 117(1-2), 15-23.
Hamer, G., Novak, I., Kouznetsova, A., & Höög, C. (2008). Disruption of pairing and synapsis of chromosomes causes stage-specific apoptosis of male meiotic cells. Theriogenology, 69(3), 333-339.
Han, B. W., & Zamore, P. D. (2014). PiRNAs. Current Biology, 24(16), R730-R733.
Handel, M. A., & Schimenti, J. C. (2010). Genetics of mammalian meiosis: regulation, dynamics and impact on fertility. Nature Reviews Genetics, 11(2), 124-136.
Hata, K., Kusumi, M., Yokomine, T., Li, E., & Sasaki, H. (2006). Meiotic and epigenetic aberrations in Dnmt3L‐deficient male germ cells. Molecular Reproduction and Development: Incorporating Gamete Research, 73(1), 116-122.
Hata, K., Okano, M., Lei, H., & Li, E. (2002). Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice.
Ipsaro, J. J., Haase, A. D., Knott, S. R., Joshua-Tor, L., & Hannon, G. J. (2012). The structural biochemistry of Zucchini implicates it as a nuclease in piRNA biogenesis. Nature, 491(7423), 279-283.
Jeltsch, A., Broche, J., & Bashtrykov, P. (2018). Molecular processes connecting DNA methylation patterns with DNA methyltransferases and histone modifications in mammalian genomes. Genes, 9(11), 566.
Jia, D., Jurkowska, R. Z., Zhang, X., Jeltsch, A., & Cheng, X. (2007). Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature, 449(7159), 248-251.
Kaldis, P., & Zhao, L. N. (2024). Molecular basis of the reaction mechanism of the methyltransferase HENMT1. Plos one, 19(1), e0293243.
Kang, J.-Y., Wen, Z., Pan, D., Zhang, Y., Li, Q., Zhong, A., . . . Zhang, X. (2022). LLPS of FXR1 drives spermiogenesis by activating translation of stored mRNAs. Science, 377(6607), eabj6647.
Kawase, M., & Ichiyanagi, K. (2022). The expression dynamics of piRNAs derived from male germline piRNA clusters and retrotransposons. Frontiers in Cell and Developmental Biology, 10, 868746.
Kobayashi, H., Sakurai, T., Miura, F., Imai, M., Mochiduki, K., Yanagisawa, E., . . . Ito, T. (2013). High-resolution DNA methylome analysis of primordial germ cells identifies gender-specific reprogramming in mice. Genome research, 23(4), 616-627.
Koubova, J., Menke, D. B., Zhou, Q., Capel, B., Griswold, M. D., & Page, D. C. (2006). Retinoic acid regulates sex-specific timing of meiotic initiation in mice. Proceedings of the National Academy of Sciences, 103(8), 2474-2479.
Kozak, M. (1996). Interpreting cDNA sequences: some insights from studies on translation. Mammalian genome, 7(8), 563-574.
Kuramochi-Miyagawa, S., Watanabe, T., Gotoh, K., Takamatsu, K., Chuma, S., Kojima-Kita, K., . . . Fujiyama, A. (2010). MVH in piRNA processing and gene silencing of retrotransposons. Genes & Development, 24(9), 887-892.
Laufer, B. I., Gomez, J. A., Jianu, J. M., & LaSalle, J. M. (2021). Stable DNMT3L overexpression in SH-SY5Y neurons recreates a facet of the genome-wide Down syndrome DNA methylation signature. Epigenetics & chromatin, 14, 1-15.
Lee, J., Inoue, K., Ono, R., Ogonuki, N., Kohda, T., Kaneko-Ishino, T., . . . Ishino, F. (2002). Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells.
Lehtiniemi, T., Bourgery, M., Ma, L., Ahmedani, A., Mäkelä, M., Asteljoki, J., . . . Tan, K. (2022). SMG6 localizes to the chromatoid body and shapes the male germ cell transcriptome to drive spermatogenesis. Nucleic acids research, 50(20), 11470-11491.
Lehtiniemi, T., & Kotaja, N. (2018). Germ granule-mediated RNA regulation in male germ cells. Reproduction, 155(2), R77-R91.
Li, X. Z., Roy, C. K., Dong, X., Bolcun-Filas, E., Wang, J., Han, B. W., . . . Weng, Z. (2013). An ancient transcription factor initiates the burst of piRNA production during early meiosis in mouse testes. Molecular cell, 50(1), 67-81.
Lim, S. L., Qu, Z. P., Kortschak, R. D., Lawrence, D. M., Geoghegan, J., Hempfling, A.-L., . . . Wong, L. (2015). HENMT1 and piRNA stability are required for adult male germ cell transposon repression and to define the spermatogenic program in the mouse. PLoS genetics, 11(10), e1005620.
Lin, Y., Protter, D. S., Rosen, M. K., & Parker, R. (2015). Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Molecular cell, 60(2), 208-219.
Lin, Y.-T., & Capel, B. (2015). Cell fate commitment during mammalian sex determination. Current opinion in genetics & development, 32, 144-152.
Loubalova, Z., Konstantinidou, P., & Haase, A. D. (2023). Themes and variations on piRNA-guided transposon control. Mobile DNA, 14(1), 10.
Lu, J., Mccarter, M., Lian, G., Esposito, G., Capoccia, E., Delli-Bovi, L. C., . . . Sheen, V. (2016). Global hypermethylation in fetal cortex of Down syndrome due to DNMT3L overexpression. Human molecular genetics, 25(9), 1714-1727.
Manakov, S. A., Pezic, D., Marinov, G. K., Pastor, W. A., Sachidanandam, R., & Aravin, A. A. (2015). MIWI2 and MILI have differential effects on piRNA biogenesis and DNA methylation. Cell reports, 12(8), 1234-1243.
McLaren, A. (2001). Mammalian germ cells: birth, sex, and immortality. Cell Structure and Function, 26(3), 119-122.
Meikar, O., Da Ros, M., Korhonen, H., & Kotaja, N. (2011). Chromatoid body and small RNAs in male germ cells. Reproduction, 142(2), 195-209.
Miao, J., Wang, C., Chen, W., Wang, Y., Kakasani, S., & Wang, Y. (2024). GASZ self-interaction clusters mitochondria into the intermitochondrial cement for proper germ cell development. PNAS nexus, 3(1), pgad480.
O'Doherty, A. M., Rutledge, C. E., Sato, S., Thakur, A., Lees-Murdock, D. J., Hata, K., & Walsh, C. P. (2011). DNA methylation plays an important role in promoter choice and protein production at the mouse Dnmt3L locus. Developmental biology, 356(2), 411-420.
Ohara, T., Sakaguchi, Y., Suzuki, T., Ueda, H., Miyauchi, K., & Suzuki, T. (2007). The 3′ termini of mouse Piwi-interacting RNAs are 2′-O-methylated. Nature structural & molecular biology, 14(4), 349-350.
Ooi, S. K., Qiu, C., Bernstein, E., Li, K., Jia, D., Yang, Z., . . . Allis, C. D. (2007). DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature, 448(7154), 714-717.
Protter, D. S., Rao, B. S., Van Treeck, B., Lin, Y., Mizoue, L., Rosen, M. K., & Parker, R. (2018). Intrinsically disordered regions can contribute promiscuous interactions to RNP granule assembly. Cell reports, 22(6), 1401-1412.
Ripin, N., & Parker, R. (2023). Formation, function, and pathology of RNP granules. Cell, 186(22), 4737-4756.
Sakai, Y., Suetake, I., Shinozaki, F., Yamashina, S., & Tajima, S. (2004). Co-expression of de novo DNA methyltransferases Dnmt3a2 and Dnmt3L in gonocytes of mouse embryos. Gene Expression Patterns, 5(2), 231-237.
Shang, P., Baarends, W. M., Hoogerbrugge, J., Ooms, M. P., van Cappellen, W. A., de Jong, A. A., . . . Grootegoed, J. A. (2010). Functional transformation of the chromatoid body in mouse spermatids requires testis-specific serine/threonine kinases. Journal of cell science, 123(3), 331-339.
Sharma, R., & Agarwal, A. (2018). Defective spermatogenesis and sperm DNA damage. A Clinician's Guide to Sperm DNA and Chromatin Damage, 229-261.
Shoji, M., Tanaka, T., Hosokawa, M., Reuter, M., Stark, A., Kato, Y., . . . Suzuki, T. (2009). The TDRD9-MIWI2 complex is essential for piRNA-mediated retrotransposon silencing in the mouse male germline. Developmental cell, 17(6), 775-787.
Shovlin, T., Bourc’his, D., La Salle, S., O’Doherty, A., Trasler, J., Bestor, T., & Walsh, C. (2007). Sex-specific promoters regulate Dnmt3L expression in mouse germ cells. Human reproduction, 22(2), 457-467.
Soper, S. F., van der Heijden, G. W., Hardiman, T. C., Goodheart, M., Martin, S. L., de Boer, P., & Bortvin, A. (2008). Mouse maelstrom, a component of nuage, is essential for spermatogenesis and transposon repression in meiosis. Developmental cell, 15(2), 285-297.
Stoyko, D., Genzor, P., & Haase, A. D. (2022). Hierarchical length and sequence preferences establish a single major piRNA 3′-end. Iscience, 25(6).
Suetake, I., Shinozaki, F., Miyagawa, J., Takeshima, H., & Tajima, S. (2004). DNMT3L stimulates the DNA methylation activity of Dnmt3a and Dnmt3b through a direct interaction. Journal of Biological Chemistry, 279(26), 27816-27823.
Sun, Y. H., Lee, B., & Li, X. Z. (2022). The birth of piRNAs: how mammalian piRNAs are produced, originated, and evolved. Mammalian genome, 33(2), 293-311.
Tseng, Y.-T., Liao, H.-F., Yu, C.-Y., Mo, C.-F., & Lin, S.-P. (2015). Epigenetic factors in the regulation of prospermatogonia and spermatogonial stem cells. Reproduction, 150(3), R77-R91.
Veland, N., Lu, Y., Hardikar, S., Gaddis, S., Zeng, Y., Liu, B., . . . Tomida, M. W. (2019). DNMT3L facilitates DNA methylation partly by maintaining DNMT3A stability in mouse embryonic stem cells. Nucleic acids research, 47(1), 152-167.
Voronina, E., Seydoux, G., Sassone-Corsi, P., & Nagamori, I. (2011). RNA granules in germ cells. Cold Spring Harbor perspectives in biology, 3(12), a002774.
Vourekas, A., Zheng, K., Fu, Q., Maragkakis, M., Alexiou, P., Ma, J., . . . Wang, P. J. (2015). The RNA helicase MOV10L1 binds piRNA precursors to initiate piRNA processing. Genes & Development, 29(6), 617-629.
Vourekas, A., Zheng, Q., Alexiou, P., Maragkakis, M., Kirino, Y., Gregory, B. D., & Mourelatos, Z. (2012). Mili and Miwi target RNA repertoire reveals piRNA biogenesis and function of Miwi in spermiogenesis. Nature structural & molecular biology, 19(8), 773-781.
Wang, X., Lv, C., Guo, Y., & Yuan, S. (2020). Mitochondria associated germinal structures in spermatogenesis: piRNA pathway regulation and beyond. Cells, 9(2), 399.
Wang, X., Ramat, A., Simonelig, M., & Liu, M.-F. (2023). Emerging roles and functional mechanisms of PIWI-interacting RNAs. Nature Reviews Molecular Cell Biology, 24(2), 123-141.
Wasik, K. A., Tam, O. H., Knott, S. R., Falciatori, I., Hammell, M., Vagin, V. V., & Hannon, G. J. (2015). RNF17 blocks promiscuous activity of PIWI proteins in mouse testes. Genes & Development, 29(13), 1403-1415.
Watanabe, T., Chuma, S., Yamamoto, Y., Kuramochi-Miyagawa, S., Totoki, Y., Toyoda, A., . . . Sado, T. (2011). MITOPLD is a mitochondrial protein essential for nuage formation and piRNA biogenesis in the mouse germline. Developmental cell, 20(3), 364-375.
Webster, K. E., O'Bryan, M. K., Fletcher, S., Crewther, P. E., Aapola, U., Craig, J., . . . Lyle, R. (2005). Meiotic and epigenetic defects in Dnmt3L-knockout mouse spermatogenesis. Proceedings of the National Academy of Sciences, 102(11), 4068-4073.
Wei, H., Gao, J., Lin, D.-H., Geng, R., Liao, J., Huang, T.-Y., . . . Pan, D. (2024). piRNA loading triggers MIWI translocation from the intermitochondrial cement to chromatoid body during mouse spermatogenesis. Nature communications, 15(1), 2343.
Xiong, M., Yin, L., Gui, Y., Lv, C., Ma, X., Guo, S., . . . Zhou, S. (2023). ADAD2 interacts with RNF17 in P-bodies to repress the Ping-pong cycle in pachytene piRNA biogenesis. Journal of Cell Biology, 222(5), e202206067.

Yokota, S. (2012). Nuage proteins: their localization in subcellular structures of spermatogenic cells as revealed by immunoelectron microscopy. Histochemistry and cell biology, 138, 1-11.
Yu, T., Biasini, A., Cecchini, K., Säflund, M., Mou, H., Arif, A., . . . Zamore, P. D. (2023). A-MYB/TCFL5 regulatory architecture ensures the production of pachytene piRNAs in placental mammals. Rna, 29(1), 30-43.
Yu, Y. C.-Y., Hui, T. Z., Kao, T.-H., Liao, H.-F., Yang, C.-Y., Hou, C.-C., . . . Pinskaya, M. (2020). Transient DNMT3L expression reinforces chromatin surveillance to halt senescence progression in mouse embryonic fibroblast. Frontiers in Cell and Developmental Biology, 8, 103.
Zhang, J., Wang, Q., Wang, M., Jiang, M., Wang, Y., Sun, Y., . . . Tang, N. (2016). GASZ and mitofusin‐mediated mitochondrial functions are crucial for spermatogenesis. EMBO reports, 17(2), 220-234.
Zheng, K., Xiol, J., Reuter, M., Eckardt, S., Leu, N. A., McLaughlin, K. J., . . . Wang, P. J. (2010). Mouse MOV10L1 associates with Piwi proteins and is an essential component of the Piwi-interacting RNA (piRNA) pathway. Proceedings of the National Academy of Sciences, 107(26), 11841-11846.
Zoch, A., Auchynnikava, T., Berrens, R. V., Kabayama, Y., Schöpp, T., Heep, M., . . . O'Carroll, D. (2020). SPOCD1 is an essential executor of piRNA-directed de novo DNA methylation. Nature, 584(7822), 635-639. doi:10.1038/s41586-020-2557-5
Jen-Yun Chang (2020). Novel DNA Methyltransferase 3-Like Isoform in Meiotic Male Germ Cells: Beyond Epigenomic Modulation. National Taiwan university Master thesis.
Ru-Ting Yang (2023). Novel players implicated in transposable element modulation during mouse germ cell development and Marchantia polymorpha regeneration. National Taiwan university Master thesis.
Yu-Han Yeh (2019). Beyond Epigenetic Regulation: Non-Canonical Function and novel isoform of DNA Methyltransferase 3-Like in postnatal male germ cells. National Taiwan university Master thesis.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95483-
dc.description.abstract男性生殖細胞的分化成熟受到許多分子機制的精細調控。生殖顆粒,是在生殖細胞的細胞質中不斷變化的生物分子凝聚物,其對於生殖細胞的發育和物種的生育能力扮演舉足輕重的角色。在小鼠中,其中一種生殖顆粒為粒線體間水泥(intermitochondrial cement, IMC),也稱為pi-body,是PIWI-piRNA途徑和piRNA生成的主要場所,特別是在減數分裂的精母細胞 (spermatocyte) 中。piRNA是一類與PIWI蛋白結合的小非編碼RNA,主要功能是抑制轉座子(transposable element, TE)的表達。此外,piRNA也通過降解mRNA或啟動轉譯起始來調控編碼蛋白基因。在我們的研究中,我們發現了由Dnmt3l較短的轉錄變體編碼的成年睾丸異構體 (DNA methyltransferase 3-like adult testis isoform, DNMT3L_AT),主要定位於精母細胞和精子細胞 (spermatid) 的細胞質中。隨後,DNMT3L_AT與多餘的細胞質殘餘物一起包裹在殘留體 (residual body) 中並脱去。值得注意的是,DNMT3L_AT與粒線體及粒線體間水泥組成成分中的MILI(PIWI-like 2)和VASA共定位。透過對DNMT3L_AT鄰近的蛋白質分析,我們假設其可能參與piRNA生物合成及其他次細胞RNA富集複合物 (subcelluler RNA-enriched complex) 中的功能。為了進一步探討這一點,我們使用條件式基因剔除 (conditional knockout, cKO) 的方式在減數分裂期間剔除Dnmt3l-at 第11號外顯子,儘管我們懷疑條件式基因剔除中因FVB 品系的Stra8-Cre在 C57BL/6JNarl 背景品系中有不完全剔除的現象,但仍導致小鼠睾丸和精子發育受到缺陷,並且其生殖細胞轉座子失去抑制,也表現出較高的細胞凋亡信號。初步的精子品質檢測顯示,Dnmt3l 條件式剔除附睾中的精子活動力和數量均低於對照組,且形態異常。此外,我們也使用另一種敲除方法是透過刪除Dnmt3l-at特有的外顯子和其潛在的啟動子和增強子,也改變其第11號外顯子中的潛在起始密碼子。在這樣的基因編輯小鼠中,我們發現其睾丸比對照組小,並在組織切片中觀察到生精小管中的生殖細胞耗盡。這些結果表明DNMT3L_AT對小鼠出生後的精子發育至關重要。zh_TW
dc.description.abstractMale germ cell differentiation is intricately regulated by multiple biochemical processes. Germ granules, dynamic biomolecular condensates in the cytoplasm of germ cells, are crucial for germ cell development and fertility. In mice, a germ granule–intermitochondrial cement (IMC), also known as pi-body, serves as a primary site where the PIWI-piRNA pathway takes place and piRNAs are generated, especially in meiotic spermatocytes. In our study, we identified DNMT3L_AT (adult testis isoform), encoded by the shorter transcript variants of Dnmt3l, predominantly localized within the cytoplasm of spermatocytes and spermatids. Subsequently, DNMT3L_AT, along with cytoplasmic remnants, is encapsulated within residual bodies and released. Notably, DNMT3L_AT is highly colocalized with mitochondria and the IMC components MILI (PIWIL2), and VASA. Through the analysis of proteins proximal to DNMT3L_AT, we hypothesized its potential involvement in piRNA biogenesis and other functions within subcellular RNA-rich complexes. To investigate this further, the conditional knockout (cKO) method was employed by removing loxP-flanked exon 11 of Dnmt3l during meiosis to nullify Dnmt3l-at translation. This resulted in Dnmt3l cKO mice having smaller testes and spermatogenic defects with LINE-1 derepression and high apoptotic signals, even though incomplete recombination was suspected as the Stra8-Cre transgene generated from the FVB/NJ taking effects in the C57BL/6JNarl background. Under the regional Dnmt3l knockout model, we still demonstrated lower sperm motility and quantity, as well as abnormal sperm morphology such as abrupt bending, in the Dnmt3l cKO epididymis compared to the control littermate. Additionally, an alternative knockout method was applied by removing Dnmt3l-at-specific exons and its potential promoters and enhancers, as well as by editing eight potential start codons in exon 11. In this exon 8~11 fusion model, a complete germ cell depletion in seminiferous tubules of the much smaller testes was observed. These results suggest that DNMT3L_AT is critical for mouse postnatal spermatogenesis.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-10T16:18:22Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-10T16:18:22Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES ix
ABBREVIATIONS x
Chapter 1 Introduction 1
1.1 Stages and mechanisms of male germ cell development in mice 1
1.2 DNMT3L in germ cell development: from epigenetic regulation to spermatogenesis 3
1.3 Mechanisms of piRNA biogenesis and regulation in mouse testes 5
1.4 Dynamics and functions of germ granules is essential to mammalian fertility 8
1.5 Specific aims 10
Chapter 2 Materials and Methods 11
2.1 Dnmt3l mutant mouse model 11
2.1.1 Mouse strains and breeding 11
2.1.2 Identification and Genotyping 12
2.2 DNA sequencing 13
2.2.1 Genomic DNA extraction and amplification 13
2.2.2 DNA Extraction from gel 14
2.2.3 TA cloning 14
2.2.4 Transformation and culture 15
2.2.5 Plasmid DNA extraction 15
2.3 Germ Cell Enrichment from Mouse Testes 16
2.4 Immunocytochemistry Staining 17
2.5 Immunohistochemistry (cryosection) 18
2.6 Immunohistochemistry (formalin-fixed paraffin-embedded, FFPE) 19
2.7 TUNEL assay 19
2.8 Protein extraction 20
2.9 Western blot analysis 21
2.10 Sperm quantity and motility test 22
Chapter 3 Results 24
3.1 DNMT3L_AT is mainly expressed in postnatal spermatogenesis 24
3.2 DNMT3L_AT colocalized with the compartments of intermitochondrial cement (IMC), in which piRNA biogenesis takes place 24
3.3 Generation of Dnmt3l conditional knockout model 25
3.4 Loss of DNMT3L_AT leads to male germ cell development defect 26
3.5 Impaired Sperm Motility and Morphology in Dnmt3l cKO Mice Despite Normal Fertility 28
3.6 Derepression of retrotransposons in the Dnmt3l cKO mice 29
3.7 Removal of Dnmt3l-at specific exons and potential promoter and enhancer cause germ cell depletion 29
Chapter 4 Discussion and Perspective 31
4.1 The potential mechanism for DNMT3L_AT causes spermatogenesis impaired 31
4.2 Dnmt3l cKO testis with heterogeneity phenotype 31
4.3 Phenotypic comparisons of Dnmt3l cKO and conventional KO Models 32
4.4 Conclusion and Perspectives 33
REFERENCE 66
Appendix 72
-
dc.language.isoen-
dc.subjectpiRNA 途徑zh_TW
dc.subject精子生成zh_TW
dc.subject類3號甲基轉移酶zh_TW
dc.subject生殖顆粒zh_TW
dc.subjectgerm granuleen
dc.subjectpiRNA pathwayen
dc.subjectspermatogenesisen
dc.subjectDNMT3Len
dc.title類3號DNA甲基轉移酶成年睪丸異構體對小鼠雄性生殖細胞發育的重要性zh_TW
dc.titleDNA Methyltransferase 3-Like Adult Testis Isoform (DNMT3L_AT) Is Essential For Mouse Male Germ Cell Developmenten
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張原翊;靖永皓;游益興zh_TW
dc.contributor.oralexamcommitteeYuan-I Chang;Yung-Hao Ching;I-Shing Yuen
dc.subject.keyword類3號甲基轉移酶,精子生成,生殖顆粒,piRNA 途徑,zh_TW
dc.subject.keywordDNMT3L,spermatogenesis,germ granule,piRNA pathway,en
dc.relation.page76-
dc.identifier.doi10.6342/NTU202403098-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-13-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物科技研究所-
dc.date.embargo-lift2029-07-31-
顯示於系所單位:生物科技研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
10.59 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved