Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95452
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張子璿zh_TW
dc.contributor.advisorTzu-Hsuan Changen
dc.contributor.author郭鎮宇zh_TW
dc.contributor.authorZhen-Yu Guoen
dc.date.accessioned2024-09-09T16:13:48Z-
dc.date.available2024-09-10-
dc.date.copyright2024-09-09-
dc.date.issued2024-
dc.date.submitted2024-08-14-
dc.identifier.citation[1] I. M. Ross, "The invention of the transistor," Proc. IEEE, vol. 86, pp. 7-28, 1998.
[2] H. Iwai and D. Misra, "The Transistor was Invented 75 Years Ago: A Big Milestone in Human History," The Electrochemical Society Interface, vol. 31, no. 4, p. 65, 2022/12/01 2022, doi: 10.1149/2.F13224IF.
[3] F. Schwierz and J. J. Liou, "Status and Future Prospects of CMOS Scaling and Moore's Law - A Personal Perspective," in 2020 IEEE Latin America Electron Devices Conference (LAEDC), 25-28 Feb. 2020 2020, pp. 1-4, doi: 10.1109/LAEDC49063.2020.9073539.
[4] J. Shalf, "The future of computing beyond Moore’s Law," Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 378, no. 2166, p. 20190061, 2020, doi: doi:10.1098/rsta.2019.0061.
[5] T. Nigam, K.-Y. Yiang, and A. Marathe, "Moore’s Law: Technology Scaling and Reliability Challenges," 2017, pp. 1-28.
[6] L. Xiu, "Time Moore: Exploiting Moore's Law From The Perspective of Time," IEEE Solid-State Circuits Magazine, vol. 11, no. 1, pp. 39-55, 2019, doi: 10.1109/MSSC.2018.2882285.
[7] L. Wynand, S. Saurabh, and A. Jassem, "The Driving Forces Behind Moore’s Law and Its Impact on Technology," 2018, pp. 1-32.
[8] B. Ullmann and T. Grasser, "Transformation: nanotechnology—challenges in transistor design and future technologies," e & i Elektrotechnik und Informationstechnik, vol. 134, no. 7, pp. 349-354, 2017/11/01 2017, doi: 10.1007/s00502-017-0534-y.
[9] R. W. Keyes, "Physical limits of silicon transistors and circuits," Reports on Progress in Physics, vol. 68, no. 12, p. 2701, 2005/09/19 2005, doi: 10.1088/0034-4885/68/12/R01.
[10] S. M. Sze and K. K. Ng, "Physics of Semiconductor Devices: Sze/Physics," 2006.
[11] P. A. Gargini, "How to successfully overcome inflection points, or long live Moore's law," Computing in Science & Engineering, vol. 19, no. 2, pp. 51-62, 2017, doi: 10.1109/MCSE.2017.32.
[12] L. Johnsson and G. Netzer, "The impact of Moore's Law and loss of Dennard scaling: Are DSP SoCs an energy efficient alternative to x86 SoCs?," Journal of Physics: Conference Series, vol. 762, no. 1, p. 012022, 2016/10/01 2016, doi: 10.1088/1742-6596/762/1/012022.
[13] T. Ghani et al., "Scaling challenges and device design requirements for high performance sub-50 nm gate length planar CMOS transistors," in 2000 Symposium on VLSI Technology. Digest of Technical Papers (Cat. No.00CH37104), 13-15 June 2000 2000, pp. 174-175, doi: 10.1109/VLSIT.2000.852814.
[14] S. E. Thompson, "Strained Si and the future direction of CMOS," in Fifth International Workshop on System-on-Chip for Real-Time Applications (IWSOC'05), 20-24 July 2005 2005, pp. 14-16, doi: 10.1109/IWSOC.2005.99.
[15] S. E. Thompson, S. Guangyu, C. Youn Sung, and T. Nishida, "Uniaxial-process-induced strained-Si: extending the CMOS roadmap," IEEE Transactions on Electron Devices, vol. 53, no. 5, pp. 1010-1020, 2006, doi: 10.1109/TED.2006.872088.
[16] K. Mistry et al., "A 45nm Logic Technology with High-k+Metal Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning, and 100% Pb-free Packaging," in 2007 IEEE International Electron Devices Meeting, 10-12 Dec. 2007 2007, pp. 247-250, doi: 10.1109/IEDM.2007.4418914.
[17] C. Zhao, X. Wang, and W. Wang, "4 - High-κ dielectric and metal gate," in CMOS Past, Present and Future, H. H. Radamson, J. Luo, E. Simoen, and C. Zhao Eds.: Woodhead Publishing, 2018, pp. 69-103.
[18] D. James, "High-k/metal gates in the 2010s," in 25th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC 2014), 19-21 May 2014 2014, pp. 431-438, doi: 10.1109/ASMC.2014.6846970.
[19] R. H. Dennard, F. H. Gaensslen, H. N. Yu, V. L. Rideout, E. Bassous, and A. R. LeBlanc, "Design of ion-implanted MOSFET's with very small physical dimensions," IEEE Journal of Solid-State Circuits, vol. 9, no. 5, pp. 256-268, 1974, doi: 10.1109/JSSC.1974.1050511.
[20] D. Hisamoto et al., "FinFET-a self-aligned double-gate MOSFET scalable to 20 nm," IEEE Transactions on Electron Devices, vol. 47, no. 12, pp. 2320-2325, 2000, doi: 10.1109/16.887014.
[21] C. Auth et al., "A 22nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors," in 2012 Symposium on VLSI Technology (VLSIT), 12-14 June 2012 2012, pp. 131-132, doi: 10.1109/VLSIT.2012.6242496.
[22] S. Natarajan et al., "A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 µm2 SRAM cell size," in 2014 IEEE International Electron Devices Meeting, 15-17 Dec. 2014 2014, pp. 3.7.1-3.7.3, doi: 10.1109/IEDM.2014.7046976.
[23] C. Auth et al., "A 10nm high performance and low-power CMOS technology featuring 3rd generation FinFET transistors, Self-Aligned Quad Patterning, contact over active gate and cobalt local interconnects," in 2017 IEEE International Electron Devices Meeting (IEDM), 2-6 Dec. 2017 2017, pp. 29.1.1-29.1.4, doi: 10.1109/IEDM.2017.8268472.
[24] H. Mertens et al., "Gate-all-around MOSFETs based on vertically stacked horizontal Si nanowires in a replacement metal gate process on bulk Si substrates," 2016 IEEE Symposium on VLSI Technology, pp. 1-2, 2016.
[25] N. Loubet et al., "Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET," in 2017 Symposium on VLSI Technology, 5-8 June 2017 2017, pp. T230-T231, doi: 10.23919/VLSIT.2017.7998183.
[26] D. Schroder, "Semiconductor Material And Device Characterization," Semiconductor Material and Device Characterization, 3rd Edition, by Dieter K. Schroder, pp. 840. ISBN 0-471-73906-5. Wiley-VCH , December 2005., vol. 2, 12/01 2005, doi: 10.1002/0471749095.ch2.
[27] R. Sumathi, "Review—Status and Challenges in Hetero-epitaxial Growth Approach for Large Diameter AlN Single Crystalline Substrates," ECS Journal of Solid State Science and Technology, vol. 10, 02/26 2021, doi: 10.1149/2162-8777/abe6f5.
[28] T. Kimoto and J. Cooper, "Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications," Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications, pp. 1-538, 09/01 2014, doi: 10.1002/9781118313534.
[29] U. K. Mishra, P. Parikh, and W. Yi-Feng, "AlGaN/GaN HEMTs-an overview of device operation and applications," Proceedings of the IEEE, vol. 90, no. 6, pp. 1022-1031, 2002, doi: 10.1109/JPROC.2002.1021567.
[30] M. Higashiwaki and G. H. Jessen, "Guest Editorial: The dawn of gallium oxide microelectronics," Applied Physics Letters, vol. 112, no. 6, 2018, doi: 10.1063/1.5017845.
[31] S. Pearton et al., "A review of Ga 2 O 3 materials, processing, and devices," Applied Physics Reviews, vol. 5, p. 011301, 03/01 2018, doi: 10.1063/1.5006941.
[32] C. Venkata Prasad and Y. S. Rim, "Review on interface engineering of low leakage current and on-resistance for high-efficiency Ga2O3-based power devices," Materials Today Physics, vol. 27, p. 100777, 2022/10/01/ 2022, doi: https://doi.org/10.1016/j.mtphys.2022.100777.
[33] S. J. Pearton et al., "A review of Ga2O3 materials, processing, and devices," Applied Physics Reviews, vol. 5, no. 1, 2018, doi: 10.1063/1.5006941.
[34] F. Shi and H. Qiao, "Preparations, properties and applications of gallium oxide nanomaterials – A review," Nano Select, vol. 3, no. 2, pp. 348-373, 2022, doi: https://doi.org/10.1002/nano.202100149.
[35] Y. Qin, Z. Wang, K. Sasaki, J. Ye, and Y. Zhang, "Recent progress of Ga2O3 power technology: large-area devices, packaging and applications," Japanese Journal of Applied Physics, vol. 62, no. SF, p. SF0801, 2023/02/09 2023, doi: 10.35848/1347-4065/acb3d3.
[36] M. Higashiwaki, "β-Ga2O3 material properties, growth technologies, and devices: a review," AAPPS Bulletin, vol. 32, no. 1, p. 3, 2022/01/17 2022, doi: 10.1007/s43673-021-00033-0.
[37] J. Xu, W. Zheng, and F. Huang, "Gallium oxide solar-blind ultraviolet photodetectors: a review," Journal of Materials Chemistry C, 10.1039/C9TC02055A vol. 7, no. 29, pp. 8753-8770, 2019, doi: 10.1039/C9TC02055A.
[38] K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, "MBE grown Ga2O3 and its power device applications," Journal of Crystal Growth, vol. 378, pp. 591-595, 2013/09/01/ 2013, doi: https://doi.org/10.1016/j.jcrysgro.2013.02.015.
[39] A. Hernandez et al., "MOCVD growth and characterization of conductive homoepitaxial Si-doped Ga2O3," Results in Physics, vol. 25, p. 104167, 2021/06/01/ 2021, doi: https://doi.org/10.1016/j.rinp.2021.104167.
[40] C. Petersen, S. Vogt, M. Kneiß, H. von Wenckstern, and M. Grundmann, "PLD of α-Ga2O3 on m-plane Al2O3: Growth regime, growth process, and structural properties," APL Materials, vol. 11, no. 6, 2023, doi: 10.1063/5.0149797.
[41] Y. Yang et al., "Low Deposition Temperature Amorphous ALD-Ga2O3 Thin Films and Decoration with MoS2 Multilayers toward Flexible Solar-Blind Photodetectors," ACS Applied Materials & Interfaces, vol. 13, no. 35, pp. 41802-41809, 2021/09/08 2021, doi: 10.1021/acsami.1c11692.
[42] F. Hrubišak et al., "Structural and electrical properties of Ga2O3 transistors grown on 4H-SiC substrates," in 2022 14th International Conference on Advanced Semiconductor Devices and Microsystems (ASDAM), 23-26 Oct. 2022 2022, pp. 1-4, doi: 10.1109/ASDAM55965.2022.9966785.
[43] Y.-C. Byun, (Invited) ALD of Dielectrics for Advanced Channel Materials; Initial Interface Formation. 2015.
[44] D. Misra, "High k Dielectrics on High-Mobility Substrates: The Interface!," The Electrochemical Society Interface, vol. 20, no. 4, p. 47, 2011/01/01 2011, doi: 10.1149/2.F05114if.
[45] R. W. Johnson, A. Hultqvist, and S. F. Bent, "A brief review of atomic layer deposition: from fundamentals to applications," Materials Today, vol. 17, no. 5, pp. 236-246, 2014/06/01/ 2014, doi: https://doi.org/10.1016/j.mattod.2014.04.026.
[46] M. Bedjaoui et al., "Atomic Layer Deposition of HfAlOx for High-k Gate Dielectrics," ECS Meeting Abstracts, vol. MA2023-02, no. 29, p. 1439, 2023/12/22 2023, doi: 10.1149/MA2023-02291439mtgabs.
[47] B. Macco and W. M. M. Kessels, "Atomic layer deposition of conductive and semiconductive oxides," Applied Physics Reviews, vol. 9, no. 4, 2022, doi: 10.1063/5.0116732.
[48] J. A. Oke and T.-C. Jen, "Atomic layer deposition and other thin film deposition techniques: from principles to film properties," Journal of Materials Research and Technology, vol. 21, pp. 2481-2514, 2022/11/01/ 2022, doi: https://doi.org/10.1016/j.jmrt.2022.10.064.
[49] D. Hiller, J. Julin, A. Chnani, and S. Strehle, "Silicon Surface Passivation by ALD-Ga2O3: Thermal vs. Plasma-Enhanced Atomic Layer Deposition," IEEE Journal of Photovoltaics, vol. 10, no. 4, pp. 959-968, 2020, doi: 10.1109/JPHOTOV.2020.2989201.
[50] L. Yuan, S. Li, G. Song, X. w. Sun, and X. Zhang, "Solution-processed amorphous gallium oxide gate dielectric for low-voltage operation oxide thin film transistors," Journal of Materials Science: Materials in Electronics, vol. 32, no. 7, pp. 8347-8353, 2021/04/01 2021, doi: 10.1007/s10854-021-05408-5.
[51] X‐Ray Photoelectron Spectroscopy (Methods of Soil Analysis). Madison, Wis. :: Soil Science Society of America, 1996.
[52] F. Zhang, K. Saito, T. Tanaka, M. Nishio, M. Arita, and Q. Guo, "Wide bandgap engineering of (AlGa)2O3 films," Applied Physics Letters, vol. 105, no. 16, 2014, doi: 10.1063/1.4900522.
[53] T. Kamimura et al., "Band alignment and electrical properties of Al2O3/β-Ga2O3 heterojunctions," Applied Physics Letters, vol. 104, no. 19, 2014, doi: 10.1063/1.4876920.
[54] Z. Chen et al., "Band alignment of Ga2O3/Si heterojunction interface measured by X-ray photoelectron spectroscopy," Applied Physics Letters, vol. 109, no. 10, 2016, doi: 10.1063/1.4962538.
[55] D. N. Feria et al., "Facile synthesis of β-Ga2O3 based high-performance electronic devices via direct oxidation of solution-processed transition metal dichalcogenides," Nanotechnology, vol. 35, no. 12, p. 125603, 2024/01/04 2024, doi: 10.1088/1361-6528/ad13bf.
[56] J. E. Whitten, "Ultraviolet photoelectron spectroscopy: Practical aspects and best practices," Applied Surface Science Advances, vol. 13, p. 100384, 2023/02/01/ 2023, doi: https://doi.org/10.1016/j.apsadv.2023.100384.
[57] Z. Naiji et al., "Structural and electronic characteristics of Fe-doped β-Ga2O3 single crystals and the annealing effects," Journal of Materials Science, vol. 56, 08/01 2021, doi: 10.1007/s10853-021-06027-5.
[58] X. Long et al., "Optical and Electronic Energy Band Properties of Nb-Doped β-Ga2O3 Crystals," Crystals, vol. 11, p. 135, 01/28 2021, doi: 10.3390/cryst11020135.
[59] A. Klein, "Energy band alignment at interfaces of semiconducting oxides: A review of experimental determination using photoelectron spectroscopy and comparison with theoretical predictions by the electron affinity rule, charge neutrality levels, and the common anion rule," Thin Solid Films, vol. 520, no. 10, pp. 3721-3728, 2012/03/01/ 2012, doi: https://doi.org/10.1016/j.tsf.2011.10.055.
[60] K. D. Chabak et al., "Enhancement-mode Ga2O3 wrap-gate fin field-effect transistors on native (100) β-Ga2O3 substrate with high breakdown voltage," Applied Physics Letters, vol. 109, no. 21, 2016, doi: 10.1063/1.4967931.
[61] M. A. K. Khan, M. A. Alim, and C. Gaquiere, "2DEG transport properties over temperature for AlGaN/GaN HEMT and AlGaN/InGaN/GaN pHEMT," Microelectronic Engineering, vol. 238, p. 111508, 2021/02/01/ 2021, doi: https://doi.org/10.1016/j.mee.2021.111508.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95452-
dc.description.abstract隨著摩爾定律的預測,電晶體的發展一直遵循著電晶體密度約每18個月翻倍的趨勢。然而,隨著傳統電晶體尺寸的持續縮小,物理與製程上的挑戰逐漸顯現,使得電晶體的發展難以完全符合摩爾定律的預測。此外,傳統半導體材料在不同應用環境下的性能也逐漸受到限制。基於此背景,研究人員近年來積極探索新型半導體技術與材料。
目前,半導體生產以矽(Si)晶圓為主。然而,隨著開發的深入,矽的物理特性已接近其極限。在此情況下,寬能隙半導體(Wide Band Gap,WBG)應運而生,其中氧化鎵(Ga2O3)因其高達4.9eV的能隙而備受關注。Ga2O3不僅在各種功率元件中具有潛力,還在各類感測器的應用中展現出巨大潛能。
然而,作為電晶體閘極氧化層的材料,Ga2O3的應用仍在探索階段。
在這篇碩士論文中,我們利用自製的電漿輔助原子層沉積(Plasma Enhanced Atomic Layer Deposition, PEALD)設備進行Ga2O3薄膜的沉積。通過調整溫度、製程氣體流量等參數,並利用膜厚量測儀、XPS、UPS等設備對薄膜的品質進行分析。我們進一步繪製了Ga2O3薄膜與傳統矽晶圓介面的能帶圖,發現沉積次奈米級Ga2O3薄膜於閘極氧化層與矽通道之間,具有調變矽通道元件電性表現的潛力。
我們還實際展示了沉積次奈米級Ga2O3薄膜於閘極氧化層與矽通道之間的製程,並與對照組進行比較和電性分析。結果顯示,這種次奈米級Ga2O3薄膜具有調變閾值電壓、增強電流及擴展電壓運作範圍的潛力,展現出相當大的發展前景。
zh_TW
dc.description.abstractThe development of transistors has historically followed Moore's Law, with transistor density approximately doubling every 18 months. However, as traditional transistor dimensions continue to shrink, physical and manufacturing challenges have emerged, making it increasingly difficult to maintain the pace predicted by Moore's Law. Additionally, the performance of conventional semiconductor materials is increasingly constrained in various application environments. In light of these challenges, researchers have recently been actively exploring new semiconductor technologies and materials.
Currently, semiconductor production is predominantly based on silicon (Si) wafers. However, as the development of Si approaches its physical limits, wide bandgap semiconductors (WBGs) have emerged as a promising alternative. Among these, gallium oxide (Ga2O3), with a bandgap as wide as 4.9 eV, has garnered significant attention. Ga2O3 shows considerable potential not only in various power devices but also in the application of diverse sensors. Nevertheless, the application of Ga2O3 as a gate oxide layer in transistors is still under investigation.
In this master's thesis, we employed a custom-built Plasma Enhanced Atomic Layer Deposition (PEALD) system to deposit Ga2O3 thin films. By adjusting parameters such as temperature and process gas flow, we analyzed the quality of the films using tools such as thickness measurement instruments, X-ray photoelectron spectroscopy (XPS), and ultraviolet photoelectron spectroscopy (UPS). We further constructed a band diagram of the interface between the Ga2O3 film and conventional Si wafers, discovering that depositing sub-nanometer Ga2O3 thin films between the gate oxide layer and the Si channel could modulate the electrical performance of Si channel devices.
We also demonstrated the process of depositing sub-nanometer Ga2O3 thin films between the gate oxide layer and the Si channel and conducted comparative electrical analyses with control devices. The results indicate that such sub-nanometer Ga2O3 thin films have the potential to modulate threshold voltage, enhance current, and expand the voltage operating range, showcasing significant development potential.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-09T16:13:48Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-09T16:13:48Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
摘要 iii
Abstract iv
目次 vi
圖次 ix
表次 xiii
Chapter 1 Introduction 1
1.1 Introduction of transistor 1
1.1.1 Moore’s Law scaling and technology node 1
1.1.2 Physical challenges 3
1.1.3 Challenges and new technology for Fabricating Transistors 4
1.2 The evolution of transistor 7
1.2.1 Planar MOSFET 7
1.2.2 FinFET 8
1.2.3 Gate-all-around FET (GAAFET) 11
1.3 From silicon to ultra-wide band gap material 12
1.3.1 SiC and GaN 13
1.3.2 Ga2O3 14
Chapter 2 Discussion of Ga2O3 15
2.1 Review of Ga2O3 15
2.2 Application of Ga2O3 18
2.3 Growth method of Ga2O3 21
2.4 To apply ALD Ga2O3 into gate oxide layer 22
Chapter 3 ALD Ga2O3 process development and material analysis 25
3.1 Atomic layer deposition 25
3.1.1 Mechanism of ALD 25
3.1.2 ALD for gate oxide and oxide semiconductor 26
3.2 Introduction of ALD Ga2O3 27
3.3 ALD Ga2O3 equipment and parameter setting 28
3.3.1 Temperature 32
3.3.2 Ionized O2 fraction 34
3.4 Material analysis 36
3.4.1 XPS 36
3.4.2 UPS 43
3.4.3 Band diagram analysis 46
3.4.4 Application into gate oxide and passivation layer 49
3.4.5 C-V analysis 50
Chapter 4 Ga2O3/Si FinFET fabrication process 54
4.1 Micro scale Ga2O3 FinFET Fabrication process flow 55
4.1.1 Layout / Mask design 57
4.1.2 Lithography and S/D define 58
4.1.3 Gate deposition and Etching 61
4.1.4 Implantation and RTA 65
4.1.5 Via and pad metal deposition and lift off 67
4.2 DC analysis 71
4.2.1 Normal nfet versus Ga2O3 nfet 71
Chapter 5 Conclusion and Future Works 73
5.1 Conclusion 73
5.2 Future work 74
Reference 75
-
dc.language.isoen-
dc.subject次奈米zh_TW
dc.subject氧化鎵zh_TW
dc.subject閘極氧化層zh_TW
dc.subject寬能隙半導體zh_TW
dc.subject電漿輔助原子層沉積zh_TW
dc.subjectWide Bandgap Semiconductorsen
dc.subjectPlasma-enhanced Atomic Layer Depositionen
dc.subjectGallium Oxideen
dc.subjectGate Oxide Layeren
dc.subjectsub-nanometeren
dc.title原子層沉積次奈米氧化鎵應用於電晶體閘極氧化層之電性調變與分析zh_TW
dc.titleElectrical Modulation and Analysis of Sub-Nanometer Gallium Oxide by Plasma-Enhanced Atomic Layer Deposition Applied to Transistor Gate Oxide Layersen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳敏璋;吳肇欣;林致廷zh_TW
dc.contributor.oralexamcommitteeMiin-Jang Chen;Chao-Hsin Wu;Chih-Ting Linen
dc.subject.keyword寬能隙半導體,電漿輔助原子層沉積,氧化鎵,閘極氧化層,次奈米,zh_TW
dc.subject.keywordWide Bandgap Semiconductors,Plasma-enhanced Atomic Layer Deposition,Gallium Oxide,Gate Oxide Layer,sub-nanometer,en
dc.relation.page80-
dc.identifier.doi10.6342/NTU202404231-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-14-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
dc.date.embargo-lift2029-08-22-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  此日期後於網路公開 2029-08-22
5.93 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved