請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95468
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張以承 | zh_TW |
dc.contributor.advisor | Yi-Cheng Chang | en |
dc.contributor.author | 李錦鴻 | zh_TW |
dc.contributor.author | Jiin-Horng Lee | en |
dc.date.accessioned | 2024-09-10T16:13:45Z | - |
dc.date.available | 2024-07-08 | - |
dc.date.copyright | 2024-09-10 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-07-09 | - |
dc.identifier.citation | 1. World Health Organization. Obesity and overweight. 2023; https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. Accessed April 8, 2024.
2. World Health Organization. Body Mass Index(BMI). https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/body-mass-index?introPage=intro_3.html. Accessed April 8, 2024. 3. Hill JO, Commerford R. Physical activity, fat balance, and energy balance. Int J Sport Nutr. 1996;6(2):80-92. 4. Pulit SL, Stoneman C, Morris AP, et al. Meta-analysis of genome-wide association studies for body fat distribution in 694 649 individuals of European ancestry. Human Molecular Genetics. 2019;28(1):166-174. 5. Yengo L, Sidorenko J, Kemper KE, et al. Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry. Human Molecular Genetics. 2018;27(20):3641-3649. 6. Nicolaidis S. Environment and obesity. Metabolism. 2019;100:153942. 7. Singla P, Bardoloi A, Parkash AA. Metabolic effects of obesity: A review. World J Diabetes. 2010;1(3):76-88. 8. Parati G, Lombardi C, Narkiewicz K. Sleep apnea: epidemiology, pathophysiology, and relation to cardiovascular risk. Am J Physiol Regul Integr Comp Physiol. 2007;293(4):R1671-1683. 9. Bray GA. Medical Consequences of Obesity. The Journal of Clinical Endocrinology & Metabolism. 2004;89(6):2583-2589. 10. Alexopoulos N, Katritsis D, Raggi P. Visceral adipose tissue as a source of inflammation and promoter of atherosclerosis. Atherosclerosis. 2014;233(1):104-112. 11. Klein S, Gastaldelli A, Yki-Järvinen H, Scherer PE. Why does obesity cause diabetes? Cell Metabolism. 2022;34(1):11-20. 12. Canoy D. Distribution of body fat and risk of coronary heart disease in men and women. Current Opinion in Cardiology. 2008;23(6):591-598. 13. Hall JE, Carmo JMd, Silva AAd, Wang Z, Hall ME. Obesity-Induced Hypertension. Circulation Research. 2015;116(6):991-1006. 14. Lee K, Kruper L, Dieli-Conwright CM, Mortimer JE. The Impact of Obesity on Breast Cancer Diagnosis and Treatment. Curr Oncol Rep. 2019;21(5):41. 15. Mandic M, Safizadeh F, Niedermaier T, Hoffmeister M, Brenner H. Association of Overweight, Obesity, and Recent Weight Loss With Colorectal Cancer Risk. JAMA Network Open. 2023;6(4):e239556-e239556. 16. Harvey SV, Wentzensen N, Bertrand K, et al. Associations of life course obesity with endometrial cancer in the Epidemiology of Endometrial Cancer Consortium (E2C2). International Journal of Epidemiology. 2023;52(4):1086-1099. 17. Cinti S. The adipose organ. Prostaglandins, Leukotrienes and Essential Fatty Acids. 2005;73(1):9-15. 18. CANNON B, NEDERGAARD J. Brown Adipose Tissue: Function and Physiological Significance. Physiological Reviews. 2004;84(1):277-359. 19. Saito M, Okamatsu-Ogura Y, Matsushita M, et al. High Incidence of Metabolically Active Brown Adipose Tissue in Healthy Adult Humans: Effects of Cold Exposure and Adiposity. Diabetes. 2009;58(7):1526-1531. 20. Saito M. Brown Adipose Tissue as a Regulator of Energy Expenditure and Body Fat in Humans. Diabetes Metabolic Journal. 2013;37(1):22-29. 21. Enerbäck S. The Origins of Brown Adipose Tissue. New England Journal of Medicine. 2009;360(19):2021-2023. 22. Ricquier D, Bouillaud F. The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP. Biochem J. 2000;345 Pt 2(Pt 2):161-179. 23. Himms-Hagen J. Nonshivering thermogenesis. Brain Research Bulletin. 1984;12(2):151-160. 24. Yoneshiro T, Aita S, Matsushita M, et al. Age-Related Decrease in Cold-Activated Brown Adipose Tissue and Accumulation of Body Fat in Healthy Humans. Obesity. 2011;19(9):1755-1760. 25. Seki T, Yang Y, Sun X, et al. Brown-fat-mediated tumour suppression by cold-altered global metabolism. Nature. 2022;608(7922):421-428. 26. Cypess AM, Lehman S, Williams G, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360(15):1509-1517. 27. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med. 2009;360(15):1500-1508. 28. Orava J, Nuutila P, Lidell Martin E, et al. Different Metabolic Responses of Human Brown Adipose Tissue to Activation by Cold and Insulin. Cell Metabolism. 2011;14(2):272-279. 29. Lichtenbelt WDvM, Vanhommerig JW, Smulders NM, et al. Cold-Activated Brown Adipose Tissue in Healthy Men. New England Journal of Medicine. 2009;360(15):1500-1508. 30. Boström P, Wu J, Jedrychowski MP, et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481(7382):463-468. 31. Cypess AM, Weiner LS, Roberts-Toler C, et al. Activation of human brown adipose tissue by a β3-adrenergic receptor agonist. Cell Metab. 2015;21(1):33-38. 32. Scheele C, Nielsen S. Metabolic regulation and the anti-obesity perspectives of human brown fat. Redox Biology. 2017;12:770-775. 33. Hachemi I, M UD. Brown Adipose Tissue: Activation and Metabolism in Humans. Endocrinol Metab (Seoul). 2023;38(2):214-222. 34. Harb E, Kheder O, Poopalasingam G, Rashid R, Srinivasan A, Izzi-Engbeaya C. Brown adipose tissue and regulation of human body weight. Diabetes Metab Res Rev. 2023;39(1):e3594. 35. Mata J, Curado S, Ephrussi A, Rørth P. Tribbles Coordinates Mitosis and Morphogenesis in Drosophila by Regulating String/CDC25 Proteolysis. Cell. 2000;101(5):511-522. 36. Shrestha S, Byrne DP, Harris JA, Kannan N, Eyers PA. Cataloguing the dead: breathing new life into pseudokinase research. Febs j. 2020;287(19):4150-4169. 37. Foulkes Daniel M, Byrne Dominic P, Bailey Fiona P, Eyers Patrick A. Tribbles pseudokinases: novel targets for chemical biology and drug discovery? Biochemical Society Transactions. 2015;43(5):1095-1103. 38. Jamieson SA, Pudjihartono M, Horne CR, et al. Nanobodies identify an activated state of the TRIB2 pseudokinase. Structure. 2022;30(11):1518-1529 e1515. 39. Murphy JM, Zhang Q, Young SN, et al. A robust methodology to subclassify pseudokinases based on their nucleotide-binding properties. Biochem J. 2014;457(2):323-334. 40. Bailey FP, Byrne DP, Oruganty K, et al. The Tribbles 2 (TRB2) pseudokinase binds to ATP and autophosphorylates in a metal-independent manner. Biochem J. 2015;467(1):47-62. 41. Murphy JM, Nakatani Y, Jamieson SA, Dai W, Lucet IS, Mace PD. Molecular Mechanism of CCAAT-Enhancer Binding Protein Recruitment by the TRIB1 Pseudokinase. Structure. 2015;23(11):2111-2121. 42. Dobens Jr. LL, Bouyain S. Developmental roles of tribbles protein family members. Developmental Dynamics. 2012;241(8):1239-1248. 43. Wang J, Zhang Y, Weng W, et al. Impaired phosphorylation and ubiquitination by p70 S6 kinase (p70S6K) and Smad ubiquitination regulatory factor 1 (Smurf1) promote tribbles homolog 2 (TRIB2) stability and carcinogenic property in liver cancer. J Biol Chem. 2013;288(47):33667-33681. 44. Qiao Y, Zhang Y, Wang J. Ubiquitin E3 ligase SCFβ-TRCP regulates TRIB2 stability in liver cancer cells. Biochemical and Biophysical Research Communications. 2013;441(3):555-559. 45. Rechsteiner M, Rogers SW. PEST sequences and regulation by proteolysis. Trends in Biochemical Sciences. 1996;21(7):267-271. 46. Rogers S, Wells R, Rechsteiner M. Amino Acid Sequences Common to Rapidly Degraded Proteins: The PEST Hypothesis. Science. 1986;234(4774):364-368. 47. Eyers PA, Keeshan K, Kannan N. Tribbles in the 21st Century: The Evolving Roles of Tribbles Pseudokinases in Biology and Disease. Trends Cell Biol. 2017;27(4):284-298. 48. Foulkes DM, Byrne DP, Yeung W, et al. Covalent inhibitors of EGFR family protein kinases induce degradation of human Tribbles 2 (TRIB2) pseudokinase in cancer cells. Sci Signal. 2018;11(549). 49. Harris JA, Fairweather E, Byrne DP, Eyers PA. Chapter Four - Analysis of human Tribbles 2 (TRIB2) pseudokinase. In: Jura N, Murphy JM. Methods in Enzymology. Vol 667: Academic Press; 2022. 50. Knighton DR, Zheng J, Ten Eyck LF, et al. Crystal Structure of the Catalytic Subunit of Cyclic Adenosine Monophosphate-Dependent Protein Kinase. Science. 1991;253(5018):407-414. 51. Hegedus Z, Czibula A, Kiss-Toth E. Tribbles: A family of kinase-like proteins with potent signalling regulatory function. Cellular Signalling. 2007;19(2):238-250. 52. Goldberg J, Nairn AC, Kuriyan J. Structural Basis for the Autoinhibition of Calcium/Calmodulin-Dependent Protein Kinase I. Cell. 1996;84(6):875-887. 53. Guan H, Shuaib A, Leon DDD, et al. Competition between members of the tribbles pseudokinase protein family shapes their interactions with mitogen activated protein kinase pathways. Scientific Reports. 2016;6(1):32667. 54. Jin G, Yamazaki Y, Takuwa M, et al. Trib1 and Evi1 cooperate with Hoxa and Meis1 in myeloid leukemogenesis. Blood. 2007;109(9):3998-4005. 55. Yokoyama T, Kanno Y, Yamazaki Y, Takahara T, Miyata S, Nakamura T. Trib1 links the MEK1/ERK pathway in myeloid leukemogenesis. Blood. 2010;116(15):2768-2775. 56. Qi L, Heredia JE, Altarejos JY, et al. TRB3 links the E3 ubiquitin ligase COP1 to lipid metabolism. Science. 2006;312(5781):1763-1766. 57. Xu S, Tong M, Huang J, et al. TRIB2 inhibits Wnt/β-Catenin/TCF4 signaling through its associated ubiquitin E3 ligases, β-TrCP, COP1 and Smurf1, in liver cancer cells. FEBS Lett. 2014;588(23):4334-4341. 58. Eyers Patrick A. TRIBBLES: A Twist in the Pseudokinase Tail. Structure. 2015;23(11):1974-1976. 59. Keeshan K, He Y, Wouters BJ, et al. Tribbles homolog 2 inactivates C/EBPα and causes acute myelogenous leukemia. Cancer Cell. 2006;10(5):401-411. 60. Dedhia PH, Keeshan K, Uljon S, et al. Differential ability of Tribbles family members to promote degradation of C/EBPα and induce acute myelogenous leukemia. Blood. 2010;116(8):1321-1328. 61. Yoshino S, Yokoyama T, Sunami Y, et al. Trib1 promotes acute myeloid leukemia progression by modulating the transcriptional programs of Hoxa9. Blood. 2021;137(1):75-88. 62. Liu Z-Z, Han Z-D, Liang Y-K, et al. TRIB1 induces macrophages to M2 phenotype by inhibiting IKB-zeta in prostate cancer. Cellular Signalling. 2019;59:152-162. 63. Niespolo C, Johnston JM, Deshmukh SR, et al. Tribbles-1 Expression and Its Function to Control Inflammatory Cytokines, Including Interleukin-8 Levels are Regulated by miRNAs in Macrophages and Prostate Cancer Cells. Front Immunol. 2020;11:574046. 64. Chen Z, Chen J, Wa Q, et al. Knockdown of circ_0084043 suppresses the development of human melanoma cells through miR-429/tribbles homolog 2 axis and Wnt/β-catenin pathway. Life Sci. 2020;243:117323. 65. Luan W, Shi Y, Zhou Z, Xia Y, Wang J. circRNA_0084043 promote malignant melanoma progression via miR-153-3p/Snail axis. Biochem Biophys Res Commun. 2018;502(1):22-29. 66. Zanella F, Renner O, García B, et al. Human TRIB2 is a repressor of FOXO that contributes to the malignant phenotype of melanoma cells. Oncogene. 2010;29(20):2973-2982. 67. Xiang D, Zhu X, Zhang Y, et al. Tribbles homolog 2 promotes hepatic fibrosis and hepatocarcinogenesis through phosphatase 1A-Mediated stabilization of yes-associated protein. Liver Int. 2021;41(5):1131-1147. 68. Guo S, Chen Y, Yang Y, et al. TRIB2 modulates proteasome function to reduce ubiquitin stability and protect liver cancer cells against oxidative stress. Cell Death Dis. 2021;12(1):42. 69. Grandinetti KB, Stevens TA, Ha S, et al. Overexpression of TRIB2 in human lung cancers contributes to tumorigenesis through downregulation of C/EBPα. Oncogene. 2011;30(30):3328-3335. 70. Wei G, Lu T, Shen J, Wang J. LncRNA ZEB1-AS1 promotes pancreatic cancer progression by regulating miR-505-3p/TRIB2 axis. Biochem Biophys Res Commun. 2020;528(4):644-649. 71. Gendelman R, Xing H, Mirzoeva OK, et al. Bayesian Network Inference Modeling Identifies TRIB1 as a Novel Regulator of Cell-Cycle Progression and Survival in Cancer Cells. Cancer Res. 2017;77(7):1575-1585. 72. Kim T, Johnston J, Castillo-Lluva S, et al. TRIB1 regulates tumor growth via controlling tumor-associated macrophage phenotypes and is associated with breast cancer survival and treatment response. Theranostics. 2022;12(8):3584-3600. 73. Wennemers M, Bussink J, Grebenchtchikov N, Sweep FC, Span PN. TRIB3 protein denotes a good prognosis in breast cancer patients and is associated with hypoxia sensitivity. Radiother Oncol. 2011;101(1):198-202. 74. Orea-Soufi A, Castillo-Lluva S, Salvador-Tormo N, et al. The Pseudokinase TRIB3 Negatively Regulates the HER2 Receptor Pathway and Is a Biomarker of Good Prognosis in Luminal Breast Cancer. Cancers (Basel). 2021;13(21). 75. Yu J-m, Sun W, Wang Z-h, et al. TRIB3 supports breast cancer stemness by suppressing FOXO1 degradation and enhancing SOX2 transcription. Nature Communications. 2019;10(1):5720. 76. Yu J-j, Zhou D-d, Yang X-x, et al. TRIB3-EGFR interaction promotes lung cancer progression and defines a therapeutic target. Nature Communications. 2020;11(1):3660. 77. Kathiresan S, Melander O, Guiducci C, et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nature Genetics. 2008;40(2):189-197. 78. Burkhardt R, Toh SA, Lagor WR, et al. Trib1 is a lipid- and myocardial infarction-associated gene that regulates hepatic lipogenesis and VLDL production in mice. J Clin Invest. 2010;120(12):4410-4414. 79. Aulchenko YS, Ripatti S, Lindqvist I, et al. Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts. Nature Genetics. 2009;41(1):47-55. 80. Bauer RC, Sasaki M, Cohen DM, et al. Tribbles-1 regulates hepatic lipogenesis through posttranscriptional regulation of C/EBPα. J Clin Invest. 2015;125(10):3809-3818. 81. Zhang X, Zhang B, Zhang C, Sun G, Sun X. Trib1 deficiency causes brown adipose respiratory chain depletion and mitochondrial disorder. Cell Death Dis. 2021;12(12):1098. 82. Lee SK, Park CY, Kim J, et al. TRIB3 Is Highly Expressed in the Adipose Tissue of Obese Patients and Is Associated With Insulin Resistance. J Clin Endocrinol Metab. 2022;107(3):e1057-e1073. 83. Wang ZH, Shang YY, Zhang S, et al. Silence of TRIB3 suppresses atherosclerosis and stabilizes plaques in diabetic ApoE-/-/LDL receptor-/- mice. Diabetes. 2012;61(2):463-473. 84. Chu AY, Deng X, Fisher VA, et al. Multiethnic genome-wide meta-analysis of ectopic fat depots identifies loci associated with adipocyte development and differentiation. Nat Genet. 2017;49(1):125-130. 85. Nakayama K, Ogawa A, Miyashita H, et al. Positive natural selection of TRIB2, a novel gene that influences visceral fat accumulation, in East Asia. Hum Genet. 2013;132(2):201-217. 86. Nakayama K, Iwamoto S. An adaptive variant of TRIB2, rs1057001, is associated with higher expression levels of thermogenic genes in human subcutaneous and visceral adipose tissues. J Physiol Anthropol. 2017;36(1):16. 87. Naiki T, Saijou E, Miyaoka Y, Sekine K, Miyajima A. TRB2, a mouse Tribbles ortholog, suppresses adipocyte differentiation by inhibiting AKT and C/EBPbeta. J Biol Chem. 2007;282(33):24075-24082. 88. Li Yun Chueh. Deficiency of TRIB2 Reduces Fat Accumulation and Increases Energy Expenditure Through Interaction with UCP1 [Master]: National Taiwan University; 2022. 89. Santos TM, Han S, Bowser M, et al. Alternative splicing in protein associated with Myc (Pam) influences its binding to c-Myc. J Neurosci Res. 2006;83(2):222-232. 90. Moazed B, Desautels M. Differentiation-dependent expression of cathepsin D and importance of lysosomal proteolysis in the degradation of UCP1 in brown adipocytes. Can J Physiol Pharmacol. 2002;80(6):515-525. 91. Azzu V, Jastroch M, Divakaruni AS, Brand MD. The regulation and turnover of mitochondrial uncoupling proteins. Biochim Biophys Acta. 2010;1797(6-7):785-791. 92. Hernández-Quiles M, Martinez Campesino L, Morris I, et al. The pseudokinase TRIB3 controls adipocyte lipid homeostasis and proliferation in vitro and in vivo. Mol Metab. 2023;78:101829. 93. Bai XS, Lv LW, Zhou YS. [Tribbles pseudokinase 3 inhibits the adipogenic differentiation of human adipose-derived mesenchymal stem cells]. Beijing Da Xue Xue Bao Yi Xue Ban. 2020;52(1):1-9. 94. Sun X, Song M, Wang H, et al. TRB3 gene silencing activates AMPK in adipose tissue with beneficial metabolic effects in obese and diabetic rats. Biochem Biophys Res Commun. 2017;488(1):22-28. 95. Weismann D, Erion DM, Ignatova-Todorava I, et al. Knockdown of the gene encoding Drosophila tribbles homologue 3 (Trib3) improves insulin sensitivity through peroxisome proliferator-activated receptor-γ (PPAR-γ) activation in a rat model of insulin resistance. Diabetologia. 2011;54(4):935-944. 96. Prudente S, Sesti G, Pandolfi A, Andreozzi F, Consoli A, Trischitta V. The mammalian tribbles homolog TRIB3, glucose homeostasis, and cardiovascular diseases. Endocr Rev. 2012;33(4):526-546. 97. Okamoto H, Latres E, Liu R, et al. Genetic deletion of Trb3, the mammalian Drosophila tribbles homolog, displays normal hepatic insulin signaling and glucose homeostasis. Diabetes. 2007;56(5):1350-1356. 98. Fox CS, White CC, Lohman K, et al. Genome-wide association of pericardial fat identifies a unique locus for ectopic fat. PLoS Genet. 2012;8(5):e1002705. 99. Chu AY, Deng X, Fisher VA, et al. Multiethnic genome-wide meta-analysis of ectopic fat depots identifies loci associated with adipocyte development and differentiation. Nat Genet. 2017;49(1):125-130. 100. Rämö JT, Kany S, Hou CR, et al. Cardiovascular Significance and Genetics of Epicardial and Pericardial Adiposity. JAMA Cardiol. 2024;9(5):418-427. 101. Wang D, Kang X, Zhang L, et al. TRIB2-mediated modulation of AMPK promotes hepatic insulin resistance. Diabetes. 2024. 102. Li F, Zhang F, Yi X, et al. Proline hydroxylase 2 (PHD2) promotes brown adipose thermogenesis by enhancing the hydroxylation of UCP1. Mol Metab. 2023;73:101747. 103. Wang G, Meyer JG, Cai W, et al. Regulation of UCP1 and Mitochondrial Metabolism in Brown Adipose Tissue by Reversible Succinylation. Mol Cell. 2019;74(4):844-857.e847. 104. Chouchani ET, Kazak L, Jedrychowski MP, et al. Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1. Nature. 2016;532(7597):112-116. 105. Clarke KJ, Adams AE, Manzke LH, Pearson TW, Borchers CH, Porter RK. A role for ubiquitinylation and the cytosolic proteasome in turnover of mitochondrial uncoupling protein 1 (UCP1). Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2012;1817(10):1759-1767. 106. Johnson JM, Peterlin AD, Balderas E, et al. Mitochondrial phosphatidylethanolamine modulates UCP1 to promote brown adipose thermogenesis. Science Advances. 2023;9(8):eade7864. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95468 | - |
dc.description.abstract | 過多的脂肪堆積於體內導致肥胖,增加多種慢性疾病的風險,包括糖尿病、心血管疾病和肝脂肪變性。 Tribble 同系物 (Tribs) 是一種參與呼吸鏈耗竭、粒線體疾病和脂肪組織脂質代謝的假激酶。 全基因組關聯研究 (GWAS) 已鑑定出Tribble 同源物 2 (Trib2) 遺傳變異(variants)與內臟脂肪積累、脂肪細胞發育和分化有關。 過去研究已發現TRIB2參與了3T3-L1白色前脂肪細胞的脂肪形成,但TRIB2 在棕色脂肪組織 (BAT) 中的作用目前仍不清楚。
我們先前的研究發現,剔除Trib2基因可以防止小鼠體重和脂肪的增加。 在高脂肪高蔗糖飲食下,與野生型小鼠相比,Trib2 剔除(Trib2-KO)的小鼠表現出較好的葡萄糖耐受性和胰島素敏感性。相較與於Trib2 野生型小鼠 (Trib2-Wt),Trib2-KO 小鼠表現出更高的能量消耗和生熱作用且 TRIB2蛋白主要表現多集中於在產熱的調節器--棕色脂肪。 此外,我們也觀察到 Trib2-KO 小鼠的棕色脂肪組織中 UCP1 的表現高於 Trib2-Wt 小鼠。 我們使用下拉測定(Pulldown assay)和質譜分析 UCP1為TRIB2 相互作用的蛋白質之一。 在本研究中,我們觀察到 WT1 棕色前脂肪細胞在脂肪生成過程中 TRIB2 和 UCP1 的蛋白呈相反的表現量。 我們證明了 TRIB2 和 UCP1 之間有直接結合。 UCP1 與 TRIB2 的結合促進 UCP1 的泛素化。 在WT1 細胞中減少TRIB2 的表現會下調 UCP1 的泛素化。 我們發現 MYCBP2 E3 連接酶會直接與 TRIB2 和 UCP1 結合。 當存在TRIB2時,促進 MYCBP2 E3 連接酶降解 UCP1 蛋白。 我們認為 TRIB2 招募 MYCBP2 E3 連接酶,導致 UCP1被降解。缺少TRIB2 的會減弱 UCP1 的降解,增強生熱作用並減少肥胖。 | zh_TW |
dc.description.abstract | Obesity, characterized by excessive fat accumulation, increases the risk of several chronic diseases, including diabetes, cardiovascular disease, and hepatic steatosis. Tribble homologs (Tribs) are pseudokinases involved in respiratory chain depletion, mitochondrial disorders, and lipid metabolism in adipose tissues. Genome-wide association studies (GWAS) have identified Tribble homolog 2 (Trib2) genetic variants associated with visceral fat accumulation, adipocyte development, and differentiation. It has been reported that TRIB2 is involved in the adipogenesis of 3T3-L1 preadipocytes. However, the role of TRIB2 in brown adipose tissue (BAT) remains unclear.
Our previous study found that the loss of Trib2 prevents the increase of body weight and fat in mice. Trib2 knockout (Trib2-KO) mice exhibited improved glucose tolerance and insulin sensitivity compared to the wild-type littermates on a high-fat, high-sucrose diet. Additionally, Trib2-KO mice showed increased energy expenditure and thermogenesis compared to the Trib2 wild-type mice (Trib2-Wt). TRIB2 is primarily expressed in brown adipose tissue, a major modulator of thermogenesis. Moreover, we observed higher expression of UCP1 in the brown adipose tissue of Trib2-KO mice than in Trib2-Wt mice. Using pull-down assays and mass spectrometry, we identified UCP1 as one of the proteins interacting with TRIB2. In this study, we observed reversed protein expression levels of TRIB2 and UCP1 during WT1 brown preadipocyte adipogenesis. We demonstrated a direct interaction between TRIB2 and UCP1. UCP1 interaction with TRIB2 may facilitate the ubiquitination of UCP1. Knockdown of TRIB2 in WT1 cells downregulates the ubiquitination of UCP1. We observed that the MYCBP2 E3 ligase directly interacts with both TRIB2 and UCP1. The presence of TRIB2 facilitated the MYCBP2 E3 ligase-mediated degradation of UCP1 protein. We propose that TRIB2 recruits MYCBP2 E3 ligase, leading to the downregulation of UCP1 expression. The deficiency of TRIB2 attenuates the ubiquitination of UCP1, leading to enhanced thermogenesis and reduced adiposity. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-10T16:13:45Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-09-10T16:13:45Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 國立臺灣大學碩士學位論文口試委員會審定書 i
謝辭 ii 中文摘要 iii Abstract iv Chapter 1 Introduction 1 1.1 Obesity 1 1.2 Brown Adipose Tissue and Uncoupling Protein 1 1 1.3 Tribbles Homologous 2 1.4 Rationale 5 Chapter 2 Materials and Methods 8 2.1 Animal 8 2.2 Vector Cloning 8 2.3 Lentivirus and Infection 9 2.4 Cell Culture 9 2.5 Duolink In Situ Proximity Ligation Assay 10 2.6 Protein Purification 11 2.7 Pull-down Assay 11 2.8 Lipid Droplet Staining 12 2.9 Immunoblotting 12 2.10 Mass Spectrometry 13 2.11 Organization, Quantification and Statistical Analysis 14 Chapter 3 Result 15 3.1 A reversed expression level between TRIB2 and UCP1 during brown preadipocyte adipogenesis. 15 3.2 TRIB2 directly interacts with UCP1. 15 3.3 TRIB2 facilitates the ubiquitination of UCP1. 16 3.4 MYCBP2 E3 ligase directly interacts with TRIB2 and UCP1. 17 3.5 TRIB2 facilitated MYCBP2 E3 ligase to degrade the UCP1 protein. 18 3.6 Conclusion 18 Chapter 4 Discussion 20 Chapter 5 Figures 24 Figure 1. The reversed expression level of TRIB2 and UCP1 during brown adipocyte differentiation. 24 Figure 2. TRIB2 directly interact with UCP1. 25 Figure 3. TRIB2 facilitates the ubiquitination of UCP1. 26 Figure 4. MYCBP2 directly interacts with TRIB2 and UCP1. 27 Figure 5. TRIB2 facilitated MYCBP2 E3 ligase degrade UCP1 protein. 28 Figure 6. Conclusion. 29 Chapter 6 Tables 30 Table 1. Proteins identified by mass spectrometry 30 Table 2. Antibodies list. 36 Chapter 7 Supplementary Data 38 Chapter 8 Appendix 40 Reference 44 | - |
dc.language.iso | en | - |
dc.title | TRIB2 缺乏減少MYCBP2 E3 連接酶的招募與UCP1降解進而增強了產熱作用並防止肥胖 | zh_TW |
dc.title | TRIB2 Deficiency Enhances Thermogenesis and Prevent Obesity by Impairing the Recruitment of MYCBP2 E3 Ligase to degrade UCP1 | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 胡春美 | zh_TW |
dc.contributor.coadvisor | Chun-Mei Hu | en |
dc.contributor.oralexamcommittee | 潘思樺 | zh_TW |
dc.contributor.oralexamcommittee | Szu-Hua Pan | en |
dc.subject.keyword | 肥胖,TRIB2,UCP1,MYCBP2,E3 連接酶,泛素,泛素化,脂肪組織, | zh_TW |
dc.subject.keyword | Obesity,TRIB2,UCP1,MYCBP2,E3 ligase,Ubiquitin,Ubiquitination,Adipose Tissue, | en |
dc.relation.page | 50 | - |
dc.identifier.doi | 10.6342/NTU202401583 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-07-09 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 基因體暨蛋白體醫學研究所 | - |
顯示於系所單位: | 基因體暨蛋白體醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 3.41 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。