請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95479完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳示國 | zh_TW |
| dc.contributor.advisor | Shih-Kuo Chen | en |
| dc.contributor.author | 葉柏廷 | zh_TW |
| dc.contributor.author | Po-Ting Yeh | en |
| dc.date.accessioned | 2024-09-10T16:17:10Z | - |
| dc.date.available | 2024-09-11 | - |
| dc.date.copyright | 2024-09-10 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-13 | - |
| dc.identifier.citation | Abe, M., Herzog, E. D., Yamazaki, S., Straume, M., Tei, H., Sakaki, Y., Menaker, M., & Block, G. D. (2002). Circadian rhythms in isolated brain regions. J Neurosci, 22(1), 350-356. https://www.ncbi.nlm.nih.gov/pubmed/11756518
Abrahamson, E. E., & Moore, R. Y. (2001). Suprachiasmatic nucleus in the mouse: Retinal innervation, intrinsic organization and efferent projections. Brain Research, 916(1-2), 172-191. Adams, K. Y., & Silver, R. (2019). Novel imaging techniques for studying the suprachiasmatic nucleus. Current Opinion in Neurobiology, 58, 8-14. Aida, R., Moriya, T., Araki, M., Akiyama, M., Wada, K., Wada, E., & Shibata, S. (2002). Gastrin-releasing peptide mediates photic entrainable signals to dorsal subsets of suprachiasmatic nucleus via induction of Period gene in mice. Mol Pharmacol, 61(1), 26-34. https://doi.org/10.1124/mol.61.1.26 An, S., Tsai, C., Ronecker, J., Bayly, A., & Herzog, E. D. (2012). Spatiotemporal distribution of vasoactive intestinal polypeptide receptor 2 in mouse suprachiasmatic nucleus. J Comp Neurol, 520(12), 2730-2741. https://doi.org/10.1002/cne.23078 Aschoff, J. (1965). Circadian rhythms in man. Science, 148(3676), 1427-1432. Barretto, R. P. J., et al. (2011). Time-lapse imaging of disease progression in deep brain areas using fluorescence microendoscopy. Nature Medicine, 17(2), 223–228. Belle, M. D., Diekman, C. O., Forger, D. B., & Piggins, H. D. (2009). Daily electrical silencing in the mammalian circadian clock. Science, 326(5950), 281-284. Berson, D. M. (2003). Strange vision: ganglion cells as circadian photoreceptors. Trends Neurosci, 26(6), 314-320. https://doi.org/10.1016/S0166-2236(03)00130-9 Berson, D. M., Dunn, F. A., & Takao, M. (2002). Phototransduction by retinal ganglion cells that set the circadian clock. Science, 295(5557), 1070-1073. Brown, T. M., & Robinson, P. R. (2004). Melanopsin—shedding light on the elusive circadian photopigment. Chronobiology International, 21(1), 189-204. Buijink, R., Almog, A., & Roelfsema, P. R. (2016). Parcellation of Visual Inputs by SCN Circuits. Journal of Neuroscience, 36(15), 4133-4142. Link to article Chen, T. W., et al. (2013). Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature, 499(7458), 295–300. Colwell, C. S. (2011). Linking neural activity and molecular oscillations in the SCN. Nature Reviews Neuroscience, 12(10), 553-569. Link to article Colwell, C. S., Michel, S., Itri, J., Rodriguez, W., Tam, J., Lelievre, V., Hu, Z., Liu, X., & Waschek, J. A. (2003). Disrupted circadian rhythms in VIP- and PHI-deficient mice. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 285(4), R939-R949. https://doi.org/10.1152/ajpregu.00853.2002 Cormier, H. C., Della-Maggiore, V., Karatsoreos, I. N., Koletar, M. M., & Ralph, M. R. (2015). Suprachiasmatic vasopressin and the circadian regulation of voluntary locomotor behavior. Eur J Neurosci, 41(1), 79-88. https://doi.org/10.1111/ejn.12637 Daan, S., & Pittendrigh, C. S. (1976). A functional analysis of circadian pacemakers in nocturnal rodents. Journal of Comparative Physiology, 106(3), 253-266. Dana, H., et al. (2019). Sensitive red protein calcium indicators for imaging neural activity. eLife, 8, e12727. DeWoskin, D., Myung, J., Belle, M. D., Piggins, H. D., Takumi, T., & Forger, D. B. (2015). Distinct roles for GABA across multiple timescales in mammalian circadian timekeeping. Proceedings of the National Academy of Sciences of the United States of America, 112(29), E3911–E3919. https://doi.org/10.1073/pnas.1420753112 Denk, W., Strickler, J. H., & Webb, W. W. (1990). Two-photon laser scanning fluorescence microscopy. Science, 248(4951), 73-76. Ding, J., & Xiao, Q. (2020). Molecular mechanisms of circadian regulation during spaceflight. Journal of Molecular Endocrinology, 64(4), R45-R56. Do, M. T. H., Kang, S. H., Xue, T., Zhong, H., Liao, H. W., Bergles, D. E., & Yau, K. W. (2009). Photon capture and signalling by melanopsin retinal ganglion cells. Nature, 457(7227), 281-287. Duffy, J. F., Kronauer, R. E., & Czeisler, C. A. (1996). Phase-shifting human circadian rhythms: influence of sleep timing, social contact and light exposure. J Physiol, 495 ( Pt 1), 289-297. https://doi.org/10.1113/jphysiol.1996.sp021593 Dunlap, J. C., Loros, J. J., & DeCoursey, P. J. (2004). Chronobiology: Biological Timekeeping. Sunderland, MA: Sinauer Associates. Eastman, C. I., Hoese, E. K., Youngstedt, S. D., & Liu, L. (1995). Phase-shifting human circadian rhythms with exercise during the night shift. Physiol Behav, 58(6), 1287-1291. https://doi.org/10.1016/0031-9384(95)02031-4 Ecker, J. L., Dumitrescu, O. N., Wong, K. Y., Alam, N. M., Chen, S. K., LeGates, T., Renna, J. M., Prusky, G. T., Berson, D. M., & Hattar, S. (2010). Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision. Neuron, 67(1), 49-60. https://doi.org/10.1016/j.neuron.2010.05.023 Evans, J. A., Davidson, A. J. (2013). Health consequences of circadian disruption in humans and animal models. Progress in Molecular Biology and Translational Science, 119, 283-323. Fernandez, D. C., Chang, Y.-T., Hattar, S., & Chen, S.-K. (2016). Architecture of retinal projections to the central circadian pacemaker. Proceedings of the National Academy of Sciences, 113(21), 6047-6052. Foster, R. G., & Kreitzman, L. (2004). Rhythms of Life: The Biological Clocks that Control the Daily Lives of Every Living Thing. Yale University Press. Goel, N., Basner, M., Rao, H., & Dinges, D. F. (2010). Circadian rhythms, sleep deprivation, and human performance. Progress in Molecular Biology and Translational Science, 119, 155-190. Link to article Goeppert-Mayer, M. (1931). Über Elementarakte mit zwei Quantensprüngen. Annals of Physics, 9(3), 273-295. https://doi.org/10.1002/andp.19314010303 Gooley, J. J., Lu, J., Chou, T. C., Scammell, T. E., & Saper, C. B. (2001). Melanopsin in cells of origin of the retinohypothalamic tract. Nature Neuroscience, 4(12), 1165. Gu, C., Li, J., Zhou, J., Yang, H., & Rohling, J. (2021). Network Structure of the Master Clock Is Important for Its Primary Function. Front Physiol, 12, 678391. https://doi.org/10.3389/fphys.2021.678391 Harvey, C. D., & Kitcher, E. L. (2021). Techniques and insights in the study of neuronal population coding. Neuroscience Letters, 755, 135894. Hastings, M. H., Maywood, E. S., & Brancaccio, M. (2018). Generation of circadian rhythms in the suprachiasmatic nucleus. Nature Reviews Neuroscience, 19(8), 453-469. Hatori, M., Le, H., Vollmers, C., Keding, S. R., Tanaka, N., Schmedt, C., Jegla, T., & Panda, S. (2008). Inducible expression of a clock gene, Period1, in the mouse suprachiasmatic nucleus. Journal of Neurochemistry, 106(3), 955-965. Hattar, S., Liao, H. W., Takao, M., Berson, D. M., & Yau, K. W. (2002). Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science, 295(5557), 1065-1070. Helmchen, F., & Denk, W. (2005). Deep tissue two-photon microscopy. Nature Methods, 2(12), 932–940. Herzog, E. D. (2007). Neurons and networks in daily rhythms. Nature Reviews Neuroscience, 8(10), 790-802. Herzog, E. D., Hermanstyne, T., Smyllie, N. J., & Hastings, M. H. (2017). Regulating the suprachiasmatic nucleus (SCN) circadian clockwork: Interplay between cell-autonomous and systemic mechanisms. Current Opinion in Neurobiology, 44, 129-134. Hut, R. A., & Beersma, D. G. M. (2011). Evolution of time-keeping mechanisms: Early emergence and adaptation to photoperiod. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1574), 2141-2154. Innocenti, A., Bertolucci, C., Minutini, L., Fo, & Agrave. (1996). Seasonal variations of pineal involvement in the circadian organization of the ruin lizard Podarcis sicula. J Exp Biol, 199(Pt 5), 1189-1194. https://www.ncbi.nlm.nih.gov/pubmed/9319036 Jercog, P. E., et al. (2017). On the role of molecular oscillations in neuronal network dynamics in the suprachiasmatic nucleus. Frontiers in Neurology, 8, 112. Johnson, C. H. (1992). Phase response curves: What can they tell us about circadian clocks? Methods in Enzymology, 210, 499-519. Johnson, C. H., Elliott, J. A., & Foster, R. (1992). Entrainment of circadian programs. Chronobiology International, 9(4), 380-392. Jones, J. R. (2018). Neural and molecular heterogeneity in the suprachiasmatic nucleus. Nature Neuroscience, 21(10), 1371-1381. Jones, J. R., & Swain, R. A. (2012). Enhanced synaptic plasticity in the hippocampal CA1 region of the adult SCN-lesioned mouse. Brain Research Bulletin, 88(5), 467-473. Kaiser, W., & Garrett, C. G. B. (1961). Two-Photon Excitation in CaF2+. Physical Review Letters, 7(6), 229. https://doi.org/10.1103/PhysRevLett.7.229 Kaladchibachi, S., Negelspach, D. C., & Fernandez, F. (2018). Circadian phase-shifting by light: Beyond photons. Neurobiol Sleep Circadian Rhythms, 5, 8-14. https://doi.org/10.1016/j.nbscr.2018.03.003 Klein, D. C., Moore, R. Y., & Reppert, S. M. (1991). Suprachiasmatic nucleus : the mind's clock. Oxford University Press. Publisher description http://www.loc.gov/catdir/enhancements/fy0603/90047114-d.html Kriegsfeld, L. J., Leak, R. K., Yackulic, C. B., LeSauter, J., & Silver, R. (2004). Organization of circadian behavior relays by the suprachiasmatic nucleus. Current Opinion in Neurobiology, 14(3), 358-365. LeGates, T. A., Fernandez, D. C., & Hattar, S. (2014). Light as a central modulator of circadian rhythms, sleep and affect. Nature Reviews Neuroscience, 15(7), 443-454. LeSauter, J., & Silver, R. (1999). Localization of a suprachiasmatic nucleus subregion regulating locomotor rhythmicity. J Neurosci, 19(13), 5574-5585. https://www.ncbi.nlm.nih.gov/pubmed/10377364 LeSauter, J., Hoque, N., Weintraub, M., Pfaff, D. W., & Silver, R. (2012). Stomach ghrelin-secreting cells as food-entrainable circadian clocks. Proceedings of the National Academy of Sciences, 109(35), 14150-14155. LeSauter, J., Silver, R., Cloues, R., & Lehman, M. N. (2009). Localization of a circadian clock in mammalian photoreceptors. Scientific Reports, 1(75), 1155-1160. LeSauter, J., Yan, L., Vishnubhotla, B., Quintero, J. E., Kuhlman, S. J., McMahon, D. G., & Silver, R. (2003). A short half-life GFP mouse model for analysis of suprachiasmatic nucleus organization. Brain Research, 964(2), 279–287. https://doi.org/10.1016/S0006-8993(02)04054-X Leander, P., Vrang, N., & Moller, M. (1998). Neuronal projections from the mesencephalic raphe nuclear complex to the suprachiasmatic nucleus and the deep pineal gland of the golden hamster (Mesocricetus auratus). J Comp Neurol, 399(1), 73-93. https://www.ncbi.nlm.nih.gov/pubmed/9725702 Lee, C., Etchegaray, J. P., Cagampang, F. R., Loudon, A. S., & Reppert, S. M. (2001). Posttranslational mechanisms regulate the mammalian circadian clock. Cell, 107(7), 855-867. Li, J. D., Hu, W. P., Boehmer, L., Cheng, M. Y., Lee, A. G., Jilek, A., Siegel, J. M., & Zhou, Q. Y. (2006). Attenuated circadian rhythms in mice lacking the prokineticin 2 gene. J Neurosci, 26(45), 11615-11623. https://doi.org/10.1523/JNEUROSCI.3679-06.2006 Lindberg, P. T., Mitchell, J. W., Burgoon, P. W., Beaule, C., Weihe, E., Schafer, M. K., Eiden, L. E., Jiang, S. Z., & Gillette, M. U. (2019). Pituitary Adenylate Cyclase-Activating Peptide (PACAP)-Glutamate Co-transmission Drives Circadian Phase-Advancing Responses to Intrinsically Photosensitive Retinal Ganglion Cell Projections by Suprachiasmatic Nucleus. Front Neurosci, 13, 1281. https://doi.org/10.3389/fnins.2019.01281 Liu, Y., & Bell-Pedersen, D. (2006). Circadian rhythms in Neurospora crassa and other filamentous fungi. Eukaryot Cell, 5(8), 1184-1193. https://doi.org/10.1128/EC.00133-06 Lowrey, P. L., & Takahashi, J. S. (2004). Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu Rev Genomics Hum Genet, 5, 407-441. https://doi.org/10.1146/annurev.genom.5.061903.175925 Lu, J., Zhang, Y. H., Chou, T. C., Gaus, S. E., Elmquist, J. K., Shiromani, P., & Saper, C. B. (2001). Contrasting effects of ibotenate lesions of the paraventricular nucleus and subparaventricular zone on sleep-wake cycle and temperature regulation. The Journal of Neuroscience, 21(13), 4864-4874. Lucas, R. J., & Foster, R. G. (1999). Neither functional rod photoreceptors nor rod or cone outer segments are required for the photic inhibition of pineal melatonin. Endocrinology, 140(3), 1520-1524. Lucas, R. J., Douglas, R. H., & Foster, R. G. (2001). Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Nature Neuroscience, 4(6), 621-626. Mazuski, C., Abel, J. H., Chen, S. P., Hermanstyne, T. O., Jones, J. R., Simon, T., Doyle, F. J., & Herzog, E. D. (2018). Entrainment of circadian rhythms depends on firing rates and neuropeptide release of VIP SCN neurons. Neuron, 99(3), 555-563 e5. McClung, C. R. (2006). Plant circadian rhythms. Plant Cell, 18(4), 792-803. https://doi.org/10.1105/tpc.106.040980 Menaker, M., & Moreira, L. F. (2001). Evolution of circadian organization in vertebrates. Brazilian Journal of Medical and Biological Research, 34(5), 567-575. Minors, D. S., Waterhouse, J. M., & Wirz-Justice, A. (1991). A human phase-response curve to light. Neurosci Lett, 133(1), 36-40. https://doi.org/10.1016/0304-3940(91)90051-t Mistlberger, R. E. (1994). Circadian food-anticipatory activity: formal models and physiological mechanisms. Neuroscience & Biobehavioral Reviews, 18(2), 171-195. Link to article Mistlberger, R. E., Skene, D. J. (2007). Social influences on mammalian circadian rhythms: animal and human studies. Biological Reviews of the Cambridge Philosophical Society, 79(3), 533-556. Miyake, S., Sumi, Y., Yan, L., Takekida, S., Fukuyama, T., Ishida, Y., Yamaguchi, S., & Yagita, K. (2000). Disruption of light-induced expression of the Per1 gene in the suprachiasmatic nuclei of Arntl-deficient mice. Journal of Biological Rhythms, 15(6), 522-531. Moore, R. Y., & Card, J. P. (1994). Intergeniculate leaflet: an anatomically and functionally distinct subdivision of the lateral geniculate complex. J Comp Neurol, 344(3), 403-430. https://doi.org/10.1002/cne.903440306 Morin, L. P., Allen, C. N. (2006). The circadian visual system, 2005. Brain Research Reviews, 51(1), 1-60. Morris, E. L., Patton, A. P., Chesham, J. E., Crisp, A., Adamson, A., & Hastings, M. H. (2021). Single-cell transcriptomics of suprachiasmatic nuclei reveal a Prokineticin-driven circadian network. The EMBO Journal, 40(20), e108614. https://doi.org/10.15252/embj.2021108614 Naito, E., Watanabe, T., Tei, H., Yoshimura, T., & Ebihara, S. (2008). Reorganization of the suprachiasmatic nucleus coding for day length. Journal of Biological Rhythms, 23(2), 140–149. https://doi.org/10.1177/0748730407313350 Nakao, H., & Mikhailov, A. S. (2010). Turing patterns in network-organized activator-inhibitor systems. Nature Physics, 6(7), 544–550. https://doi.org/10.1038/nphys1651 Nitabach, M. N., & Taghert, P. H. (2008). Organization of the Drosophila circadian control circuit. Current Biology, 18(2), R84-R93. Ohta, H., Yamazaki, S., McMahon, D. G. (2005). Constant light desynchronizes mammalian clock neurons. Nature Neuroscience, 8(3), 267-269. Pickard, G. E. (1985). Bifurcating axons of retinal ganglion cells terminate in the hypothalamic suprachiasmatic nucleus and the intergeniculate leaflet of the thalamus. Neurosci Lett, 55(2), 211-217. https://doi.org/10.1016/0304-3940(85)90022-9 Pickard, G. E., Smith, B. N., Belenky, M., Rea, M. A., Dudek, F. E., & Sollars, P. J. (1999). 5-HT1B receptor-mediated presynaptic inhibition of retinal input to the suprachiasmatic nucleus. The Journal of Neuroscience, 19(10), 4034-4045. Provencio, I., Rodriguez, I. R., Jiang, G., Hayes, W. P., Moreira, E. F., & Rollag, M. D. (1998). A novel human opsin in the inner retina. The Journal of Neuroscience, 18(3), 939-945. Provencio, I., Rodriguez, I. R., Jiang, G., Hayes, W. P., Moreira, E. F., & Rollag, M. D. (2000). A novel human opsin in the inner retina. J Neurosci, 20(2), 600-605. https://www.ncbi.nlm.nih.gov/pubmed/10632589 Refinetti, R., & Menaker, M. (1992). The circadian rhythm of body temperature. Physiology & Behavior, 51(3), 613-637. Roenneberg, T., & Merrow, M. (2016). The circadian clock and human health. Current Biology, 26(10), R432-R443. Rollag, M. D., Berson, D. M., & Provencio, I. (2003). Melanopsin, ganglion-cell photoreceptors, and mammalian photoentrainment. J Biol Rhythms, 18(3), 227-234. https://doi.org/10.1177/0748730403018003005 Schmidt, T. M., Chen, S. K., & Hattar, S. (2011). Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions. Trends Neurosci, 34(11), 572-580. https://doi.org/10.1016/j.tins.2011.07.001 Sheng, W., Ma, D., Zhao, M., Xie, L., & Wu, Q. (2020). Spatiotemporal single-cell analysis of gene expression in the mouse suprachiasmatic nucleus. Nature Neuroscience, 23, 456-467. DOI: 10.1038/s41593-020-0586-x Silver, R., LeSauter, J., Tresco, P. A., & Lehman, M. N. (1996). A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature, 382(6594), 810-813. Varadarajan, S., Tajiri, M., Jain, R., Holt, R., Ahmed, Q., LeSauter, J., & Silver, R. (2018). Connectome of the Suprachiasmatic Nucleus: New Evidence of the Core-Shell Relationship. eNeuro, 5(5). https://doi.org/10.1523/ENEURO.0205-18.2018 Vitaterna, M. H., Takahashi, J. S., & Turek, F. W. (2001). Overview of circadian rhythms. Alcohol Res Health, 25(2), 85-93. https://www.ncbi.nlm.nih.gov/pubmed/11584554 Wagner, S., Castel, M., Gainer, H., & Yarom, Y. (1997). GABA in the mammalian suprachiasmatic nucleus and its role in diurnal rhythmicity. Nature, 387(6633), 598-603. https://doi.org/10.1038/42468 Welsh, D. K., Logothetis, D. E., Meister, M., & Reppert, S. M. (2010). Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron, 14(4), 697-706. Welsh, D. K., Takahashi, J. S., & Kay, S. A. (2010). Suprachiasmatic nucleus: Cell autonomy and network properties. Annual Review of Physiology, 72, 551-577. Welsh, D. K., Takahashi, J. S., & Kay, S. A. (2010). Suprachiasmatic nucleus: cell autonomy and network properties. Annual Review of Physiology, 72, 551-577. Wen, S., Ma, D., Zhao, M., Xie, L., Wu, Q., Gou, L., Zhu, C., Fan, Y., Wang, H., & Yan, J. (2020). Spatiotemporal single-cell analysis of gene expression in the mouse suprachiasmatic nucleus. Nat Neurosci, 23(3), 456-467. https://doi.org/10.1038/s41593-020-0586-x Wright Jr, K. P. (1996). Entrainment to the light-dark cycle: Circadian rhythm and the influence of light on sleep. Biological Rhythm Research, 27(2), 357-371. Xu, P., Berto, S., Kulkarni, A., Jeong, B., Joseph, C., Cox, K. H., Greenberg, M. E., Kim, T. K., Konopka, G., & Takahashi, J. S. (2021). NPAS4 regulates the transcriptional response of the suprachiasmatic nucleus to light and circadian behavior. Neuron. https://doi.org/10.1016/j.neuron.2021.07.026 Xu, Y., Mori, T., & Johnson, C. H. (2003). Cyanobacterial circadian clockwork: roles of KaiA, KaiB and the kaiBC promoter in regulating KaiC. EMBO J, 22(9), 2117-2126. https://doi.org/10.1093/emboj/cdg168 Yamaguchi, S., Isejima, H., Matsuo, T., Okura, R., Yagita, K., Kobayashi, M., & Okamura, H. (2003). Synchronization of cellular clocks in the suprachiasmatic nucleus. Science, 302(5649), 1408-1412. Yan, J., Wang, H., Liu, Y., & Shao, C. (2008). Analysis of gene regulatory networks in the mammalian circadian rhythm. PLoS Comput Biol, 4(10), e1000193. https://doi.org/10.1371/journal.pcbi.1000193 Yao, Y., Taub, A. B., LeSauter, J., & Silver, R. (2021). Identification of the suprachiasmatic nucleus venous portal system in the mammalian brain. Nature Communications, 12(1), 1-9. Yoo, S. H., Yamazaki, S., Lowrey, P. L., Shimomura, K., Ko, C. H., Buhr, E. D., Siepka, S. M., Hong, H. K., Oh, W. J., Yoo, O. J., Menaker, M., & Takahashi, J. S. (2004). PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proceedings of the National Academy of Sciences of the United States of America, 101(15), 5339-5346. Yoshimura, T., Yasuo, S., Suzuki, Y., Makino, E., Yokota, Y., & Ebihara, S. (2001). Identification of the suprachiasmatic nucleus in birds. Am J Physiol Regul Integr Comp Physiol, 280(4), R1185-1189. https://doi.org/10.1152/ajpregu.2001.280.4.R1185 Yuste, R. (2015). From the neuron doctrine to neural networks. Nature Reviews Neuroscience, 16(8), 487-497. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95479 | - |
| dc.description.abstract | 地球上的生物必須適應和預測日夜週期性變化,以促進它們的生存和適應性,因此能夠受環境光變化調控的內源性生理時鐘至關重要。這些生理時鐘能夠通過根據接收的時鐘刺激來調整其時鐘相位延遲或提前,以與環境協調。這種時鐘相位延遲或提前依賴於時鐘時間接收刺激的特性,被描述為相位響應曲線(phase response curve, PRC)。在哺乳動物中,位於下視丘底部的視交叉上核(suprachiasmatic nucleus, SCN)負責主要的生理時鐘,並整合經視下丘胞束傳遞的環境光信號,觸發生理時鐘的光節律。然而,SCN如何計算PRC仍然不清楚。為了闡明這一問題,我們使用通過梯度折射光纖內窺鏡中繼的螢光基因編碼的鈣指示劑,在未麻醉的小鼠中觀察SCN的急性光響應,這使得可以在不同條件下重複觀察SCN中的相同一組神經元。結果顯示,不同的時鐘時區具有不同的神經元活動模式,包括相位延遲區、相位提前區和行為無反應區。此外,神經元活動與光敏感神經元的組成之間的相關性在不同的時鐘時區之間也發生了變化。與傳統的SCN信息流的簡單階層模型不同,我們的研究結果表明,SCN在早期和晚期主觀夜晚分別處理光信號的雙模式網絡。 | zh_TW |
| dc.description.abstract | Creatures on the earth have to adapt and predict the periodic changes of day and night to facilitate their survival and fitness, which endogenous circadian clocks that can be entrained by the environmental light changes are critical. The clocks can harmonize with the environment by shifting their circadian phase delay or advance dependent on the circadian time receiving stimuli. The circadian time-dependent response function is described as the phase response curve (PRC). In mammals, the suprachiasmatic nucleus (SCN) located in the bottom of the hypothalamus is in charge of the master circadian oscillator and integrating environmental light signals transmitted through the retinohypothalamic tract that trigger photoentrainment of circadian rhythms. However, how the SCN computes PRC remains unclear. To elucidate it, we observe acute light responses of SCN in unanesthetized mice using fluorescent genetically encoded calcium indicators relayed through gradient-index endoscopes, enabling repeated observation of the same set of neurons in the SCN under various conditions. The results showed distinct neuron activity patterns at different circadian time zones, including phase delay zone, phase advance zone, and the behaviorally irresponsive dead zone. Moreover, the correlation between neuron activities and the composition of light-responsive neurons is changed between circadian time zones. Instead of conventional simple hierarchical models of SCN information flow, our findings suggest that SCN employed a bimodal network to process light signals separately in the early and late subjective night. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-10T16:17:10Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-10T16:17:10Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 ............................................................................................. i
致謝 ................................................................................................................. ii 中文摘要 ......................................................................................................... vi Abstract ........................................................................................................... v Content ............................................................................................................. vii Figure Content ................................................................................................. viii Chapter 1. Introduction .................................................................................. 1 Chapter 2. Main Study .................................................................................... 15 Materials and Methods .............................................................................. 15 Results ....................................................................................................... 24 Discussion ................................................................................................. 35 Chapter 3. Methodological Exploration ........................................................ 42 Endoscope Implantation ............................................................................ 43 Two-Photon Microscope System ............................................................... 48 Retinal Stimulation .................................................................................... 58 Preliminary Analysis ................................................................................. 62 Discussion ................................................................................................. 67 Chapter 4. General Discussion ....................................................................... 72 Figures .............................................................................................................. 79 Reference .......................................................................................................... 110 Appendices ....................................................................................................... 128 | - |
| dc.language.iso | en | - |
| dc.subject | 雙光子顯微術 | zh_TW |
| dc.subject | 漸變折射率透鏡 | zh_TW |
| dc.subject | 活體鈣離子影像 | zh_TW |
| dc.subject | 視交叉上核 | zh_TW |
| dc.subject | 生理時鐘光調控 | zh_TW |
| dc.subject | Gradient-index lenses | en |
| dc.subject | two-photon microscopy | en |
| dc.subject | In vivo calcium imaging | en |
| dc.subject | Suprachiamatic nucleus | en |
| dc.subject | Photoentrainment | en |
| dc.title | 藉由觀察活體視交叉上核解析近日週期相反應曲線神經網路之研究 | zh_TW |
| dc.title | In Vivo Observation of the Suprachiasmatic Nucleus Reveals Bi-Stable Network for Circadian Phase Responses | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.coadvisor | 吳玉威 | zh_TW |
| dc.contributor.coadvisor | Yu-Wei Wu | en |
| dc.contributor.oralexamcommittee | 朱士維;吳順吉;徐經倫 | zh_TW |
| dc.contributor.oralexamcommittee | Shi-Wei Chu;Shun-Chi Wu;Ching-Lung Hsu | en |
| dc.subject.keyword | 生理時鐘光調控,視交叉上核,活體鈣離子影像,雙光子顯微術,漸變折射率透鏡, | zh_TW |
| dc.subject.keyword | Photoentrainment,Suprachiamatic nucleus,In vivo calcium imaging,two-photon microscopy,Gradient-index lenses, | en |
| dc.relation.page | 133 | - |
| dc.identifier.doi | 10.6342/NTU202404254 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-14 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 跨領域神經科學國際研究生博士學位學程 | - |
| 顯示於系所單位: | 跨領域神經科學國際研究生博士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 7.74 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
