Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95469
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭憶中zh_TW
dc.contributor.advisorI-Chung Chengen
dc.contributor.author許富淳zh_TW
dc.contributor.authorFu-Chun Sheuen
dc.date.accessioned2024-09-10T16:14:03Z-
dc.date.available2025-12-31-
dc.date.copyright2024-09-10-
dc.date.issued2024-
dc.date.submitted2024-08-10-
dc.identifier.citation(1) Keeling, X. L. a. R. Trends in Atmospheric Carbon Dioxide (CO2). National Oceanic & Atmospheric Administration
https://gml.noaa.gov/ccgg/trends/mlo.html (accessed 2023 June 15).
(2) Piacentini, R. D.; Garro, S. Carbon neutral industries and compensation for greenhouse gas emissions. Drying Technology 2022, 40 (16), 3371-3372. DOI: 10.1080/07373937.2022.2149181.
(3) Gautam, A.; Shankar, R.; Vrat, P. End-of-life solar photovoltaic e-waste assessment in India: a step towards a circular economy. Sustainable Production and Consumption 2021, 26, 65-77. DOI: https://doi.org/10.1016/j.spc.2020.09.011.
(4) International Energy Agency. Renewable Energy Market Update. International Energy Agency, 2023. https://www.iea.org/reports/renewable-energy-market-update-june-2023 (accessed 2023 June 28th ).
(5) Heath, G. A.; Silverman, T. J.; Kempe, M.; Deceglie, M.; Ravikumar, D.; Remo, T.; Cui, H.; Sinha, P.; Libby, C.; Shaw, S.; et al. Research and development priorities for silicon photovoltaic module recycling to support a circular economy. Nature Energy 2020, 5 (7), 502-510. DOI: 10.1038/s41560-020-0645-2.
(6) Ramírez-Márquez, C.; Contreras-Zarazúa, G.; Martín, M.; Segovia-Hernández, J. G. Safety, Economic, and Environmental Optimization Applied to Three Processes for the Production of Solar-Grade Silicon. ACS Sustainable Chemistry & Engineering 2019, 7 (5), 5355-5366. DOI: 10.1021/acssuschemeng.8b06375.
(7) Padoan, F. C.; Altimari, P.; Pagnanelli, F. Recycling of end of life photovoltaic panels: A chemical prospective on process development. Solar Energy 2019, 177, 746-761.
(8) Peplow, M. Solar Panels Face Recycling Challenge. ACS Central Science 2022, 8 (3), 299-302. DOI: 10.1021/acscentsci.2c00214.
(9) Eshraghi, N.; Berardo, L.; Schrijnemakers, A.; Delaval, V.; Shaibani, M.; Majumder, M.; Cloots, R.; Vertruyen, B.; Boschini, F.; Mahmoud, A. Recovery of Nano-Structured Silicon from End-of-Life Photovoltaic Wafers with Value-Added Applications in Lithium-Ion Battery. ACS Sustainable Chemistry & Engineering 2020, 8 (15), 5868-5879. DOI: 10.1021/acssuschemeng.9b07434.
(10) Hung, C.-W.; Wang, C.-C.; Li, W.-J.; Cheng, I.-C. Synthesis of bimetallic catalysts using Ag extracted from end-of-life solar modules supported on nanoporous Cu for electrochemical CO2 reduction. Journal of Physics and Chemistry of Solids 2022, 166, 110707.
(11) Jung, B.; Park, J.; Seo, D.; Park, N. Sustainable system for raw-metal recovery from crystalline silicon solar panels: from noble-metal extraction to lead removal. ACS Sustainable Chemistry & Engineering 2016, 4 (8), 4079-4083.
(12) Gernon, M. Environmental benefits of methanesulfonic acid. Comparative properties and advantages. Green chemistry 1999, 1 (3), 127-140.
(13) Rodriguez Rodriguez, N.; Onghena, B.; Binnemans, K. Recovery of lead and silver from zinc leaching residue using methanesulfonic acid. ACS Sustainable Chemistry & Engineering 2019, 7 (24), 19807-19815.
(14) Yang, E.-H.; Lee, J.-K.; Lee, J.-S.; Ahn, Y.-S.; Kang, G.-H.; Cho, C.-H. Environmentally friendly recovery of Ag from end-of-life c-Si solar cell using organic acid and its electrochemical purification. Hydrometallurgy 2017, 167, 129-133. DOI: https://doi.org/10.1016/j.hydromet.2016.11.005.
(15) Choukroun, D.; Pacquets, L.; Li, C.; Hoekx, S.; Arnouts, S.; Baert, K.; Hauffman, T.; Bals, S.; Breugelmans, T. Mapping composition–selectivity relationships of supported sub-10 nm Cu–Ag nanocrystals for high-rate CO2 electroreduction. ACS nano 2021, 15 (9), 14858-14872.
(16) Abdel-Aal, E.; Farghaly, F. Preparation of silver powders in micron size from used photographic films via leaching–cementation technique. Powder Technology 2007, 178 (1), 51-55.
(17) Gatemala, H.; Ekgasit, S.; Wongravee, K. High purity silver microcrystals recovered from silver wastes by eco-friendly process using hydrogen peroxide. Chemosphere 2017, 178, 249-258.
(18) Garner, W.; Reeves, L. The thermal decomposition of silver oxide. Transactions of the Faraday Society 1954, 50, 254-260.
(19) Kibria, M. G.; Edwards, J. P.; Gabardo, C. M.; Dinh, C. T.; Seifitokaldani, A.; Sinton, D.; Sargent, E. H. Electrochemical CO2 reduction into chemical feedstocks: from mechanistic electrocatalysis models to system design. Advanced Materials 2019, 31 (31), 1807166.
(20) Fan, L.; Xia, C.; Yang, F.; Wang, J.; Wang, H.; Lu, Y. Strategies in catalysts and electrolyzer design for electrochemical CO<sub>2</sub> reduction toward C<sub>2+</sub> products. Science Advances 2020, 6 (8), eaay3111. DOI: doi:10.1126/sciadv.aay3111.
(21) Jouny, M.; Luc, W.; Jiao, F. General techno-economic analysis of CO2 electrolysis systems. Industrial & Engineering Chemistry Research 2018, 57 (6), 2165-2177.
(22) Bagger, A.; Ju, W.; Varela, A. S.; Strasser, P.; Rossmeisl, J. Electrochemical CO2 reduction: a classification problem. ChemPhysChem 2017, 18 (22), 3266-3273.
(23) Montoya, J. H.; Peterson, A. A.; Nørskov, J. K. Insights into C C Coupling in CO2 Electroreduction on Copper Electrodes. ChemCatChem 2013, 5 (3), 737-742.
(24) Gu, Z.; Shen, H.; Chen, Z.; Yang, Y.; Yang, C.; Ji, Y.; Wang, Y.; Zhu, C.; Liu, J.; Li, J. Efficient electrocatalytic CO2 reduction to C2+ alcohols at defect-site-rich Cu surface. Joule 2021, 5 (2), 429-440.
(25) Lee, Y.-Z.; Zeng, W.-Y.; Cheng, I.-C. Synthesis and characterization of nanoporous copper thin films by magnetron sputtering and subsequent dealloying. Thin Solid Films 2020, 699, 137913.
(26) Hoang, T. T.; Verma, S.; Ma, S.; Fister, T. T.; Timoshenko, J.; Frenkel, A. I.; Kenis, P. J.; Gewirth, A. A. Nanoporous copper–silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol. Journal of the American Chemical Society 2018, 140 (17), 5791-5797.
(27) Wang, X.; Wang, Z.; Zhuang, T.-T.; Dinh, C.-T.; Li, J.; Nam, D.-H.; Li, F.; Huang, C.-W.; Tan, C.-S.; Chen, Z. Efficient upgrading of CO to C3 fuel using asymmetric CC coupling active sites. Nature communications 2019, 10 (1), 1-7.
(28) Wang, J.; Li, Z.; Dong, C.; Feng, Y.; Yang, J.; Liu, H.; Du, X. Silver/copper interface for relay electroreduction of carbon dioxide to ethylene. ACS applied materials & interfaces 2019, 11 (3), 2763-2767.
(29) Zhao, C.; Wang, J. Electrochemical reduction of CO2 to formate in aqueous solution using electro-deposited Sn catalysts. Chemical Engineering Journal 2016, 293, 161-170. DOI: https://doi.org/10.1016/j.cej.2016.02.084.
(30) Wang, S.; Kou, T.; Baker, S. E.; Duoss, E. B.; Li, Y. Electrochemical reduction of CO2 to alcohols: current understanding, progress, and challenges. Advanced Energy and Sustainability Research 2022, 3 (1), 2100131.
(31) Li, M.; Idros, M. N.; Wu, Y.; Burdyny, T.; Garg, S.; Zhao, X. S.; Wang, G.; Rufford, T. E. The role of electrode wettability in electrochemical reduction of carbon dioxide. Journal of Materials Chemistry A 2021, 9 (35), 19369-19409.
(32) Chou, B.-T.; Lin, S.-D.; Huang, B.-H.; Lu, T.-C. Single-crystalline silver film grown on Si (100) substrate by using electron-gun evaporation and thermal treatment. Journal of Vacuum Science & Technology B 2014, 32 (3).
(33) Filipič, G.; Cvelbar, U. Copper oxide nanowires: a review of growth. Nanotechnology 2012, 23 (19), 194001.
(34) Akter, T.; Pan, H.; Barile, C. J. Tandem electrocatalytic CO2 reduction inside a membrane with enhanced selectivity for ethylene. The Journal of Physical Chemistry C 2022, 126 (24), 10045-10052.
(35) Kim, Y. E.; Lee, W.; Ko, Y. N.; Park, J. E.; Tan, D.; Hong, J.; Jeon, Y. E.; Oh, J.; Park, K. T. Role of Binder in Cu2O Gas Diffusion Electrodes for CO2 Reduction to C2+ Products. ACS Sustainable Chemistry & Engineering 2022, 10 (36), 11710-11718. DOI: 10.1021/acssuschemeng.2c03915.
(36) Lv, J. J.; Jouny, M.; Luc, W.; Zhu, W.; Zhu, J. J.; Jiao, F. A highly porous copper electrocatalyst for carbon dioxide reduction. Advanced Materials 2018, 30 (49), 1803111.
(37) Ma, S.; Sadakiyo, M.; Luo, R.; Heima, M.; Yamauchi, M.; Kenis, P. J. A. One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer. Journal of Power Sources 2016, 301, 219-228. DOI: https://doi.org/10.1016/j.jpowsour.2015.09.124.
(38) Kottakkat, T.; Klingan, K.; Jiang, S.; Jovanov, Z. P.; Davies, V. H.; El-Nagar, G. A.; Dau, H.; Roth, C. Electrodeposited AgCu foam catalysts for enhanced reduction of CO2 to CO. ACS applied materials & interfaces 2019, 11 (16), 14734-14744.
(39) Su, Y.-R.; Wu, T.-H.; Cheng, I. C. Synthesis and catalytical properties of hierarchical nanoporous copper from θ and η phases in CuAl alloys. Journal of Physics and Chemistry of Solids 2021, 151, 109915. DOI: https://doi.org/10.1016/j.jpcs.2020.109915.
(40) Zhang, J.; Luo, W.; Züttel, A. Self-supported copper-based gas diffusion electrodes for CO 2 electrochemical reduction. Journal of materials chemistry A 2019, 7 (46), 26285-26292.
(41) Gao, J.; Zhang, H.; Guo, X.; Luo, J.; Zakeeruddin, S. M.; Ren, D.; Grätzel, M. Selective C–C Coupling in Carbon Dioxide Electroreduction via Efficient Spillover of Intermediates As Supported by Operando Raman Spectroscopy. Journal of the American Chemical Society 2019, 141 (47), 18704-18714. DOI: 10.1021/jacs.9b07415.
(42) Huang, J.; Mensi, M.; Oveisi, E.; Mantella, V.; Buonsanti, R. Structural sensitivities in bimetallic catalysts for electrochemical CO2 reduction revealed by Ag–Cu nanodimers. Journal of the American Chemical Society 2019, 141 (6), 2490-2499.
(43) Clark, E. L.; Hahn, C.; Jaramillo, T. F.; Bell, A. T. Electrochemical CO2 reduction over compressively strained CuAg surface alloys with enhanced multi-carbon oxygenate selectivity. Journal of the American Chemical Society 2017, 139 (44), 15848-15857.
(44) Li, Y. C.; Wang, Z.; Yuan, T.; Nam, D.-H.; Luo, M.; Wicks, J.; Chen, B.; Li, J.; Li, F.; De Arquer, F. P. G. Binding site diversity promotes CO2 electroreduction to ethanol. Journal of the American Chemical Society 2019, 141 (21), 8584-8591.
(45) Nishimoto, M.; Abe, S.; Yonezawa, T. Preparation of Ag nanoparticles using hydrogen peroxide as a reducing agent. New journal of chemistry 2018, 42 (17), 14493-14501.
(46) Yin, B.; Ma, H.; Wang, S.; Chen, S. Electrochemical synthesis of silver nanoparticles under protection of poly (N-vinylpyrrolidone). The Journal of Physical Chemistry B 2003, 107 (34), 8898-8904.
(47) Sharpless, C. M.; Page, M. A.; Linden, K. G. Impact of hydrogen peroxide on nitrite formation during UV disinfection. Water Research 2003, 37 (19), 4730-4736.
(48) Miyamoto, T.; Niimi, H.; Kitajima, Y.; Naito, T.; Asakura, K. Ag L3-edge X-ray absorption near-edge structure of 4d10 (Ag+) compounds: Origin of the edge peak and its chemical relevance. The Journal of Physical Chemistry A 2010, 114 (12), 4093-4098.
(49) Ozkendir, O. M.; Cengiz, E.; Yalaz, E.; Söğüt, Ö.; Ayas, D.; Thammajak, B. N. Crystal and electronic structure study of AgAu and AgCu bimetallic alloy thin films by X-ray techniques. Journal of Electron Spectroscopy and Related Phenomena 2016, 209, 53-61.
(50) Xia, Y.; Lu, Z.; Han, J.; Zhang, F.; Wei, D.; Watanabe, K.; Chen, M. Bulk diffusion regulated nanopore formation during vapor phase dealloying of a Zn-Cu alloy. Acta Materialia 2022, 238, 118210.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95469-
dc.description.abstract近年碳中和成為國際主流趨勢,減碳技術與再生能源成為各國關注重點。為替代化石能源,以矽晶太陽能模組為首的再生能源電廠大量建置,然而其發電期間有限,汰舊之太陽能模組數量逐年增加,衍生資源閒置與廢棄物處理議題。太陽能模組製造業每年耗費全球8%的銀礦產,其為模組中最經濟價值的金屬元素。本研究著重於自模組中回收銀效率的提升,並開發銀提升電催化二氧化碳還原反應選擇性之應用。
模組中銀元素可從以硝酸、甲基磺酸與過氧化氫混合液提取。研究發現模組背板之鋁元素並不會影響初期甲基磺酸溶解銀的效率,僅在過氧化氫後,過量的鋁元素才會將銀置換析出。而在硝酸提取的含銀溶液中,以銅、鋅進行金屬置換無法提高還原率與純度。若以沈澱法將銀離子形成氯化銀沈澱、陰離子交換製備氧化銀,最後以工業界常見之高溫熱分解氧化銀,最終可得93%的整體金屬銀還原效率,而自甲基磺酸中以沈澱法純化銀元素,亦可獲得90%還原效率。
銀元素修飾奈米多孔銅(NPC)電極,以提升具經濟價值之二碳產物選擇性。共濺鍍銅鋁以微米顆粒沈積於氣體擴散電極表面,與去合金後平均23.8±4.8 nm奈米多孔支架共同展現為階乘式結構。以電子槍蒸鍍修飾銀的NPC-E gun電極中,銀均勻覆蓋奈米支架,僅留下微米結構。而間歇性電鍍銀的NPC-PED電極中,銀附著於奈米支架使其粗化至33.0±5.7 nm,保留NPC的多層次結構。XPS、XRD分析奈米多孔銅以一價銅為主,為去合金時電解液滲透梯度不同,使NPC頂部銅元素過度氧化導致。為維持奈米多孔銅電極催化之結構穩定性,噴塗高分子Nafion提升電極疏水性。
以gas flow cell提升催化反應物質傳遞,有效將二氧化碳還原反應電流密度提升至-400 mA/cm2,為工業化所需電流密度的兩倍。在高電流下,奈米多孔銅電極之產氫反應抑制在40%下,且將高價值二碳產物之發法拉第轉換效率提升至32%。而經過銀修飾之電極,氫氣更可抑制於30%以內,二碳產物之發法拉第轉換效率達到52%,相對無修飾之奈米多孔銅電極提升44%。塔佛斜率顯示NPC-E gun與NPC-PED相較NPC有更低的反應能量障礙。銀可增加關鍵中間產物*CO的覆蓋率,提升其偶合成二碳產物的機會。而NPC-PED的銅銀化學界面使得表面應力進一步降低中間產物耦合能障,故其二碳產物選擇性可與銀比例高的NPC-E gun相當。
zh_TW
dc.description.abstractCarbon neutrality has become a global target currently, so carbon reduction and renewable energy are prospering. To replace fossil fuels, crystalline silicon (Si) solar modules are widely used, but their limited lifespan leads to an emerging issue for recycling end-of-life solar modules. Silver (Ag) is the most valuable element, and solar module manufacturers consume 8% of world Ag production. In this work, an improvement in Ag recovery and the enhancement of the electrochemical CO2 reduction reaction (EC-CO2RR) were studied.
Ag was extracted from a mixture of methanesulfonic acid (MSA) with hydrogen peroxide (H2O2), and nitric acid (HNO3). In MSA, the solubility of Ag+ would not be affected by the aluminum (Al) on the back sheet with a short immersion time. Al only replaced Ag+ when the hydrogen peroxide was consumed. In HNO3, the metal exchange by zinc and copper (Cu) could not perform well in terms of recovery yield and purity. In contrast, more than 93% of Ag+ in HNO3 could be recovered through AgCl precipitation, anion exchange to silver oxide (Ag2O), and thermal decomposition of Ag2O. The Ag+ in MSA could also achieve a 90% recovery yield with the precipitation method.
Ag was deposited on the nanoporous Cu (NPC) to enhance the faradaic efficiency (FE) toward multi-carbon (C2+) products. Through co-sputtered CuAl on a gas diffusion layer (GDL) and dealloying, the spherical structure of the precursor remained in NPC and contributed to hierarchical morphology. E-gun decorated NPC (NPC-E gun) covered the top of the nanoporous ligament with Ag, so it only remained microporous structure. Pulse-electrodeposition decorated NPC thickened the nanoligament size from 23.8±4.8 nm to 33.0±5.7 nm, preserving the hierarchical structure. The major Cu species in NPC on GDL was Cu2O by XRD and XPS, revealing that the top of NPC was oxidized due to a different dealloying gradient. Thus, a protected polymer, Nafion, was coated to maintain the electrode's stability.
EC-CO2RR was conducted in a gas flow cell to accelerate mass transfer. The current density was over -400 mA/cm2, which was twice the commercial standard. At -400 mA/cm2, the gas flow cell constrained the hydrogen evolution reaction below 40%, and FE towards the C2+ products achieved 32% in NPC. Moreover, the Ag decorated NPC: NPC-E gun and NPC-PED further suppressed HER below 30% so that the FE towards the C2+ product reached 52%, which was a relatively 44% enhancement compared to NPC. Tafel slope also proved a lower energy barrier in NPC-E gun and NPC-PED than in NPC. The enhancement might result from the vital intermediate *CO enrichment on the catalyst by decorated Ag to promote C-C coupling. Furthermore, the surface strain in NPC-PED reduced the activation energy for C-C coupling, so it could have similar performance to the NPC-E gun even though it had less Ag.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-10T16:14:03Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-10T16:14:03Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsIndex i
摘要 iii
Abstract iv
Figure Index vi
Table Index x
1. Introduction 1
1.1 A growing amount of EoL solar module 3
1.2 Importance of recycling solar modules 4
1.3 Motivation 5
2. Literature review 6
2.1 Chemical purification of Ag 6
2.1.1 Ag extraction by inorganic and organic acid 6
2.1.2 Metal exchange 8
2.1.3 Precipitation method 9
2.2 Electrochemical CO2 reduction reaction 10
2.2.1 Cu based catalyst 12
2.2.2 Nanoporous Cu 14
2.2.3 Ag-enhanced selectivity for multi-carbon products 16
2.2.4 Gas flow cell 18
3. Experimental procedure 20
3.1 Ag recycling from solar modules 20
3.1.1 Ag extraction by MSA and HNO3 20
3.1.2 Chemical purification 21
3.2 Ag application in electrocatalysis 22
3.2.1 Preparation for NPC electrodes 22
3.2.2 Electroplating Ag on Cu electrodes 22
3.2.3 Spontaneous Ag deposition 23
3.2.4 Physical deposited Ag on Cu electrode 23
3.2.5 Protective polymer coating 23
3.3 Electrocatalysis of Cu-Ag Electrodes 24
3.3.1 Gas flow cell setup 24
3.3.2 Electrochemical properties and EC-CO2RR of GDEs 24
3.3.3 Product analysis 25
4. Results and discussion 26
4.1 Ag recycling from solar modules 26
4.1.1 Ag extraction by MSA 26
4.1.2 Metal exchange 29
4.1.3 Precipitation Method 32
4.2 Characterization of Cu-Ag electrode 35
4.2.1 The surface morphology of Sputtered NPC on GDL 35
4.2.2 The surface morphology of NPC-E gun 37
4.2.3 The surface morphology of NPC-PED 38
4.2.4 The chemical composition of NPC-based electrodes 39
4.2.5 Dealloying mechanism for NPC preparation on GDL 44
4.2.6 Stability enhancement of electrodes 46
4.3 Ag Application in Electrocatalysis 48
4.3.1 Evaluation of GDEs 48
4.3.2 FE of EC-CO2RR 51
4.3.3 Tafel slope 54
5. Conclusion 56
6. Future Perspective 57
7. Supplementary research 58
8. Reference 74
-
dc.language.isoen-
dc.subject氣體擴擴散電極zh_TW
dc.subject再生能源zh_TW
dc.subject電催化二氧化碳還原反應zh_TW
dc.subject銀回收zh_TW
dc.subject廢棄太陽能模組zh_TW
dc.subject奈米多孔銅zh_TW
dc.subjectGas flow cellen
dc.subjectEnd-of-Life Silicon solar moduleen
dc.subjectSilver purificationen
dc.subjectNanoporous copperen
dc.subjectRenewable energyen
dc.subjectElectrochemical CO2 reduction reactionen
dc.title太陽能模組銀元素回收提取及其電催化二氧化碳還原反應銅銀電極之選擇性提升應用zh_TW
dc.titlePurification of Ag in End-of-Life Silicon Solar Module and Its Application to Enhance Product Selectivity in Electrochemical CO2 Reduction Reactionen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李文錦;王正全;周子勤zh_TW
dc.contributor.oralexamcommitteeWen-Jin Li;Cheng-Chuan Wang;Tsu-Chin Chouen
dc.subject.keyword廢棄太陽能模組,銀回收,奈米多孔銅,再生能源,電催化二氧化碳還原反應,氣體擴擴散電極,zh_TW
dc.subject.keywordEnd-of-Life Silicon solar module,Silver purification,Nanoporous copper,Renewable energy,Electrochemical CO2 reduction reaction,Gas flow cell,en
dc.relation.page78-
dc.identifier.doi10.6342/NTU202404194-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-13-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-lift2025-12-31-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
5.43 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved