Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95445
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭舒婷zh_TW
dc.contributor.advisorSu-Ting Chengen
dc.contributor.author黃士祥zh_TW
dc.contributor.authorSHIH-HSIANG HUANGen
dc.date.accessioned2024-09-09T16:11:39Z-
dc.date.available2024-09-10-
dc.date.copyright2024-09-09-
dc.date.issued2024-
dc.date.submitted2024-08-12-
dc.identifier.citationAdams, K.M., Benzie, M., Croft, S. and Sadowski, S. (2021). Climate change, trade, and global food security: A global assessment of transboundary climate risks in agricultural commodity flows. SEI report. Stockholm Environment Institute, Stockholm. http://doi.org/10.51414/sei2021.009
Amiri, E., Rezaei, M., Rezaei, E. E., & Bannayan, M. (2014). Evaluation of Ceres-Rice, aquacrop and oryza2000 models in simulation of rice yield response to different irrigation and nitrogen management strategies. Journal of Plant Nutrition, 37(11), 1749-1769.
Ahmed, K., Sachindra, D. A., Shahid, S., Demirel, M. C., & Chung, E. S. (2019). Selection of multi-model ensemble of general circulation models for the simulation of precipitation and maximum and minimum temperature based on spatial assessment metrics. Hydrology and Earth System Sciences, 23(11), 4803-4824.
Abiko, M., Akibayashi, K., Sakata, T., Kimura, M., Kihara, M., Itoh, K., ... & Higashitani, A. (2005). High-temperature induction of male sterility during barley (Hordeum vulgare L.) anther development is mediated by transcriptional inhibition. Sexual Plant Reproduction, 18, 91-100.
Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome, 300 (9), D05109.
Abramopoulos, F., Rosenzweig, C., & Choudhury, B. (1988). Improved ground hydrology calculations for global climate models (GCMs): Soil water movement and evapotranspiration. Journal of climate, 921-941.
Alley, W. M., (1984), The Palmer drought severity index: limitations and applications. Journal of Climate and Applied Meteorology, 23, 1100- 1109.
An, K. (1933). Sulla determinazione empirica di una legge didistribuzione. Giorn Dell'inst Ital Degli Att, 4, 89-91.
Ban N, Caillaud C, Coppola E et al (2021) The first multi-model ensemble of regional climate simulations at kilometer-scale resolution, part I: evaluation of precipitation. Clim Dyn 57:275–302.
Babel, M. S., Deb, P., & Soni, P. (2019). Performance evaluation of AquaCrop and DSSAT-CERES for maize under different irrigation and manure application rates in the Himalayan region of India. Agricultural Research, 8 (2), 207-217.
Chen, C. A., Hsu, H. H., & Liang, H. C. (2021). Evaluation and comparison of CMIP6 and CMIP5 model performance in simulating the seasonal extreme precipitation in the Western North Pacific and East Asia. Weather and Climate Extremes, 31, 100303.
Cavus, Y., & Aksoy, H. (2020). Critical drought severity/intensity-duration-frequency curves based on precipitation deficit [Article]. Journal of Hydrology, 584, 14, Article 124312. https://doi.org/10.1016/j.jhydrol.2019.124312
Chen, J., Brissette, F. P., Lucas-Picher, P., & Caya, D. (2017). Impacts of weighting climate models for hydro-meteorological climate change studies. Journal of Hydrology, 549, 534-546.
Chhinh, N., & Millington, A. (2015). Drought monitoring for rice production in Cambodia. Climate, 3 (4), 792-811.
Dayal, K. S., Deo, R. C., & Apan, A. A. (2018). Investigating drought duration-severity-intensity characteristics using the Standardized Precipitation-Evapotranspiration Index: case studies in drought-prone Southeast Queensland. Journal of Hydrologic Engineering,23 (1), 05017029.
Deb P, Shrestha S, Babel MS (2015) Forecasting climate change impacts and evaluation of adaptation options for maize cropping in the hilly terrain of Himalayas: Sikkim, India. Theoretical and Applied Climatology (121). 649–667
Dai, A.G., Trenberth, K.E., Qian, T.T. (2004) A global data set of Palmer drought severity index for 1870–2002: relationship with soil moisture and effects of surface warming. J. Hydrometeorol. 5, 1117–1130.
Ewert, F., Angulo, C., Rumbaur, C., Lock, R., Enders, A., Adenauer, M., ... & Rötter, R. (2011). Scenario development and assessment of the potential impacts of climate and market changes on crops in Europe: Assessing the adaptive capacity of agriculture in the Netherlands to the impacts of climate change under different market and policy scenarios (AgriAdapt project). Climate changes Spatial Planning.
Food and agriculture organization of the united nation. (2022). AquaCrop Training Handbooks Book I. Understanding AquaCrop. https://www.fao.org/3/cc2380en/cc2380en.pdf
Fei, L., Meijun, Z., Jiaqi, S., Zehui, C., Xiaoli, W., & Jiuchun, Y. (2020). Maize, wheat and rice production potential changes in China under the background of climate change. Agricultural Systems, 182, 102853.
Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A., Farooq, A., Zohaib, A., ... & Huang, J. (2017). Crop production under drought and heat stress: plant responses and management options. Frontiers in plant science, 1147.
Flato, G., (2011), Earth system models: an overview. WIREs Climate Change, 2 (6), 783–800.
Food and Agriculture Organization (1983) Guidelines: Land evaluation for Rainfed Agriculture. FAO Soils Bulletin 52, Rome.
Goswami, A.; Banerjee, R.; Raha, S. Drought resistance in rice seedlings conferred by seed priming. Protoplasma (2013). 250, 1115–1129.
Gay, C., Estrada, F., Conde, C., Eakin, H., & Villers, L. (2006). Potential impacts of climate change on agriculture: a case of study of coffee production in Veracruz, Mexico. Climatic Change, 79 (3), 259-288.
Gilbert, R. O. (1987). Statistical methods for environmental pollution monitoring. John Wiley & Sons.
Gumbel, E. J. (1963). Statistical forecast of droughts. Hydrological sciences journal, 8(1), 5-23.
Harkness, C., Semenov, M. A., Areal, F., Senapati, N., Trnka, M., Balek, J., & Bishop, J. (2020). Adverse weather conditions for UK wheat production under climate change. Agricultural and Forest Meteorology, 282, 107862.
Homsi, R., Shiru, M. S., Shahid, S., Ismail, T., Harun, S. B., Al-Ansari, N., ... & Yaseen, Z. M. (2020). Precipitation projection using a CMIP5 GCM ensemble model: a regional investigation of Syria. Engineering Applications of Computational Fluid Mechanics, 14 (1), 90-106.
He, M., Chen, Y., Sun, H., & Liu, J. (2023). Projected Changes in Precipitation Based on the CMIP6 Optimal Multi-Model Ensemble in the Pearl River Basin, China. Remote Sensing, 15 (18), 4608.
Hirsch, R. M., Slack, J. R., & Smith, R. A. (1982). Techniques of trend analysis for monthly water quality data. Water resources research, 18 (1), 107-121.
IPCC (Intergovernmental Panel on Climate Change). (2018). Global warming of 1.5°C. An IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, ed.
Jiang, Z., Li, W., Xu, J., & Li, L. (2015). Extreme precipitation indices over China in CMIP5 models. Part I: Model evaluation. Journal of Climate, 28 (21), 8603-8619.
Jagadish, S. K., Craufurd, P. Q., & Wheeler, T. (2007). High temperature stress and spikelet fertility in rice (Oryza sativa L.). Journal of experimental botany, 58(7), 1627-1635.
Khan, N., Shahid, S., Ahmed, K., Wang, X., Ali, R., Ismail, T., & Nawaz, N. (2020). Selection of GCMs for the projection of spatial distribution of heat waves in Pakistan. Atmospheric Research, 233, 104688.
Kelman, I., J.C. Gaillard, and J. Mercer. (2015). Climate change’s role in disaster risk reduction’s future: Beyond vulnerability andresilience. International Journal of Disaster Risk Science 6(1):21–27
Kobata, T., & Uemuki, N. (2004). High temperatures during the grain‐filling period do not reduce the potential grain dry matter increase of rice. Agronomy Journal, 96(2), 406-414.
Klepper O. (1997). Multivariate aspects of model uncertainty analysis: Tools for sensitivity analysis and calibration. Ecological Modelling, 101, 1–13.
Kendall, M. G. (1975). Rank correlation methods. Griffin, London. J. Econom, 13, 245-259.
Karl, T. R., (1986) The sensitivity of the Palmer drought severity index and Palmer’s Z-index to their calibration coefficients including potential evapotranspiration. Journal of Climate and Applied Meteorology, 25, 77-86.
Liu, X., Zhu, X., Pan, Y., Li, S., Liu, Y., & Ma, Y. (2016). Agricultural drought monitoring: Progress, challenges, and prospects. Journal of Geographical Sciences,26, 750-767.
Lutz AF, ter Maat HW, Biemans H, Shrestha AB, Wester P, Immerzeel WW (2016) Selecting representative climate models for climate change impact studies: an advanced envelope-based selection approach. International Journal of Climatology 36:3988–4005
Łabędzki, L., & Bąk, B. (2014). Meteorological and agricultural drought indices used in drought monitoring in Poland: a review. Meteorology Hydrology and Water Management. Research and Operational Applications, 2 (2), 3-13.
Lettenmaier, D.P., McCabe, G., Stakhiv, E.Z., (1996). Global climate change: effects on hydrologic cycle. In: Mays, L.W. (Ed.), Water Resources Handbook, Part V. McGraw-Hill, New York.
Mbow, C., C. Rosenzweig, L.G. Barioni, T.G. Benton, M. Herrero, M. Krishnapillai, E. Liwenga, P. Pradhan, M.G. Rivera-Ferre, T. Sapkota, F.N. Tubiello, Y. Xu, (2019). Food Security. In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems [P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D.C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, J. Malley, (eds.)]. In press.
Min, S. K., Zhang, X., Zwiers, F. W., & Hegerl, G. C. (2011). Human contribution to more-intense precipitation extremes. Nature, 470 (7334), 378-381.
Mishra, A. K., & Singh, V. P. (2010). A review of drought concepts [Review]. Journal of Hydrology, 391 (1-2), 204-216.
Mavromatis, T., (2007). Drought index evaluation for assessing future wheat production in Greece. Int. J. Climatol., 27, 911–924
Matsui, T., Omasa, K., & Horie, T. (2001). The difference in sterility due to high temperatures during the flowering period among japonica-rice varieties. Plant Production Science, 4 (2), 90-93.
McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology (Vol. 17, No. 22, pp. 179-183).
Mann, H. B. (1945). Nonparametric tests against trend. Econometrica: Journal of the econometric society, 245-259.
Naumann, G., Cammalleri, C., Mentaschi, L., & Feyen, L. (2021). Increased economic drought impacts in Europe with anthropogenic warming. Nature Climate Change, 11 (6), 485-491.
Ngoma, H., Wen, W., Ayugi, B., Babaousmail, H., Karim, R., & Ongoma, V. (2021). Evaluation of precipitation simulations in CMIP6 models over Uganda. International Journal of Climatology, 41 (9), 4743-4768.
Peng, S., Huang, J., Sheehy, J. E., Laza, R. C., Visperas, R. M., Zhong, X., ... & Cassman, K. G. (2004). Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences, 101 (27), 9971-9975.
Orrego, R., Ávila, A., Meza, F., & Matus, F. (2014). Using a crop simulation model to select the optimal climate grid cell resolution: A study case in Araucanía Region. Journal of soil science and plant nutrition, 14 (2), 407-420.
Palmer, W. C., 1965: Meteorological drought. U.S. Department of Commerce Weather Bureau Research Paper, 45, 58pp.
Ran, H., Kang, S., Hu, X., Li, S., Wang, W., & Liu, F. (2020). Capability of a solar energy-driven crop model for simulating water consumption and yield of maize and its comparison with a water-driven crop model. Agricultural and Forest Meteorology, 287, 107955.
Rivera, J. A., & Arnould, G. (2020). Evaluation of the ability of CMIP6 models to simulate precipitation over Southwestern South America: Climatic features and long-term trends (1901–2014). Atmospheric Research, 241, 104953.
Song, S., Zhang, X., Gao, Z., & Yan, X. (2023). Evaluation of atmospheric circulations for dynamic downscaling in CMIP6 models over East Asia. Climate Dynamics, 60 (7-8), 2437-2458.
Svoboda, M. D., & Fuchs, B. A. (2016). Handbook of drought indicators and indices. World Meteorological Organization Geneva, Switzerland.
Stagge, J. H., Tallaksen, L. M., Gudmundsson, L., Van Loon, A. F., & Stahl, K. (2015). Candidate distributions for climatological drought indices (SPI and SPEI). International Journal of Climatology, 35 (13), 4027-4040.
Shrestha, S., Deb, P., & Bui, T. T. T. (2016). Adaptation strategies for rice cultivation under climate change in Central Vietnam. Mitigation and adaptation strategies for global change, 21, 15-37.
Stella T, Frasso N, Negrini G, Bregaglio S, Cappelli G, Acutis M. (2014). Model simplification and development via reuse, sensitivity analysis and composition: A case study in crop modelling. Environmental Modelling & Software, 59, 44–58.
Steduto, P., Hsiao, T. C., Raes, D., & Fereres, E. (2009). AquaCrop—The FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agronomy Journal, 101(3), 426-437.
Smirnov, N. (1939). Sur les écarts de la courbe de distribution empirique: Recueil Mathématique (Matematiceskii Sbornik), v. NS, 6, 3-26.
Tang J, Li Q, Wang S et al. (2016) Building Asian climate change scenario by multi-regional climate models ensemble. Part I: surface air temperature. International Journal of Climatology (36), 4241–4252.
Timsina J, Pathak H, Humphreys E et al (2004) Evaluation of yield gap analysis in rice using CERES-Rice v 4.0 in Northwest India. In: Proceedings of the fourth international crop science congress Brisbane, Australia, 26th September–1st October 2004. ISBN 920842209
Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geographical review, 38(1), 55-94.
Ureta, C., González, E. J., Espinosa, A., Trueba, A., Piñeyro-Nelson, A., & Álvarez-Buylla, E. R. (2020). Maize yield in Mexico under climate change. Agricultural Systems, 177, 102697.
UN Secretariat General, 1994. United Nations Convention to Combat Drought and Desertification in Countries Experiencing Serious Droughts and/or Desertification, Particularly in Africa. Paris
Vanuytrecht, E., Raes, D., Steduto, P., Hsiao, T. C., Fereres, E., Heng, L. K., ... & Moreno, P. M. (2014). AquaCrop: FAO's crop water productivity and yield response model. Environmental Modelling & Software, 62, 351-360.
Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of climate, 23 (7), 1696-1718.
Watters, D., Battaglia, A., & Allan, R. P. (2021). The diurnal cycle of precipitation according to multiple decades of global satellite observations, three CMIP6 models, and the ECMWF reanalysis. Journal of Climate,34 (12), 5063-5080.
Wang, K., & Zhang, A. (2018). Climate change, natural disasters and adaptation investments: Inter-and intra-port competition and cooperation. Transportation Research Part B: Methodological, 117, 158-189.
World Meteorological Organization (2012). Standardized Precipitation Index User Guide.Weather-Climate-Water WMO No. 190, Geneva, Switzerland.
White, J. W., Hoogenboom, G., Kimball, B. A., & Wall, G. W. (2011). Methodologies for simulating impacts of climate change on crop production. Field Crops Research, 124 (3), 357-368.
World Bank (2005). Natural disaster hotspots a global risk analysis. The World Bank. Washington, D.C., 148pp.
Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. R. (2007). Heat tolerance in plants: an overview. Environmental and experimental botany, 61 (3), 199-223.
Wells, N., Goddard, S., & Hayes, M. J. (2004). A self-calibrating Palmer drought severity index. Journal of climate, 17 (12), 2335-2351.
Wilhite, D.A., (2000). Drought as a natural hazard: concepts and definitions. In: Wilhite, D.A. (Ed.), Drought: A Global Assessment, vol. 1. Routledge, New York, pp. 1–18.
World Meteorological Organization. (1986). Report on Drought and Countries Affected by Drought During 1974–1985, WMO, Geneva, p. 118.
Wilhite, D.A., Glantz, M.H., (1985). Understanding the drought phenomenon: the role of definitions. Water Int. 10, 111–120.
Yang, X., Zhou, B., Xu, Y., & Han, Z. (2021). CMIP6 evaluation and projection of temperature and precipitation over China. Advances in Atmospheric Sciences, 38, 817-830.
Zhao, L., Kobayasi, K., Hasegawa, T., Wang, C. L., Yoshimoto, M., Wan, J., & Matsui, T. (2010). Traits responsible for variation in pollination and seed set among six rice cultivars grown in a miniature paddy field with free air at a hot, humid spot in China. Agriculture, ecosystems & environment, 139 (1-2), 110-115.
Zhai, J., Mondal, S. K., Fischer, T., Wang, Y., Su, B., Huang, J., ... & Uddin, M. J. (2020). Future drought characteristics through a multi-model ensemble from CMIP6 over South Asia. Atmospheric Research, 246, 105111.
Zhao, C., Jiang, Z., Sun, X., Li, W., & Li, L. (2020). How well do climate models simulate regional atmospheric circulation over East Asia? International Journal of Climatology.40 (1), 220-234.
Zou, X., Zhai, P., Zhang, Q. (2005). Variations in droughts over China: 1951–2003. Geophys. Res. Lett. 32, L04707. doi:10.1029/2004GL021853.
李昱祺, 王嘉琪, 翁叔平, 陳正達, & 鄭兆尊. (2019). 臺灣氣象乾旱特性未來趨勢推估 (Future Projections of Meteorological Drought Characteristics in Taiwan). 大氣科學, 47(1), 66-93.
李晉輝 (2018). 氣象乾旱指數在台灣的比較及其應用 [master's thesis, National Taiwan University]. Airiti Library. https://doi.org/10.6342/NTU201802224
洪致文與施明甫. (2017). 台灣氣象乾旱指數的建立與嚴重乾旱事件分析 (Construction of the Taiwan Meteorological Drought Index and the Analysis of Severe Drought Cases).大氣科學, 45(2), 145-165.
簡均任.(2013) 乾旱指標結合氣候統計降尺度預報於石門水庫供水之乾旱預警應用.PhD Thesis. National Central University.
任菀翎與葉一隆. (2020). DSSAT 模式模擬水稻生長之參數最佳化與應用. Journal of Taiwan Agricultural Engineering, 66 (2).
楊偉甫. (2010). 台灣地區水資源利用現況與未來發展問題. 發表於中技社舉辦之用水合理化與新生水水源開發論壇, 臺北市. 取自 http://www. ctci. org. tw/ct. asp.
楊道昌, 郭俊超, 呂季蓉與游保杉. (2005). 標準化降雨指標應用於農業乾旱監測之研究. 農業工程學報, 51 (2), 11-25.
宋嘉文 (2003)。氣候變遷對臺灣西半部地區降雨及乾旱影響之研究,國立成功大 學水利及海洋工程研究所碩士論文。
蘇宗振. (2009). 氣候變遷下台灣糧食生產因應對策 (農政與農情, Issue 200). 行政院農業部. https://www.moa.gov.tw/ws.php?id=18969
陳儒賢, 洪毓婷與陳清田. (2012). 台灣地區乾旱特性之研究. Journal of Chinese Soil and Water Conservation, 43(1), 85-95.
蕭政宗與楊志傑. (2006). 台灣地區之區域乾旱頻率分析. 農業工程學報, 52(2), 83-101.
羅正宗, 陳榮坤與張素貞. (2008). 苗栗地區水稻生育積溫度數與生育時期之關係. 苗栗區農業專訊, 42, 5-8.
陳昭安、李明營、劉子明、許晃雄、羅資婷、陳永明、童裕翔、吳芊瑩、洪浩哲、鄭兆尊與林思穎,2023:2020-2021極端乾旱事件與未來推估。國家災害防救科技中心。
經濟部水利署 (2016) 臺灣中部區域水資源經理基本計畫。
闕雅文. (2008)。農田水利會移用調配水資源之市場結構分析,農業與經濟,第四十一期 (2008),45¬72。
許心藜與葉信富. (2018). 臺灣中部流域乾旱特徵之時空變化 [Spatiotemporal Variation of the Drought Characteristics in Central Taiwan]. 作物、環境與生物資訊, 15(1), 1-14.
劉玫婷, 李欣輯, 徐永衡與陳永明. (2021). 2021 年乾旱事件農作物損失調查紀實. 國家災害防救科技中心災害防救電子報, 194. https://www.ncdr.nat.gov.tw/UploadFile/Newsletter/efc8cdba0d5b41398ea57629040337d6.pdf
行政院農業委員會. 農業統計資料查詢(n.d.). https://agrstat.coa.gov.tw/sdweb/public/inquiry/InquireAdvance.aspx (2024/1/4瀏覽)
臺灣氣候變遷推估資訊與調適平台 (TCCIP). (n.d.). https://tccip.ncdr.nat.gov.tw/user/index.aspx (2023/1/6 瀏覽)
臺灣氣候變遷推估資訊與調適平台 (TCCIP). (n.d.). https://tccip.ncdr.nat.gov.tw/ds_05_03.aspx (2024/3/5 瀏覽)
農業部金融署. (n.d.). https://www.afna.gov.tw/ (2024/2/5 瀏覽)
農業資料開放平台. (n.d.). https://data.moa.gov.tw/open_detail.aspx?id=159 (2024/1/4 瀏覽)
國家災害防救科技中心. (2020). 臺灣乾旱災害特性. 氣候變遷災害風險調適平台. https://dra.ncdr.nat.gov.tw/Frontend/Disaster/RiskDetail/BAL0000022 (2023/4/12 瀏覽)
農業部. (2011). 因應旱象 農田水利會已啟動救旱應變措施. 新聞與公報. https://dra.ncdr.nat.gov.tw/Frontend/Disaster/RiskDetail/BAL0000022 (2024/4/12 瀏覽)
農業部臺中區農業改良場. (n.d.). 中部地區稻作產業現況. 農業部臺中區農業改良場. https://www.tcdares.gov.tw/ws.php?id=9027 (2023/11/18 瀏覽)
農業部農糧署. (n.d.). 鄉鎮稻作查詢結果. 農情報告資源網. https://agr.afa.gov.tw/afa/afa_frame.jsp (2023/11/18 瀏覽)
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95445-
dc.description.abstract乾旱對台灣農業影響重大,特別是水稻種植區濁水溪流域,若發生乾旱,將威脅台灣的糧食供應。彰化縣因地理位置和地質特性,農業高度依賴地下水資源,但乾旱期間的過度抽取可能引發地層下陷,帶來其他風險。為探討濁水溪沖積平原乾旱與水稻產量之間的關係,本研究以氣象資料完備的彰化縣作為研究區域,運用聯合國糧食及農業組織開發的水分趨動作物模型 (AquaCrop),模擬不同氣候情境下的水稻產量變化,並結合第六次氣候變遷評估報告 (AR6) 地球系統模式資料,計算乾旱指標評估未來乾旱事件的發生頻率、延時、嚴重度及強度,瞭解乾旱對水稻產量的影響,並探討可能的調適措施。

研究結果顯示,校正後之AquaCrop模型均方根誤差為0.71 t/ha;平均絕對誤差百分比為7%,能準確反映不同氣候條件下的水稻生長和產量。敏感度分析結果顯示溫度改變與產量呈負向趨勢,增溫將造成減產;降雨量與水稻產量呈正向線性高度相關 (R2=0.97);潛在蒸發散量相較氣溫及降雨量兩變數而言對產量的影響更加劇烈,為水稻生產的高度敏感因子。此外,收割時間與產量呈線性高度正相關 (R2=0.99),而於乾旱年適度增加灌溉次數能有效地增加產量。

於未來不同氣候變遷模式情境下乾旱特徵及水稻減產率在不同時期並無一致的變化趨勢,模擬結果顯示ACCESS-ESM1-5模式下,乾旱造成之水稻減產機率較高,特別是SSP370和SSP585兩種情境,減產機率接近或達到100%。相比之下,BMME模式對乾旱影響的模擬結果較為保守,減產機率較低。若乾旱發生於水稻需水期,如孕穗期間,抽取地下水灌溉可緩解乾旱對水稻產量的影響,但需加強配合水資源的永續管理策略。綜上所述,本研究建立之模擬方法,可提供氣候變遷下水稻產量所面臨乾旱風險之科學依據,有助於制定更有效的水資源管理與農業適應策略,以應對未來可能面臨的挑戰,保障糧食安全。
zh_TW
dc.description.abstractDrought significantly affects agriculture in Taiwan, particularly in the Jhuoshuei River Alluvial Plain, a key area for rice cultivation. Drought events in this region pose a serious threat to Taiwan's food supply. Changhua County, due to its geographical location and geological characteristics, heavily relies on groundwater resources for agriculture. However, excessive groundwater pumping during drought periods can lead to land subsidence and other associated risks. To investigate the relationship between drought and rice yield in the Jhuoshuei River Alluvial Plain, this study selected Changhua County as the study region due to its comprehensive meteorological data, and employed the AquaCrop model, developed by the Food and Agriculture Organization (FAO), to simulate rice yield variations under different climatic scenarios. Additionally, data from the Sixth Assessment Report (AR6) of the Intergovernmental Panel on Climate Change (IPCC) were used to calculate drought indices, and assess the frequency, duration, severity, and intensity of future drought events to understand the impact of drought on rice yields and explore potential adaptation measures.

The results showed that the calibrated AquaCrop model can accurately simulate rice growth and yield under various climatic conditions, with a root mean square error of 0.71 t/ha, and a mean absolute error percentage of 7%. Sensitivity analysis results revealed a negative correlation between temperature change and yield, indicating that increased temperatures would lead to reduced yields. Moreover, a strong positive linear correlation was found between precipitation and rice yield (R²=0.97). Compared to temperature and precipitation, potential evapotranspiration showed a more significant impact on rice yield, making it a highly sensitive factor for rice production. Additionally, harvest time appeared a strong positive linear correlation to yield (R²=0.99). During drought years, research found that increasing irrigation frequency can enhance yields effectively.

Under various climate change scenarios, the characteristics of drought and the rate of rice yield reduction do not consistently exhibit trends across different future periods. The ACCESS-ESM1-5 model predicts a higher probability of rice yield reduction under drought conditions, particularly under SSP370 and SSP585 scenarios, where the reduction probability approaches or reaches 100%. In contrast, the BMME model offers more conservative predictions of drought impacts, indicating lower reduction probabilities. Groundwater extraction for irrigation during critical water-demand periods for rice, such as the booting stage, can mitigate the impact of drought on rice yields. However, sustainable water resource management strategies must be strengthened.

In summary, the modeling approach employed in this study provides scientific evidence of the drought risks faced by rice yields under climate change. This approach supports the development of more effective water resource management and agricultural adaptation strategies to address potential future challenges and ensure food security.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-09T16:11:39Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-09T16:11:39Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 I
謝誌 II
摘要 IV
Abstract V
目次 VII
圖次 IX
表次 X
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 2
第二章 文獻回顧 4
第一節 氣候變遷與農業生產 4
第二節 氣候變遷、乾旱與水稻生產 5
第三節 乾旱及乾旱指標 6
第四節 水稻生長模型 12
第三章 材料與方法 14
第一節 研究流程 14
第二節 研究區域 15
第三節 研究材料 16
第四節 AquaCrop水稻產量模擬 18
第五節 AR6模式表現評估及選擇 27
第六節 氣候變遷情境下降雨及溫度趨勢分析 31
第七節 乾旱指標建立 34
第八節 乾旱下水稻減產風險評估與調適分析 40
第四章 結果 42
第一節 AquCrop模型調整結果 42
第二節 敏感度分析結果 43
第三節 CMIP6 ESMs表現評估及選擇 46
第四節 Seasonal M-K test結果 52
第五節 乾旱指標計算結果及乾旱年鑑別 53
第六節 未來乾旱年鑑別結果與乾旱特徵分析 63
第七節 未來乾旱年水稻減產與風險評估 78
第五章 討論 88
第一節 乾旱下濁水溪流域水稻生產風險 88
第二節 本研究模擬之未來乾旱趨勢與文獻比較 89
第三節 未來AquaCrop水稻減產風險評估 90
第四節 調適用地下水抽取與水資源利用 91
第五節 AquaCrop模型建構與水稻生產模擬潛在誤差討論 92
第六章 結論 95
參考文獻 96
附錄 105
-
dc.language.isozh_TW-
dc.subject風險評估zh_TW
dc.subject水稻生產zh_TW
dc.subject水分驅動作物模型zh_TW
dc.subject乾旱zh_TW
dc.subject氣候變遷zh_TW
dc.subject濁水溪流域zh_TW
dc.subjectRisk assessmenten
dc.subjectClimate changeen
dc.subjectDroughten
dc.subjectJhuoshuei River Alluvial Plainen
dc.subjectRice productionen
dc.subjectAquaCropen
dc.title濁水溪沖積扇水稻生產乾旱風險評估zh_TW
dc.titleAssessing the Risk of Rice Production under Drought Conditions in the Jhuoshuei River Alluvial Plainen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張斐章;許少瑜zh_TW
dc.contributor.oralexamcommitteeFi-John Chang;Shao-Yiu Hsuen
dc.subject.keyword氣候變遷,乾旱,濁水溪流域,水稻生產,水分驅動作物模型,風險評估,zh_TW
dc.subject.keywordClimate change,Drought,Jhuoshuei River Alluvial Plain,Rice production,AquaCrop,Risk assessment,en
dc.relation.page107-
dc.identifier.doi10.6342/NTU202403707-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-12-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept森林環境暨資源學系-
dc.date.embargo-lift2029-08-07-
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  此日期後於網路公開 2029-08-07
2.98 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved