Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95478
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 顧銓 | zh_TW |
dc.contributor.advisor | Chuan Ku | en |
dc.contributor.author | 賴欣彤 | zh_TW |
dc.contributor.author | Hsin-Tung Lai | en |
dc.date.accessioned | 2024-09-10T16:16:50Z | - |
dc.date.available | 2024-09-11 | - |
dc.date.copyright | 2024-09-10 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-08 | - |
dc.identifier.citation | Caron, D. A. (1991). Evolving role of protozoa in aquatic nutrient cycles. In Protozoa and their role in marine processes (pp. 387–415). Springer.
Edgcomb, V. P. (2016). Marine protist associations and environmental impacts across trophic levels in the twilight zone and below. Current Opinion in Microbiology, 31, 169–175. Laget, M., Drago, L., Panaïotis, T., Kiko, R., Stemmann, L., Rogge, A., Llopis-Monferrer, N., Leynaert, A., Irisson, J. O., & Biard, T. (2024). Global census of the significance of giant mesopelagic protists to the marine carbon and silicon cycles. Nature Communications, 15(1). Field, C. B., Behrenfeld, M. J., Randerson, J. T., & Falkowski, P. (1998). Primary production of the biosphere: integrating terrestrial and oceanic components. Science, 281(5374), 237–240. Worden, A. Z., Follows, M. J., Giovannoni, S. J., Wilken, S., Zimmerman, A. E., & Keeling, P. J. (2015). Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science, 347(6223), 1257594. Geisen, S., Mitchell, E. A. D., Adl, S., Bonkowski, M., Dunthorn, M., Ekelund, F., Fernández, L. D., Jousset, A., Krashevska, V., & Singer, D. (2018). Soil protists: a fertile frontier in soil biology research. FEMS Microbiology Reviews, 42(3), 293–323. Oliverio, A. M., Geisen, S., Delgado-Baquerizo, M., Maestre, F. T., Turner, B. L., & Fierer, N. (2020). The global-scale distributions of soil protists and their contributions to belowground systems. Science Advances, 6(4), eaax8787. Šlapeta, J., Moreira, D., & López-García, P. (2005). The extent of protist diversity: insights from molecular ecology of freshwater eukaryotes. Proceedings of the Royal Society B: Biological Sciences, 272(1576), 2073–2081. Metz, S., Huber, P., Accattatis, V., Lopes dos Santos, A., Bigeard, E., Unrein, F., Chambouvet, A., Not, F., Lara, E., & Devercelli, M. (2022). Freshwater protists: unveiling the unexplored in a large floodplain system. Environmental Microbiology, 24(4), 1731–1745. Adl, S. M., Simpson, A. G. B., Lane, C. E., Lukeš, J., Bass, D., Bowser, S. S., Brown, M. W., Burki, F., Dunthorn, M., & Hampl, V. (2012). The revised classification of eukaryotes. Journal of Eukaryotic Microbiology, 59(5), 429–514. Keeling, P. J., & Burki, F. (2019). Progress towards the Tree of Eukaryotes. In Current Biology (Vol. 29, Issue 16, pp. R808–R817). Cell Press. del Campo, J., Sieracki, M. E., Molestina, R., Keeling, P., Massana, R., & Ruiz-Trillo, I. (2014). The others: our biased perspective of eukaryotic genomes. Trends in Ecology & Evolution, 29(5), 252–259. Burki, F., Sandin, M. M., & Jamy, M. (2021). Diversity and ecology of protists revealed by metabarcoding. Current Biology, 31(19), R1267–R1280. de Vargas, C., Audic, S., Henry, N., Decelle, J., Mahé, F., Logares, R., Lara, E., Berney, C., le Bescot, N., & Probert, I. (2015). Eukaryotic plankton diversity in the sunlit ocean. Science, 348(6237), 1261605. Thompson, A. R., Geisen, S., & Adams, B. J. (2020). Shotgun metagenomics reveal a diverse assemblage of protists in a model Antarctic soil ecosystem. Environmental Microbiology, 22(11), 4620–4632. Alexander, H., Hu, S. K., Krinos, A. I., Pachiadaki, M., Tully, B. J., Neely, C. J., & Reiter, T. (2023). Eukaryotic genomes from a global metagenomic data set illuminate trophic modes and biogeography of ocean plankton. MBio, 14(6), e01676-23. Sunagawa, S., Acinas, S. G., Bork, P., Bowler, C., Eveillard, D., Gorsky, G., Guidi, L., Iudicone, D., & Karsenti, E. (2020). Tara Oceans: towards global ocean ecosystems biology. Nature Reviews Microbiology, 18(8), 428–445. Biller, S. J., Berube, P. M., Dooley, K., Williams, M., Satinsky, B. M., Hackl, T., Hogle, S. L., Coe, A., Bergauer, K., & Bouman, H. A. (2018). Marine microbial metagenomes sampled across space and time. Scientific Data, 5(1), 1–7. Clayton, S., Alexander, H., Graff, J. R., Poulton, N. J., Thompson, L. R., Benway, H., Boss, E., & Martiny, A. (2022). Bio-GO-SHIP: the time is right to establish global repeat sections of ocean biology. Frontiers in Marine Science, 8, 767443. Ku, C., & Sebé-Pedrós, A. (2019). Using single-cell transcriptomics to understand functional states and interactions in microbial eukaryotes. Philosophical Transactions of the Royal Society B, 374(1786), 20190098. Herzenberg, L. A., Sweet, R. G., & Herzenberg, L. A. (1976). Fluorescence-activated cell sorting. Scientific American, 234(3), 108–118. Beebe, D. J., Mensing, G. A., & Walker, G. M. (2002). Physics and applications of microfluidics in biology. Annual Review of Biomedical Engineering, 4(1), 261–286. Navin, N., & Hicks, J. (2011). Future medical applications of single-cell sequencing in cancer. Genome Medicine, 3, 1–12. Shalek, A. K., Satija, R., Adiconis, X., Gertner, R. S., Gaublomme, J. T., Raychowdhury, R., Schwartz, S., Yosef, N., Malboeuf, C., & Lu, D. (2013). Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature, 498(7453), 236–240. Blainey, P. C. (2013). The future is now: single-cell genomics of bacteria and archaea. FEMS Microbiology Reviews, 37(3), 407–427. Ciobanu, D., Clum, A., Ahrendt, S., Andreopoulos, W. B., Salamov, A., Chan, S., Quandt, C. A., Foster, B., Meier-Kolthoff, J. P., & Tang, Y. T. (2021). A single-cell genomics pipeline for environmental microbial eukaryotes. Iscience, 24(4). Spits, C., le Caignec, C., de Rycke, M., van Haute, L., van Steirteghem, A., Liebaers, I., & Sermon, K. (2006). Whole-genome multiple displacement amplification from single cells. Nature Protocols, 1(4), 1965–1970. Seeleuthner, Y., Mondy, S., Lombard, V., Carradec, Q., Pelletier, E., Wessner, M., Leconte, J., Mangot, J.-F., Poulain, J., & Labadie, K. (2018). Single-cell genomics of multiple uncultured stramenopiles reveals underestimated functional diversity across oceans. Nature Communications, 9(1), 310. Keeling, P. J. (2019). Combining morphology, behaviour and genomics to understand the evolution and ecology of microbial eukaryotes. Philosophical Transactions of the Royal Society B, 374(1786), 20190085. Schön, M. E., Zlatogursky, V. v, Singh, R. P., Poirier, C., Wilken, S., Mathur, V., Strassert, J. F. H., Pinhassi, J., Worden, A. Z., & Keeling, P. J. (2021). Single cell genomics reveals plastid-lacking Picozoa are close relatives of red algae. Nature Communications, 12(1), 6651. Yoon, H. S., Price, D. C., Stepanauskas, R., Rajah, V. D., Sieracki, M. E., Wilson, W. H., Yang, E. C., Duffy, S., & Bhattacharya, D. (2011). Single-cell genomics reveals organismal interactions in uncultivated marine protists. Science, 332(6030), 714–717. Lemieux, C., Otis, C., & Turmel, M. (2007). A clade uniting the green algae Mesostigma viride and Chlorokybus atmophyticus represents the deepest branch of the Streptophyta in chloroplast genome-based phylogenies. BMC Biology, 5 (2). Lee, J. M., Cho, C. H., Park, S. I., Choi, J. W., Song, H. S., West, J. A., Bhattacharya, D., & Yoon, H. S. (2016). Parallel evolution of highly conserved plastid genome architecture in red seaweeds and seed plants. BMC Biology, 14(1). Jeong, Y. J., & Lee, J. M. (2023). Comparative analysis of organelle genomes provides conflicting evidence between morphological similarity and phylogenetic relationship in diatoms. Frontiers in Marine Science, 10. Zimorski, V., Ku, C., Martin, W. F., & Gould, S. B. (2014). Endosymbiotic theory for organelle origins. Current Opinion in Microbiology, 22, 38–48. Archibald, J. M. (2015). Endosymbiosis and eukaryotic cell evolution. Current Biology, 25(19), R911–R921. Timmis, J. N., Ayliff, M. A., Huang, C. Y., & Martin, W. (2004). Endosymbiotic gene transfer: Organelle genomes forge eukaryotic chromosomes. Nature Reviews Genetics. 5 (2) 123-135. Archibald, J. M. (2009). The Puzzle of Plastid Evolution. Current Biology. 19 (2). Sibbald, S. J., & Archibald, J. M. (2020). Genomic insights into plastid evolution. Genome Biology and Evolution. 12(7), 978–990. Ewels, P., Magnusson, M., Lundin, S., & Käller, M. (2016). MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics, 32(19), 3047–3048. Chen, S., Zhou, Y., Chen, Y., & Gu, J. (2018). fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 34(17), i884–i890. Prjibelski, A., Antipov, D., Meleshko, D., Lapidus, A., & Korobeynikov, A. (2020). Using SPAdes de novo assembler. Current Protocols in Bioinformatics, 70(1), e102. Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357–359. Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. O., Whitwham, A., Keane, T., McCarthy, S. A., & Davies, R. M. (2021). Twelve years of SAMtools and BCFtools. Gigascience, 10(2), giab008. Karlicki, M., Antonowicz, S., & Karnkowska, A. (2022). Tiara: deep learning-based classification system for eukaryotic sequences. Bioinformatics, 38(2), 344–350 Jin, J.-J., Yu, W.-B., Yang, J.-B., Song, Y., DePamphilis, C. W., Yi, T.-S., & Li, D.-Z. (2020). GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biology, 21, 1–31. Dierckxsens, N., Mardulyn, P., & Smits, G. (2017). NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Research, 45(4), e18–e18. Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden, T. L. (2009). BLAST+: Architecture and applications. BMC Bioinformatics, 10. Tillich, M., Lehwark, P., Pellizzer, T., Ulbricht-Jones, E. S., Fischer, A., Bock, R., & Greiner, S. (2017). GeSeq–versatile and accurate annotation of organelle genomes. Nucleic Acids Research, 45(W1), W6–W11. Gurevich, A., Saveliev, V., Vyahhi, N., & Tesler, G. (2013). QUAST: quality assessment tool for genome assemblies. Bioinformatics, 29(8), 1072–1075. Greiner, S., Lehwark, P., & Bock, R. (2019). OrganellarGenomeDRAW (OGDRAW) version 1.3. 1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Research, 47(W1), W59–W64. Pritchard, L., Glover, R. H., Humphris, S., Elphinstone, J. G., & Toth, I. K. (2016). Genomics and taxonomy in diagnostics for food security: Soft-rotting enterobacterial plant pathogens. In Analytical Methods (Vol. 8, Issue 1, pp. 12–24). Royal Society of Chemistry. Stanke, M., & Morgenstern, B. (2005). AUGUSTUS: A web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Research, 33(SUPPL. 2). Bernt, M., Donath, A., Jühling, F., Externbrink, F., Florentz, C., Fritzsch, G., Pütz, J., Middendorf, M., & Stadler, P. F. (2013). MITOS: improved de novo metazoan mitochondrial genome annotation. Molecular Phylogenetics and Evolution, 69(2), 313–319. Emms, D. M., & Kelly, S. (2019). OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biology, 20, 1–14. Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30(4), 772–780. Nguyen, L.-T., Schmidt, H. A., von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32(1), 268–274. Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A., & Jermiin, L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods, 14(6), 587–589. Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q., & Vinh, L. S. (2018). UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution, 35(2), 518–522. Rambaut, A. (2012). FigTree v1. 4. Molecular evolution, phylogenetics and epidemiology. Edinburgh: University of Edinburgh, Institute of Evolutionary Biology. Manni, M., Berkeley, M. R., Seppey, M., Simão, F. A., & Zdobnov, E. M. (2021). BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Molecular Biology and Evolution, 38(10), 4647–4654. Deleye, L., Tilleman, L., vander Plaetsen, A.-S., Cornelis, S., Deforce, D., & van Nieuwerburgh, F. (2017). Performance of four modern whole genome amplification methods for copy number variant detection in single cells. Scientific Reports, 7(1), 3422. Sobol, M. S., & Kaster, A.-K. (2023). Back to basics: a simplified improvement to multiple displacement amplification for microbial single-cell genomics. International Journal of Molecular Sciences, 24(5), 4270. Blanc, G., Duncan, G., Agarkova, I., Borodovsky, M., Gurnon, J., Kuo, A., Lindquist, E., Lucas, S., Pangilinan, J., Polle, J., Salamov, A., Terry, A., Yamada, T., Dunigan, D. D., Grigoriev, I. v., Claverie, J. M., & van Etten, J. L. (2010). The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. Plant Cell, 22(9), 2943–2955. Sims, D., Sudbery, I., Ilott, N. E., Heger, A., & Ponting, C. P. (2014). Sequencing depth and coverage: Key considerations in genomic analyses. Nature Reviews Genetics. 15 (2). 121-132. Narzisi G, Mishra B (2011) Comparing De Novo Genome Assembly: The Long and Short of It. PLoS ONE. 6 (4). e19175. Miller, J. R., Koren, S., & Sutton, G. (2010). Assembly algorithms for next-generation sequencing data. Genomics. 95 (6) 315–327. Alkan, C., Sajjadian, S., & Eichler, E. E. (2011). Limitations of next-generation genome sequence assembly. Nature Methods 8 (1). 61–65. Claros, M. G., Bautista, R., Guerrero-Fernández, D., Benzerki, H., Seoane, P., & Fernández-Pozo, N. (2012). Why assembling plant genome sequences is so challenging. Biology. 1 (2). 439–459. Burki, F., Roger, A. J., Brown, M. W., & Simpson, A. G. B. (2020). The new tree of eukaryotes. Trends in Ecology & Evolution, 35(1), 43–55. Roger, A. J., Muñoz-Gómez, S. A., & Kamikawa, R. (2017). The origin and diversification of mitochondria. Current Biology, 27(21), R1177–R1192. Moore, R. B., Oborník, M., Janouškovec, J., Chrudimský, T., Vancová, M., Green, D. H., Wright, S. W., Davies, N. W., Bolch, C. J. S., & Heimann, K. (2008). A photosynthetic alveolate closely related to apicomplexan parasites. Nature, 451(7181), 959–963. Petersen, J., Ludewig, A. K., Michael, V., Bunk, B., Jarek, M., Baurain, D., & Brinkmann, H. (2014). Chromera velia, endosymbioses and the rhodoplex hypothesis - Plastid evolution in cryptophytes, alveolates, stramenopiles, and haptophytes (CASH lineages). Genome Biology and Evolution, 6(3), 666–684. Reyes-Prieto, A., Moustafa, A., & Bhattacharya, D. (2008). Multiple genes of apparent algal origin suggest ciliates may once have been photosynthetic. Current Biology, 18(13), 956–962. Imanian, B., Pombert, J.-F., & Keeling, P. J. (2010). The complete plastid genomes of the two ‘dinotoms’ Durinskia baltica and Kryptoperidinium foliaceum. PloS One, 5(5), e10711. Kucera, M. (2007). Chapter six planktonic foraminifera as tracers of past oceanic environments. Developments in Marine Geology, 1, 213–262. Yasuhara, M., Tittensor, D. P., Hillebrand, H., & Worm, B. (2017). Combining marine macroecology and palaeoecology in understanding biodiversity: microfossils as a model. Biological Reviews, 92(1), 199–215. Burki, F., Kudryavtsev, A., Matz, M. v., Aglyamova, G. v., Bulman, S., Fiers, M., Keeling, P. J., & Pawlowski, J. (2010). Evolution of Rhizaria: New insights from phylogenomic analysis of uncultivated protists. BMC Evolutionary Biology, 10(1). Silva, A. A. da, Pawlowski, J., & Gooday, A. J. (2006). High diversity of deep-sea Gromia from the Arabian Sea revealed by small subunit rDNA sequence analysis. Marine Biology, 148(4), 769–777. Schweizer, M., Pawlowski, J., Kouwenhoven, T. J., Guiard, J., & van der Zwaan, B. (2008). Molecular phylogeny of Rotaliida (Foraminifera) based on complete small subunit rDNA sequences. Marine Micropaleontology, 66(3–4), 233–246. Pawlowski, J., Holzmann, M., & Tyszka, J. (2013). New supraordinal classification of Foraminifera: Molecules meet morphology. Marine Micropaleontology, 100, 1–10. Macher, J.-N., Bloska, D. M., Holzmann, M., Girard, E. B., Pawlowski, J., & Renema, W. (2022). Mitochondrial cytochrome c oxidase subunit I (COI) metabarcoding of Foraminifera communities using taxon-specific primers. PeerJ, 10, e13952. Morard, R., Darling, K. F., Weiner, A. K. M., Hassenrück, C., Vanni, C., Cordier, T., Henry, N., Greco, M., Vollmar, N. M., & Milivojevic, T. (2024). The global genetic diversity of planktonic foraminifera reveals the structure of cryptic speciation in plankton. Biological Reviews. Habura, A., Hou, Y., Reilly, A. A., & Bowser, S. S. (2011). High-throughput sequencing of Astrammina rara: Sampling the giant genome of a giant foraminiferan protist. BMC Genomics, 12, 1–11. Woehle, C., Roy, A.-S., Glock, N., Wein, T., Weissenbach, J., Rosenstiel, P., Hiebenthal, C., Michels, J., Schönfeld, J., & Dagan, T. (2018). A novel eukaryotic denitrification pathway in foraminifera. Current Biology, 28(16), 2536–2543. Glöckner, G., Hülsmann, N., Schleicher, M., Noegel, A. A., Eichinger, L., Gallinger, C., Pawlowski, J., Sierra, R., Euteneuer, U., Pillet, L., Moustafa, A., Platzer, M., Groth, M., Szafranski, K., & Schliwa, M. (2014). The genome of the foraminiferan reticulomyxa filosa. Current Biology, 24(1), 11–18. Macher, J.-N., Coots, N. L., Poh, Y.-P., Girard, E. B., Langerak, A., Muñoz-Gómez, S. A., Sinha, S. D., Jirsová, D., Vos, R., & Wissels, R. (2023). Single-cell genomics reveals the divergent mitochondrial genomes of Retaria (Foraminifera and Radiolaria). Mbio, 14(2), e00302-23. Takagi, H., Kimoto, K., Fujiki, T., Saito, H., Schmidt, C., Kucera, M., & Moriya, K. (2019). Characterizing photosymbiosis in modern planktonic foraminifera. Biogeosciences, 16(17), 3377–3396. Stanley, G. D., & Lipps, J. H. (2011). Photosymbiosis: the driving force for reef success and failure. The Paleontological Society Papers, 17, 33–59. Prazeres, M., & Renema, W. (2019). Evolutionary significance of the microbial assemblages of large benthic Foraminifera. Biological Reviews, 94(3), 828–848. Shaked, Y., & de Vargas, C. (2006). Pelagic photosymbiosis: rDNA assessment of diversity and evolution of dinoflagellate symbionts and planktonic foraminiferal hosts. Marine Ecology Progress Series, 325, 59–71. Bird, C., Darling, K. F., Russell, A. D., Davis, C. v, Fehrenbacher, J., Free, A., Wyman, M., & Ngwenya, B. T. (2017). Cyanobacterial endobionts within a major marine planktonic calcifier (Globigerina bulloides, Foraminifera) revealed by 16S rRNA metabarcoding. Biogeosciences, 14(4), 901–920. Wick, R. R., Judd, L. M., & Holt, K. E. (2018). Deepbinner: Demultiplexing barcoded Oxford Nanopore reads with deep convolutional neural networks. PLoS Computational Biology, 14(11), e1006583. Lang, B. F., Beck, N., Prince, S., Sarrasin, M., Rioux, P., & Burger, G. (2023). Mitochondrial genome annotation with MFannot: a critical analysis of gene identification and gene model prediction. Frontiers in Plant Science, 14. Wu, Y.-W., Simmons, B. A., & Singer, S. W. (2016). MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics, 32(4), 605–607. Kang, D. D., Li, F., Kirton, E., Thomas, A., Egan, R., An, H., & Wang, Z. (2019). MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ, 7, e7359. Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P., & Tyson, G. W. (2015). CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Research, 25(7), 1043–1055. Chaumeil, P. A., Mussig, A. J., Hugenholtz, P., & Parks, D. H. (2020). GTDB-Tk: A toolkit to classify genomes with the genome taxonomy database. Bioinformatics, 36(6), 1925–1927. Thorvaldsdóttir, H., Robinson, J. T., & Mesirov, J. P. (2013). Integrative Genomics Viewer (IGV): High-performance genomics data visualization and exploration. Briefings in Bioinformatics, 14(2), 178–192. Spindler, M., Hemleben, C., Salomons, J. B., & Smit, L. P. (1984). Feeding behavior of some planktonic foraminifers in laboratory cultures. The Journal of Foraminiferal Research, 14(4), 237–249. Butenko, A., Lukeš, J., Speijer, D., & Wideman, J. G. (2024). Mitochondrial genomes revisited: why do different lineages retain different genes? BMC Biology. 22 (1). Kelly, S. (2021). The economics of organellar gene loss and endosymbiotic gene transfer. Genome Biology, 22(1). Pentinsaari, M., Salmela, H., Mutanen, M., & Roslin, T. (2016). Molecular evolution of a widely-adopted taxonomic marker (COI) across the animal tree of life. Scientific Reports, 6. Strüder-Kypke, M. C., & Lynn, D. H. (2010). Comparative analysis of the mitochondrial cytochrome c oxidase subunit I (COI) gene in ciliates (Alveolata, Ciliophora) and evaluation of its suitability as a biodiversity marker. Systematics and Biodiversity. 8(1). 131–148. Gast, R. J., & Caron, D. A. (1996). Molecular phylogeny of symbiotic dinoflagellates from planktonic foraminifera and radiolaria. Molecular Biology and Evolution, 13(9), 1192–1197. Gast, R. J., & Caron, D. A. (2001). Photosymbiotic associations in planktonic foraminifera and radiolaria. Hydrobiologia, 461, 1–7. Takishita, K., Inagaki, Y., Tsuchiya, M., Sakaguchi, M., & Maruyama, T. (2005). A close relationship between Cercozoa and Foraminifera supported by phylogenetic analyses based on combined amino acid sequences of three cytoskeletal proteins (actin, α-tubulin, and β-tubulin). Gene, 362, 153–160. Bird, C., Darling, K. F., Russell, A. D., Fehrenbacher, J. S., Davis, C. v, Free, A., & Ngwenya, B. T. (2018). 16S rRNA gene metabarcoding and TEM reveals different ecological strategies within the genus Neogloboquadrina (planktonic foraminifer). PloS One, 13(1), e0191653. Sunagawa, S., Coelho, L. P., Chaffron, S., Kultima, J. R., Labadie, K., Salazar, G., Djahanschiri, B., Zeller, G., Mende, D. R., & Alberti, A. (2015). Structure and function of the global ocean microbiome. Science, 348(6237), 1261359. Sibbald, S. J., & Archibald, J. M. (2017). More protist genomes needed. Nature Ecology & Evolution, 1(5), 0145. Tully, B. J., Graham, E. D., & Heidelberg, J. F. (2018). The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Scientific Data, 5(1), 1–8. Parks, D. H., Rinke, C., Chuvochina, M., Chaumeil, P.-A., Woodcroft, B. J., Evans, P. N., Hugenholtz, P., & Tyson, G. W. (2017). Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nature Microbiology, 2(11), 1533–1542. Delmont, T. O., Gaia, M., Hinsinger, D. D., Frémont, P., Vanni, C., Fernandez-Guerra, A., Eren, A. M., Kourlaiev, A., d’Agata, L., & Clayssen, Q. (2022). Functional repertoire convergence of distantly related eukaryotic plankton lineages abundant in the sunlit ocean. Cell Genomics, 2(5). Duncan, A., Barry, K., Daum, C., Eloe-Fadrosh, E., Roux, S., Schmidt, K., Tringe, S. G., Valentin, K. U., Varghese, N., & Salamov, A. (2022). Metagenome-assembled genomes of phytoplankton microbiomes from the Arctic and Atlantic Oceans. Microbiome, 10(1), 67. Parada, A. E., Needham, D. M., & Fuhrman, J. A. (2016). Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environmental Microbiology, 18(5), 1403–1414. Lee, M. (2019). Happy Belly Bioinformatics: an open-source resource dedicated to helping biologists utilize bioinformatics. Journal of Open Source Education, 2(19), 53. Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. Journal, 17(1), 10–12. Boratyn, G. M., Thierry-Mieg, J., Thierry-Mieg, D., Busby, B., & Madden, T. L. (2019). Magic-BLAST, an accurate RNA-seq aligner for long and short reads. BMC Bioinformatics, 20, 1–19. Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glöckner, F. O. (2012). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research, 41(D1), D590–D596. Guillou, L., Bachar, D., Audic, S., Bass, D., Berney, C., Bittner, L., Boutte, C., Burgaud, G., de Vargas, C., & Decelle, J. (2012). The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Research, 41(D1), D597–D604. Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), 581–583. Ho, S.-T., Ho, Y.-N., Lin, C., Hsu, W.-C., Lee, H.-J., Peng, C.-C., Cheng, H.-T., & Yang, Y.-L. (2021). Integrated omics strategy reveals cyclic lipopeptides empedopeptins from Massilia sp. YMA4 and their biosynthetic pathway. Marine Drugs, 19(4), 209. Hu, X., & Chen, H. (2023). Phosphate solubilizing microorganism: a green measure to effectively control and regulate heavy metal pollution in agricultural soils. Frontiers in Microbiology, 14, 1193670. Xu, A., Liu, C., Zhao, S., Song, Z., & Sun, H. (2023). Dynamic distribution of Massilia spp. in sewage, substrate, plant rhizosphere/phyllosphere and air of constructed wetland ecosystem. Frontiers in Microbiology, 14, 1211649. Prazeres, M. (2018). Bleaching-associated changes in the microbiome of large benthic foraminifera of the Great Barrier Reef, Australia. Frontiers in Microbiology, 9, 400188. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95478 | - |
dc.description.abstract | 隨著高通量定序技術的進步,真核生物基因體序列資料數據量顯著增加。真核生物演化樹中絕大多數是由微生物組成,但前人對於真核生物基因體的研究著重於動物、植物和真菌,導致真核微生物中有許多演化分支缺乏基因體紀錄。為了拓展對環境真核微生物的理解,本研究將形態與單一顆粒基因體分析整合,利用配有攝影設備的大顆粒流式細胞分選儀,或是手動使用微量移液管,來分選在臺灣水域樣本的單一大型真核微生物顆粒,進行全基因放大與定序,再分析其基因體、親緣關係與微生物交互作用。本研究成功從淡水樣本取得多個單一顆粒的環狀胞器基因體並分析其親緣關係。特別在矽藻方面找出獨特葉綠體序列的演化支系。另外,從綠島浮游性有孔蟲的單一顆粒中,分別組裝出有孔蟲與金色藻屬的環狀粒線體基因體,顯示了這兩個真核微生物間有潛在的交互作用。本研究也分析原核生物在海洋環境中的組成,發現綠島有孔蟲有特定的菌相。這些結果顯示單一大顆粒的基因體分析,對揭示真核微生物的基因體、演化多樣性及微生物交互作用具有很大的潛力。 | zh_TW |
dc.description.abstract | The advancement of high-throughput sequencing has significantly increased our access to genomic datasets of eukaryotes. The vast majority of the eukaryotic Tree of Life (eToL) comprises microbial organisms with crucial roles in various ecosystems. However, previous studies on eukaryotic genomes have mainly focused on animals, plants, and fungi. Research on microeukaryote genomics and evolutionary diversity remains limited by their generally unculturable nature, with numerous lineages lacking genomic records, especially some that have large cell sizes. To enhance our understanding of their genomics, ecology and evolution, a workflow that integrates morphology with the analysis of single-particle genomes was utilized in this study, particles of interest from freshwater and marine environments in Taiwan isolated using either manual micro-pipetting or a large-particle flow cytometer/sorter equipped with a camera. This was followed by whole-genome amplification, sequencing, de novo assembly and genomic analyses. Circularized or nearly complete organellar genome sequences were successfully recovered, enabling the phylogenomic analyses of the isolated particles. By linking the morphological data of particles with their phylogenetic placements, large particles within Bacillariophyta (diatoms) were identified and found to represent lineages with distinct plastid genomes. Additionally, circularized mitochondrial genomes of planktonic foraminifera (Rhizaria) and Chrysochromulina sp. (Haptophyta) were assembled from a single particle, suggesting putative microbial interactions between these two microbes. Furthermore, multiple prokaryotic metagenome-assembled genomes were recovered from both foraminiferan single particles and the surrounding seawater, which differ in their bacterial community, suggesting foraminiferans may be associated with specific microbiomes. Overall, this study highlights the potential of large single-particle for unraveling the hidden genomic and evolutionary diversity of protists and their associated microorganisms. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-10T16:16:50Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-09-10T16:16:50Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員審定書 ............................................................................................................. i
謝誌 ............................................................................................................................... ii 中文摘要 ....................................................................................................................... iii Abstract ........................................................................................................................ iv List of Figures ................................................................................................................ x List of Tables ............................................................................................................... xii List of Supplementary Indexes ................................................................................... xiii Chapter 1. General Introduction ................................................................................... 1 Chapter 2. Morphological Diversity of Environmental Microbes ................................. 4 2.1 Introduction ........................................................................................................... 4 2.2 Materials and Methods .......................................................................................... 4 2.2.1 Sampling Sites and Field Water Collection ....................................................... 4 2.2.2 Isolation of Single Particles ............................................................................... 5 2.3 Results ................................................................................................................... 5 2.3.1 Particle Populations of The Sampling Sites ....................................................... 5 2.3.2 Morphological Profile of Selected Particles ...................................................... 6 2.4 Discussion ............................................................................................................. 6 Chapter 3. Identifying the GAPs (Genome-Absent Protists) ....................................... 14 3.1 Introduction ............................................................................................................... 14 3.2 Materials and Methods ........................................................................................ 15 3.2.1 Single-Cell Genome Sequencing ..................................................................... 15 3.2.2 Genome Assembly and Raw-Reads Mapping ................................................. 16 3.2.3 Organellar Genome Assembly ........................................................................ 17 3.2.4 Phylogenetic Analysis among Protists ............................................................ 17 3.2.5 Nuclear Genome Analysis ............................................................................... 18 3.3 Results ................................................................................................................. 18 3.3.1 Recovery of Organellar Genomes from Particles and Their Relationships among Protists ............................................................................................................. 18 3.3.2 Investigation into Plastomes of Particles and Closely Related Diatoms .......... 19 3.3.3 Examination of Nuclear Single-Copy Genes ................................................... 20 3.4 Discussion ........................................................................................................... 20 Chapter 4. GAPs in The Marine Environments: Foraminifera .................................. 37 4.1 Introduction ......................................................................................................... 37 4.2 Materials and Methods ........................................................................................ 39 4.2.1 Marine Sample Collection and Foraminiferal Particle Isolation ..................... 39 4.2.2 Whole-Genome Sequencing of Foraminifera Particles ................................... 39 4.2.3 Genomic Analysis of Foraminiferal Particle ................................................... 40 4.2.4 Phylogenetic Analysis of Foraminifera and Associated Microalgae ............... 41 4.2.5 Nuclear Genome Analysis of Foraminifera ..................................................... 42 4.2.6 Recovery of Associated-Bacterial Metagenome-Assembled Genomes (MAGs) in Planktonic Foraminifera .......................................................................................... 42 4.3 Results ................................................................................................................. 43 4.3.1 Morphology and Genomic Information of Foraminifera ................................. 43 4.3.2 Multiple Organellar Genomes Were Discovered within A Single Foraminiferal Particle ........................................................................................................................ 43 4.3.3 Phylogenetic Analyses among Rhizaria, and Haptophyta ............................... 44 4.3.4 Comparisons of Mitogenome Sequences of Green Island D with Related Species ........................................................................................................................ 44 4.3.5 Bacterial Metagenome-Assembled Genomes (MAGs) Identified in Planktonic Foraminifera ................................................................................................................ 45 4.4 Discussion ................................................................................................................. 46 Chapter 5. Particle-Associated Microbes: Integrating Single-Particle Genomics and Metagenomics .............................................................................................................. 66 5.1 Introduction ......................................................................................................... 66 5.2 Materials and Methods ........................................................................................ 67 5.2.1 Marine Sample Collection and Filtration ........................................................ 67 5.2.2 SEM Observation ............................................................................................ 68 5.2.3 Metabarcoding and Metagenomic Sequencing ................................................ 68 5.2.4 Metabarcoding Analysis .................................................................................. 69 5.2.5 Metagenomic Analysis .................................................................................... 69 5.3 Results ................................................................................................................. 70 5.3.1 An Overview of Assembly Quality and Contig Classification ........................ 70 5.3.2 Metagenomic and Metabarcoding Analyses in Eukaryotes ............................. 71 5.3.3 Metagenomic and Metabarcoding Analyses in Prokaryotes ............................ 71 5.3.4 Foraminifera-Associated Prokaryotes versus Free-Living Prokaryotes .......... 72 5.4 Discussion ........................................................................................................... 72 Chapter 6. Conclusion and Future Perspectives ......................................................... 81 Reference ..................................................................................................................... 83 Supplementary Index .................................................................................................. 95 | - |
dc.language.iso | en | - |
dc.title | 以單一顆粒基因體研究臺灣大型真核微生物 | zh_TW |
dc.title | Investigation of Large Microbial Eukaryotes in Taiwan using Single-Particle Genomics | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 吳育瑋;李承叡;詹雅帆 | zh_TW |
dc.contributor.oralexamcommittee | Yu-Wei Wu;Cheng-Ruei Lee;Ya-Fan Chan | en |
dc.subject.keyword | 單細胞真核微生物,原生生物,單一顆粒基因體學,單細胞基因體學,多元基因體學, | zh_TW |
dc.subject.keyword | Single-Cell-Microbial Eukaryotes,Protists,Single-Particle Genomics,Single-Cell Genomics,Metagenomics, | en |
dc.relation.page | 111 | - |
dc.identifier.doi | 10.6342/NTU202403129 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-08-10 | - |
dc.contributor.author-college | 生命科學院 | - |
dc.contributor.author-dept | 生態學與演化生物學研究所 | - |
Appears in Collections: | 生態學與演化生物學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-112-2.pdf Restricted Access | 40.3 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.