請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95447完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李岳聯 | zh_TW |
| dc.contributor.advisor | Yueh-Lien Lee | en |
| dc.contributor.author | 王煥傑 | zh_TW |
| dc.contributor.author | Huan-Jie Wang | en |
| dc.date.accessioned | 2024-09-09T16:12:16Z | - |
| dc.date.available | 2024-09-13 | - |
| dc.date.copyright | 2024-09-09 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-13 | - |
| dc.identifier.citation | K. Li, H. Bian, C. Liu, D. Zhang, and Y. Yang, "Comparison of geothermal with solar and wind power generation systems," Renewable and Sustainable Energy Reviews, vol. 42, pp. 1464-1474, 2015.
A. M.-Z. Gao, C.-H. Huang, J.-C. Lin, and W.-N. Su, "Review of recent offshore wind power strategy in Taiwan: Onshore wind power comparison," Energy Strategy Reviews, vol. 38, p. 100747, 2021. DNV, "DNV-RP-B401 Cathodic protection design," 2017. NORSOK, "Norsok Standard M-503 - Cathodic Protection," 2007. K. A. Orvik, "Long‐Term Moored Current and Temperature Measurements of the Atlantic Inflow Into the Nordic Seas in the Norwegian Atlantic Current; 1995–2020," Geophysical Research Letters, vol. 49, no. 3, p. e2021GL096427, 2022. S. Mondal, J.-H. Wu, and M.-A. Lee, "Long-Term Variations in Sea Surface Temperature in the Coastal Waters Around Taiwan," 臺灣水產學會刊, vol. 49, no. 3, pp. 185-202, 2022. A. Momber, "Quantitative performance assessment of corrosion protection systems for offshore wind power transmission platforms," Renewable Energy, vol. 94, pp. 314-327, 2016. B. Yeter and Y. Garbatov, "Structural integrity assessment of fixed support structures for offshore wind turbines: A review," Ocean Engineering, vol. 244, p. 110271, 2022. X. Wu et al., "Foundations of offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, vol. 104, pp. 379-393, 2019. L. Castro-Santos and V. Diaz-Casas, Floating offshore wind farms. Springer, 2016. N. Sato, "Basics of corrosion chemistry," Green Corrosion Chemistry and Engineering, vol. 1, 2012. C. Dong, K. Xiao, X. Li, and Y. Cheng, "Erosion accelerated corrosion of a carbon steel–stainless steel galvanic couple in a chloride solution," Wear, vol. 270, no. 1-2, pp. 39-45, 2010. O. Adedipe, F. Brennan, and A. Kolios, "Review of corrosion fatigue in offshore structures: Present status and challenges in the offshore wind sector," Renewable and Sustainable Energy Reviews, vol. 61, pp. 141-154, 2016. H. T. Dinh, J. Kuever, M. Mußmann, A. W. Hassel, M. Stratmann, and F. Widdel, "Iron corrosion by novel anaerobic microorganisms," Nature, vol. 427, no. 6977, pp. 829-832, 2004. W. Khodabux, P. Causon, and F. Brennan, "Profiling corrosion rates for offshore wind turbines with depth in the North Sea," Energies, vol. 13, no. 10, p. 2518, 2020. T. Kirchgeorg, I. Weinberg, M. Hörnig, R. Baier, M. Schmid, and B. Brockmeyer, "Emissions from corrosion protection systems of offshore wind farms: Evaluation of the potential impact on the marine environment," Marine pollution bulletin, vol. 136, pp. 257-268, 2018. P. R. Roberge and P. Eng, "Corrosion engineering." 謝幼屏, "臺灣腐蝕環境分類資訊系統應用介紹," presented at the 大氣腐蝕及防蝕技術應用研習會, 2024. H. Baorong and L. Dongzhu, "Corrosion cost and preventive strategies in China," Bulletin of Chinese Academy of Sciences (Chinese Version), vol. 33, no. 6, pp. 601-609, 2018. I.-W. Huang, B. L. Hurley, F. Yang, and R. G. Buchheit, "Dependence on temperature, pH, and Cl− in the uniform corrosion of aluminum alloys 2024-T3, 6061-T6, and 7075-T6," Electrochimica Acta, vol. 199, pp. 242-253, 2016. R. Kain, "Crevice corrosion behavior of stainless steel in seawater and related environments," Corrosion, vol. 40, no. 6, pp. 313-321, 1984. J. Galvele, "Tafel’s law in pitting corrosion and crevice corrosion susceptibility," Corrosion science, vol. 47, no. 12, pp. 3053-3067, 2005. L. Jin, "The chloride stress-corrosion cracking behavior of stainless steels under different test methods," Journal of Materials engineering and Performance, vol. 3, pp. 734-739, 1994. W. Zhang and G. Frankel, "Transitions between pitting and intergranular corrosion in AA2024," Electrochimica Acta, vol. 48, no. 9, pp. 1193-1210, 2003. D. J. Lane, N. J. Cook, S. R. Grano, and K. Ehrig, "Selective leaching of penalty elements from copper concentrates: A review," Minerals Engineering, vol. 98, pp. 110-121, 2016. M. A. Islam and Z. Farhat, "Erosion-corrosion mechanism and comparison of erosion-corrosion performance of API steels," Wear, vol. 376, pp. 533-541, 2017. G. E. J. Poinern, S. Brundavanam, and D. Fawcett, "Biomedical magnesium alloys: a review of material properties, surface modifications and potential as a biodegradable orthopaedic implant," Am. J. Biomed. Eng, vol. 2, no. 6, pp. 218-240, 2012. R. W. Revie, Corrosion and corrosion control: an introduction to corrosion science and engineering. John Wiley & Sons, 2008. E. McCafferty, Introduction to corrosion science. Springer Science & Business Media, 2010. K. E. Ojaomo, T. J. Erinle, D. H. Oladebeye, and O. D. Olakolegan, "Hydrogen Generation through Electrolysis of Brine for Clean Energy Development in a Depressed Economy," synthesis, vol. 7, no. 4, 2020. F. Malaret and X.-S. Yang, "Exact calculation of corrosion rates by the weight-loss method," Experimental Results, vol. 3, p. e13, 2022. H.-S. Roh, "Kinetics of polarization mechanisms," Journal of The Electrochemical Society, vol. 160, no. 9, p. H519, 2013. N. Perez and N. Perez, "Kinetics of activation polarization," Electrochemistry and corrosion science, pp. 101-150, 2016. M. Y. Tan and R. W. Revie, Heterogeneous electrode processes and localized corrosion. John Wiley & Sons, 2012. W. D. Callister et al., Materials science and engineering: an introduction. John wiley & sons New York, 2007. K. Thiagarajan and H. Dagher, "A review of floating platform concepts for offshore wind energy generation," Journal of offshore mechanics and Arctic engineering, vol. 136, no. 2, p. 020903, 2014. D. Kjernsmo, K. Kleven, and J. Scheie, "Corrosion protection," HEMPEL A/S, 2003. R. Zhang et al., "Degradation of polymer coating systems studied by positron annihilation spectroscopy. IV. Oxygen effect of UV irradiation," Journal of Polymer Science Part B: Polymer Physics, vol. 39, no. 17, pp. 2035-2047, 2001. M. O. Durham and R. A. Durham, "Cathodic protection," IEEE Industry Applications Magazine, vol. 11, no. 1, pp. 41-47, 2005. S. Leeds and J. Leeds, "Cathodic Protection," in Oil and Gas Pipelines, 2015, pp. 457-484. D. A. Jones, "Principles and prevention," Corrosion, vol. 2, p. 168, 1996. J. B. Bushman and P. P. C. Engineer, "Corrosion and cathodic protection theory," Bushman & Associates Inc., Medina, 2010. V. Ashworth, "4.18. Principles of cathodic protection," Shreir’s Corros; Elsevier: New York, NY, USA, pp. 2747-2762, 2010. A. Hossen, R. Mahmud, A. Islam, S. Ahsan, and M. Mondal, "Minimization of corrosion in aquatic environment–a review," Int J Hydro, vol. 7, no. 1, pp. 9-16, 2023. W. Von Baeckmann, W. Schwenk, and W. Prinz, Handbook of cathodic corrosion protection. Elsevier, 1997. G. Kakuba, "The impressed current cathodic protection system," Master's Thesis, Technische Universiteit of Eindhoven, 2005. M. Otieno, H. Beushausen, and M. Alexander, "Prediction of corrosion rate in RC structures-A critical review," in Modelling of Corroding Concrete Structures: Proceedings of the Joint fib-RILEM Workshop held in Madrid, Spain, 22–23 November 2010, 2011: Springer, pp. 15-37. S. Hu, R. Liu, L. Liu, Y. Cui, and F. Wang, "Influence of temperature and hydrostatic pressure on the galvanic corrosion between 90/10 Cu–Ni and AISI 316L stainless steel," Journal of Materials Research and Technology, vol. 13, pp. 1402-1415, 2021. J. Qiu, A. Wu, Y. Li, Y. Xu, R. Scarlat, and D. D. Macdonald, "Galvanic corrosion of type 316L stainless steel and graphite in molten fluoride salt," Corrosion Science, vol. 170, p. 108677, 2020. B. O. Hasan, "Galvanic corrosion of carbon steel–brass couple in chloride containing water and the effect of different parameters," Journal of Petroleum Science and Engineering, vol. 124, pp. 137-145, 2014. M.-T. Montañés, R. Sánchez-Tovar, J. Garcia-Anton, and V. Pérez-Herranz, "The influence of Reynolds number on the galvanic corrosion of the copper/AISI 304 pair in aqueous LiBr solutions," Corrosion Science, vol. 51, no. 11, pp. 2733-2742, 2009. A. Popova, "Temperature effect on mild steel corrosion in acid media in presence of azoles," Corrosion Science, vol. 49, no. 5, pp. 2144-2158, 2007. I. Perissi, U. Bardi, S. Caporali, and A. Lavacchi, "High temperature corrosion properties of ionic liquids," Corrosion science, vol. 48, no. 9, pp. 2349-2362, 2006. J. Crapse, N. Pappireddi, M. Gupta, S. Y. Shvartsman, E. Wieschaus, and M. Wühr, "Evaluating the Arrhenius equation for developmental processes," Molecular Systems Biology, vol. 17, no. 8, p. e9895, 2021, doi: https://doi.org/10.15252/msb.20209895. M. Peleg, M. D. Normand, and M. G. Corradini, "The Arrhenius equation revisited," Critical reviews in food science and nutrition, vol. 52, no. 9, pp. 830-851, 2012. L. Giourntas, T. Hodgkiess, and A. Galloway, "Comparative study of erosion–corrosion performance on a range of stainless steels," Wear, vol. 332, pp. 1051-1058, 2015. M. Isaacson and A. A. Sonin, "Sherwood number and friction factor correlations for electrodialysis systems, with application to process optimization," Industrial & Engineering Chemistry Process Design and Development, vol. 15, no. 2, pp. 313-321, 1976. J. Park, S. Lee, and J. W. Lee, "Effect of pH and concentrated salt on the droplet size and mass transfer coefficient in a stirred liquid–liquid reactor," Industrial & Engineering Chemistry Research, vol. 57, no. 6, pp. 2310-2321, 2018. S. Tanaka, S. Kastens, S. Fujioka, M. Schlüter, and K. Terasaka, "Mass transfer from freely rising microbubbles in aqueous solutions of surfactant or salt," Chemical Engineering Journal, vol. 387, p. 121246, 2020. B. Ellison and W. Schmeal, "Corrosion of steel in concentrated sulfuric acid," Journal of the electrochemical society, vol. 125, no. 4, p. 524, 1978. C. P. Koutsou and A. J. Karabelas, "Shear stresses and mass transfer at the base of a stirred filtration cell and corresponding conditions in narrow channels with spacers," Journal of membrane science, vol. 399, pp. 60-72, 2012. M. Shimada, K. Okuyama, Y. Kousaka, and D. Minamino, "Experimental study of aerosol deposition in stirred flow fields ranging from laminar to turbulent flows," Journal of chemical engineering of Japan, vol. 24, no. 2, pp. 203-209, 1991. E. Heitz, "Mechanistically based prevention strategies of flow-induced corrosion," Electrochimica Acta, vol. 41, no. 4, pp. 503-509, 1996. 交通部中央氣象局. "成功潮位站每月海水表面溫度統計表(2004-2023)." https://www.cwa.gov.tw/V8/C/C/MMC_STAT/sta_sea.html (accessed. Y.-H. Tseng, C.-Y. Lu, Q. Zheng, and C.-R. Ho, "Characteristic analysis of sea surface currents around Taiwan Island from CODAR observations," Remote Sensing, vol. 13, no. 15, p. 3025, 2021 M. Afzal, M. Saleem, and M. T. Mahmood, "Temperature and concentration dependence of viscosity of aqueous electrolytes from 20. degree. C to 50. degree. C chlorides of (sodium (1+), potassium (1+), magnesium (2+), calcium (2+), barium (2+), strontium (2+), cobalt (2+), nickel (2+), copper (2+) and chromium (3+)," Journal of Chemical and Engineering Data, vol. 34, no. 3, pp. 339-346, 1989. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95447 | - |
| dc.description.abstract | 台灣位於季風盛行帶上,四面環海,具有發展離岸風電之潛能,因此台灣近幾年除了其他綠色能源,也開始積極開發海上風場,裝設離岸風機用以取得風能。由於離岸風電位於海洋上,屬於嚴重腐蝕區域,離岸風機在進行設計時亦會考慮防蝕措施。台灣的離岸風電屬於新興產業,相關設計規範主要參考國外之規範。其他國家的規範訂定,應是針對該國環境進行,在經過多年實務經驗後設計出的通則。而台灣未有相關自主設計經驗,且環境與多年發展離岸風電之國家差異甚大,溫度較高且海水流速較快,可能產生更加嚴苛的腐蝕環境,參考他國規範可能有防蝕設計上的不足。因此本論文設計符合台灣海域環境之海水溫度與流速進行陰極防蝕法中的犧牲陽極情境模擬,量測其產生之保護電流量,並根據實驗結果進行擬合,建立能夠預測溫度為15 °C至35 °C且流速為0 m/s至2 m/s條件下保護電流之數學方程式,並根據實驗結果得知溫度與流速提高,皆使電流密度上升,但溫度在高溫時之影響較低溫明顯,而流速則相反。 | zh_TW |
| dc.description.abstract | Since Taiwan is located in a monsoon region, it has potential for developing offshore wind power. In recent years, Taiwan has actively pursued the development of offshore wind energy and has begun generating green energy by installing offshore wind turbines. Due to the highly corrosive condition of the offshore environment, corrosion protection is important. Taiwan's relevant design are mainly based on foreign regulations. However, Taiwan's environment differs from another countries, higher temperature and faster ocean flow velocity potentially creating more severe corrosion conditions than foreign. Relying on foreign standards might result in wrong corrosion protection design. In this thesis, cathodic protection using sacrificial anodes is designed according to Taiwan's ocean temperature and flow velocity, and the protective current is measured. Based on the experimental results, a fitting equation is established to predict the protective current under conditions with temperature ranging from 15 °C to 35 °C and flow velocity ranging from 0 m/s to 2 m/s. The results indicate that if temperature and flow velocity increase, the protective current density will also increase. The influence of higher temperature on protective current density is more significant than that of lower temperature, while flow velocity has the opposite effect. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-09T16:12:16Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-09T16:12:16Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract iii 目次 iv 圖次 vi 表次 viii 第一章 前言 1 第二章 文獻回顧 4 2.1 離岸風機 4 2.1.1 離岸風機之腐蝕環境 5 2.2 腐蝕與腐蝕機制 6 2.2.1 腐蝕的種類 7 2.2.2 腐蝕機制 9 2.3 腐蝕防治 14 2.4 溫度與流速對保護電流密度之影響 19 2.4.1 溫度之影響 19 2.4.2 流速之影響 21 2.5 數學模型—以溫度為變數 24 2.6 數學模型—以流速為變速 26 第三章 實驗設計與方法 29 3.1 實驗與分析流程 29 3.2 實驗裝置與參數設定 30 3.2.1 實驗裝置與實驗架設 30 3.2.2 實驗參數設定 32 3.2.3 試片命名 35 3.3 試片材料與實驗前處理 35 3.4 單參數之擬合方程式選用 37 3.4.1 固定流速下針對溫度之擬合 37 3.4.2 固定溫度下針對流速之擬合 37 3.5 雙參數擬合方程式建立 38 第四章 結果與討論 41 4.1 陰極保護電流量測結果 41 4.1.1 數據處理 47 4.2 固定流速下針對溫度擬合之結果 49 4.3 固定溫度下針對流速擬合之結果 51 4.4 雙參數擬合結果 54 4.5 雙參數擬合方程式討論 56 4.5.1 方程式可行性 59 4.6 參數影響 61 第五章 結論 70 第六章 未來展望 71 參考文獻 72 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 陰極防蝕 | zh_TW |
| dc.subject | 沖磨腐蝕 | zh_TW |
| dc.subject | 阿瑞尼斯方程式 | zh_TW |
| dc.subject | 保護電流 | zh_TW |
| dc.subject | 離岸風電 | zh_TW |
| dc.subject | erosion corrosion | en |
| dc.subject | Arrhenius equation | en |
| dc.subject | protective current | en |
| dc.subject | cathodic protection | en |
| dc.subject | Offshore wind turbine | en |
| dc.title | 溫度與海水流速對陰極保護電流之影響 | zh_TW |
| dc.title | The influence of temperature and ocean velocity on the cathodic protection current density | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 羅弘岳;褚喻仁 | zh_TW |
| dc.contributor.oralexamcommittee | Peter Hong-Yueh Lo;Yu-Ren Chu | en |
| dc.subject.keyword | 離岸風電,陰極防蝕,保護電流,阿瑞尼斯方程式,沖磨腐蝕, | zh_TW |
| dc.subject.keyword | Offshore wind turbine,cathodic protection,protective current,Arrhenius equation,erosion corrosion, | en |
| dc.relation.page | 76 | - |
| dc.identifier.doi | 10.6342/NTU202404285 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-13 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
| dc.date.embargo-lift | 2026-08-14 | - |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 4.42 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
