Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95432
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor梁文傑zh_TW
dc.contributor.advisorMan-kit Leungen
dc.contributor.author謝鎧鴻zh_TW
dc.contributor.authorKai-Hong Hsiehen
dc.date.accessioned2024-09-06T16:31:32Z-
dc.date.available2024-09-07-
dc.date.copyright2024-09-06-
dc.date.issued2024-
dc.date.submitted2024-08-11-
dc.identifier.citation(1) Itoh, T. Fluorescence and phosphorescence from higher excited states of organic molecules. Chemical Reviews 2012, 112 (8), 4541-4568. DOI: 10.1021/cr200166m.
(2) Ostroverkhova, O. Organic Optoelectronic Materials: Mechanisms and Applications. Chemical Reviews 2016, 116 (22), 13279-13412. DOI: 10.1021/acs.chemrev.6b00127.
(3) Gao, C.; Wong, W. W. H.; Qin, Z.; Lo, S. C.; Namdas, E. B.; Dong, H.; Hu, W. Application of Triplet–Triplet Annihilation Upconversion in Organic Optoelectronic Devices: Advances and Perspectives. Advanced Materials 2021, 33 (45), 2100704. DOI: 10.1002/adma.202100704.
(4) Izawa, S.; Morimoto, M.; Naka, S.; Hiramoto, M. Efficient Interfacial Upconversion Enabling Bright Emission at an Extremely Low Driving Voltage in Organic Light‐Emitting Diodes. Advanced Optical Materials 2022, 10 (4), 2101710. DOI: 10.1002/adom.202101710.
(5) Seo, S. E.; Choe, H.-S.; Cho, H.; Kim, H.-I.; Kim, J.-H.; Kwon, O. S. Recent advances in materials for and applications of triplet–triplet annihilation-based upconversion. Journal of Materials Chemistry C 2022, 10 (12), 4483-4496. DOI: 10.1039/d1tc03551g.
(6) Sun, Y.; Giebink, N. C.; Kanno, H.; Ma, B.; Thompson, M. E.; Forrest, S. R. Management of singlet and triplet excitons for efficient white organic light-emitting devices. Nature 2006, 440 (7086), 908-912. DOI: 10.1038/nature04645.
(7) Reineke, S.; Lindner, F.; Schwartz, G.; Seidler, N.; Walzer, K.; Lüssem, B.; Leo, K. White organic light-emitting diodes with fluorescent tube efficiency. Nature 2009, 459 (7244), 234-238. DOI: 10.1038/nature08003.
(8) Helfrich, W.; Schneider, W. G. Transients of Volume-Controlled Current and of Recombination Radiation in Anthracene. The Journal of Chemical Physics 1966, 44 (8), 2902-2909. DOI: 10.1063/1.1727152.
(9) Baldo, M. A.; O'Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 1998, 395 (6698), 151-154. DOI: 10.1038/25954.
(10) Adachi, C.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R. Nearly 100% internal phosphorescence efficiency in an organic light-emitting device. Journal of Applied Physics 2001, 90 (10), 5048-5051. DOI: 10.1063/1.1409582.
(11) Endo, A.; Ogasawara, M.; Takahashi, A.; Yokoyama, D.; Kato, Y.; Adachi, C. Thermally Activated Delayed Fluorescence from Sn4+-Porphyrin Complexes and Their Application to Organic Light Emitting Diodes - A Novel Mechanism for Electroluminescence. Advanced Materials 2009, 21 (47), 4802-4806. DOI: 10.1002/adma.200900983.
(12) Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 2012, 492 (7428), 234-238. DOI: 10.1038/nature11687.
(13) Zhang, Q.; Kuwabara, H.; Potscavage, W. J., Jr.; Huang, S.; Hatae, Y.; Shibata, T.; Adachi, C. Anthraquinone-based intramolecular charge-transfer compounds: computational molecular design, thermally activated delayed fluorescence, and highly efficient red electroluminescence. Journal of the American Chemical Society 2014, 136 (52), 18070-18081. DOI: 10.1021/ja510144h.
(14) Cui, L. S.; Nomura, H.; Geng, Y.; Kim, J. U.; Nakanotani, H.; Adachi, C. Controlling Singlet–Triplet Energy Splitting for Deep‐Blue Thermally Activated Delayed Fluorescence Emitters. Angewandte Chemie International Edition 2017, 56 (6), 1571-1575. DOI: 10.1002/anie.201609459.
(15) Lee, J.; Chen, H.-F.; Batagoda, T.; Coburn, C.; Djurovich, P. I.; Thompson, M. E.; Forrest, S. R. Deep blue phosphorescent organic light-emitting diodes with very high brightness and efficiency. Nature Materials 2016, 15 (1), 92-98. DOI: 10.1038/nmat4446.
(16) Kondakov, D. Y.; Pawlik, T. D.; Hatwar, T. K.; Spindler, J. P. Triplet annihilation exceeding spin statistical limit in highly efficient fluorescent organic light-emitting diodes. Journal of Applied Physics 2009, 106 (12), 124510. DOI: 10.1063/1.3273407.
(17) Wallikewitz, B. H.; Kabra, D.; Gélinas, S.; Friend, R. H. Triplet dynamics in fluorescent polymer light-emitting diodes. Physical Review B 2012, 85 (4), 045209. DOI: 10.1103/PhysRevB.85.045209.
(18) Zhang, Y.; Forrest, S. R. Triplets Contribute to Both an Increase and Loss in Fluorescent Yield in Organic Light Emitting Diodes. Physical Review Letters 2012, 108 (26), 267404. DOI: 10.1103/physrevlett.108.267404.
(19) Hu, J. Y.; Pu, Y. J.; Satoh, F.; Kawata, S.; Katagiri, H.; Sasabe, H.; Kido, J. Bisanthracene‐Based Donor–Acceptor‐type Light‐Emitting Dopants: Highly Efficient Deep‐Blue Emission in Organic Light‐Emitting Devices. Advanced Functional Materials 2014, 24 (14), 2064-2071. DOI: 10.1002/adfm.201302907.
(20) Chou, P. Y.; Chou, H. H.; Chen, Y. H.; Su, T. H.; Liao, C. Y.; Lin, H. W.; Lin, W. C.; Yen, H. Y.; Chen, I. C.; Cheng, C. H. Efficient delayed fluorescence via triplet–triplet annihilation for deep-blue electroluminescence. Chemical Communications 2014, 50 (52), 6869-6871. DOI: 10.1039/c4cc01851f.
(21) Di, D.; Yang, L.; Richter, J. M.; Meraldi, L.; Altamimi, R. M.; Alyamani, A. Y.; Credgington, D.; Musselman, K. P.; Macmanus‐Driscoll, J. L.; Friend, R. H. Efficient Triplet Exciton Fusion in Molecularly Doped Polymer Light‐Emitting Diodes. Advanced Materials 2017, 29 (13), 1605987. DOI: 10.1002/adma.201605987.
(22) Tang, X.; Bai, Q.; Shan, T.; Li, J.; Gao, Y.; Liu, F.; Liu, H.; Peng, Q.; Yang, B.; Li, F.; et al. Efficient Nondoped Blue Fluorescent Organic Light‐Emitting Diodes (OLEDs) with a High External Quantum Efficiency of 9.4% @ 1000 cd m<sup>−2</sup> Based on Phenanthroimidazole−Anthracene Derivative. Advanced Functional Materials 2018, 28 (11), 1705813. DOI: 10.1002/adfm.201705813.
(23) Uji, M.; Zähringer, T. J. B.; Kerzig, C.; Yanai, N. Visible‐to‐UV Photon Upconversion: Recent Progress in New Materials and Applications. Angewandte Chemie 2023. DOI: 10.1002/ange.202301506.
(24) Schmidt, T. W.; Castellano, F. N. Photochemical Upconversion: The Primacy of Kinetics. The Journal of Physical Chemistry Letters 2014, 5 (22), 4062-4072. DOI: 10.1021/jz501799m.
(25) Stavrou, K.; Danos, A.; Hama, T.; Hatakeyama, T.; Monkman, A. Hot Vibrational States in a High-Performance Multiple Resonance Emitter and the Effect of Excimer Quenching on Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces 2021, 13 (7), 8643-8655. DOI: 10.1021/acsami.0c20619.
(26) Farley, S. J.; Rochester, D. L.; Thompson, A. L.; Howard, J. A. K.; Williams, J. A. G. Controlling Emission Energy, Self-Quenching, and Excimer Formation in Highly Luminescent N∧C∧N-Coordinated Platinum(II) Complexes. Inorganic Chemistry 2005, 44 (26), 9690-9703. DOI: 10.1021/ic051049e.
(27) Keevers, T. L.; McCamey, D. R. Theory of triplet-triplet annihilation in optically detected magnetic resonance. Physical Review B 2016, 93 (4), 045210. DOI: 10.1103/PhysRevB.93.045210.
(28) Köhler, A.; Bässler, H. Triplet states in organic semiconductors. Materials Science and Engineering: R: Reports 2009, 66 (4-6), 71-109. DOI: 10.1016/j.mser.2009.09.001.
(29) Cheng, Y. Y.; Khoury, T.; Clady, R. G. C. R.; Tayebjee, M. J. Y.; Ekins-Daukes, N. J.; Crossley, M. J.; Schmidt, T. W. On the efficiency limit of triplet–triplet annihilation for photochemical upconversion. Physical Chemistry Chemical Physics 2010, 12 (1), 66-71. DOI: 10.1039/b913243k.
(30) El-Sayed, M. A. triplet-state-its-radiative-and-nonradiative-properties. Accounts of Chemical Research 1986, 1, 8-16.
(31) Gibson, J.; Monkman, A. P.; Penfold, T. J. The Importance of Vibronic Coupling for Efficient Reverse Intersystem Crossing in Thermally Activated Delayed Fluorescence Molecules. ChemPhysChem 2016, 17 (19), 2956-2961. DOI: 10.1002/cphc.201600662.
(32) Etherington, M. K.; Gibson, J.; Higginbotham, H. F.; Penfold, T. J.; Monkman, A. P. Revealing the spin–vibronic coupling mechanism of thermally activated delayed fluorescence. Nature Communications 2016, 7 (1), 13680. DOI: 10.1038/ncomms13680.
(33) M. B. Smith, J., Michl. singlet-fission. Chemical Reviews 2010, 110, 6891–6936.
(34) Li, J. K.; Zhang, M. Y.; Zeng, L.; Huang, L.; Wang, X. Y. NIR‐Absorbing B,N‐Heteroarene as Photosensitizer for High‐Performance NIR‐to‐Blue Triplet‐Triplet Annihilation Upconversion. Angewandte Chemie International Edition 2023, 62 (25), e202303093. DOI: 10.1002/anie.202303093.
(35) Zhang, B.; Richards, K. D.; Jones, B. E.; Collins, A. R.; Sanders, R.; Needham, S. R.; Qian, P.; Mahadevegowda, A.; Ducati, C.; Botchway, S. W.; et al. Ultra‐Small Air‐Stable Triplet‐Triplet Annihilation Upconversion Nanoparticles for Anti‐Stokes Time‐Resolved Imaging. Angewandte Chemie International Edition 2023, 62 (47), e202308602. DOI: 10.1002/anie.202308602.
(36) Chen, C. H.; Li, Y. S.; Fang, S. C.; Lin, B. Y.; Li, C. Y.; Liao, Y. C.; Chen, D. G.; Chen, Y. R.; Kung, Y. C.; Wu, C. C.; et al. High‐Performance Deep‐Blue OLEDs Harnessing Triplet–Triplet Annihilation Under Low Dopant Concentration. Advanced Photonics Research 2023, 4 (2), 2200204. DOI: 10.1002/adpr.202200204.
(37) Chen, C. H.; Hsiao, Z. C.; Fan, B. A.; Hou, L. J.; Lin, J. H.; Lin, B. Y.; Liu, K. T.; Huang, Y. R.; Zhang, Y. Z.; Dzeng, Y. C.; et al. Benzimidazole-substituted bisanthracene: a highly efficient deep-blue triplet–triplet fusion OLED emitter at low dopant concentration. Materials Today Chemistry 2022, 26, 101185. DOI: 10.1016/j.mtchem.2022.101185.
(38) Cao, C.; Yang, G. X.; Tan, J. H.; Shen, D.; Chen, W. C.; Chen, J. X.; Liang, J. L.; Zhu, Z. L.; Liu, S. H.; Tong, Q. X.; et al. Deep-blue high-efficiency triplet-triplet annihilation organic light-emitting diodes using donor- and acceptor-modified anthracene fluorescent emitters. Materials Today Energy 2021, 21, 100727. DOI: 10.1016/j.mtener.2021.100727.
(39) Nguyen, T. B.; Nakanotani, H.; Chan, C. Y.; Kakumachi, S.; Adachi, C. Enhancing Triplet-Triplet Upconversion Efficiency and Operational Lifetime in Blue Organic Light-Emitting Diodes by Utilizing Thermally Activated Delayed Fluorescence Materials. ACS Appl Mater Interfaces 2023, 15 (19), 23557-23563. DOI: 10.1021/acsami.3c02855.
(40) Sasaki, S.; Goushi, K.; Mamada, M.; Miyazaki, S.; Miyata, K.; Onda, K.; Adachi, C. Indication of Intramolecular Triplet–Triplet Annihilation Upconversion in Organic Light‐Emitting Diodes. Advanced Optical Materials 2023, 2301924. DOI: 10.1002/adom.202301924.
(41) Edhborg, F.; Bildirir, H.; Bharmoria, P.; Moth-Poulsen, K.; Albinsson, B. Intramolecular Triplet–Triplet Annihilation Photon Upconversion in Diffusionally Restricted Anthracene Polymer. The Journal of Physical Chemistry B 2021, 125 (23), 6255-6263. DOI: 10.1021/acs.jpcb.1c02856.
(42) Olesund, A.; Gray, V.; Martensson, J.; Albinsson, B. Diphenylanthracene Dimers for Triplet-Triplet Annihilation Photon Upconversion: Mechanistic Insights for Intramolecular Pathways and the Importance of Molecular Geometry. Journal of the American Chemical Society 2021, 143 (15), 5745-5754. DOI: 10.1021/jacs.1c00331.
(43) Kanoh, M.; Matsui, Y.; Honda, K.; Kokita, Y.; Ogaki, T.; Ohta, E.; Ikeda, H. Elongation of Triplet Lifetime Caused by Intramolecular Energy Hopping in Diphenylanthracene Dyads Oriented to Undergo Efficient Triplet–Triplet Annihilation Upconversion. The Journal of Physical Chemistry B 2021, 125 (18), 4831-4837. DOI: 10.1021/acs.jpcb.1c01982.
(44) Ieuji, R.; Goushi, K.; Adachi, C. Triplet–triplet upconversion enhanced by spin–orbit coupling in organic light-emitting diodes. Nature Communications 2019, 10 (1), 5283. DOI: 10.1038/s41467-019-13044-1.
(45) Huynh, V. N.; Leitner, M.; Bhattacharyya, A.; Uhlstein, L.; Kreitmeier, P.; Sakrausky, P.; Rehbein, J.; Reiser, O. Diels–Alder reactions and electrophilic substitutions with atypical regioselectivity enable functionalization of terminal rings of anthracene. Communications Chemistry 2020, 3 (1), 158. DOI: 10.1038/s42004-020-00407-9.
(46) Bouas-Laurent, H.; Desvergne, J.-P.; Castellan, A.; Lapouyade, R. Photodimerization of anthracenes in fluid solution: structural aspects. Chemical Society Reviews 2000, 29 (1), 43-55. DOI: 10.1039/a801821i.
(47) Bennett, R. G.; McCartin, P. J. Radiationless Deactivation of the Fluorescent State of Substituted Anthracenes. The Journal of Chemical Physics 1966, 44 (5), 1969-1972. DOI: 10.1063/1.1726971.
(48) Gao, Y.; Liu, H.; Zhang, S.; Gu, Q.; Shen, Y.; Ge, Y.; Yang, B. Excimer formation and evolution of excited state properties in discrete dimeric stacking of an anthracene derivative: a computational investigation. Physical Chemistry Chemical Physics 2018, 20 (17), 12129-12137. DOI: 10.1039/c8cp00834e.
(49) Kashino, T.; Hosoyamada, M.; Haruki, R.; Harada, N.; Yanai, N.; Kimizuka, N. Bulk Transparent Photon Upconverting Films by Dispersing High-Concentration Ionic Emitters in Epoxy Resins. ACS Applied Materials & Interfaces 2021, 13 (11), 13676-13683. DOI: 10.1021/acsami.0c23121.
(50) Gray, V.; Moth-Poulsen, K.; Albinsson, B.; Abrahamsson, M. Towards efficient solid-state triplet–triplet annihilation based photon upconversion: Supramolecular, macromolecular and self-assembled systems. Coordination Chemistry Reviews 2018, 362, 54-71. DOI: 10.1016/j.ccr.2018.02.011.
(51) Raišys, S.; Adomėnienė, O.; Adomėnas, P.; Rudnick, A.; Köhler, A.; Kazlauskas, K. Triplet Exciton Diffusion and Quenching in Matrix-Free Solid Photon Upconversion Films. The Journal of Physical Chemistry C 2021, 125 (7), 3764-3775. DOI: 10.1021/acs.jpcc.0c11048.
(52) Massaro, G.; Zampini, G.; Ruiz-Molina, D.; Hernando, J.; Roscini, C.; Latterini, L. Thermal Control of Intermolecular Interactions and Tuning of Fluorescent-State Energies. The Journal of Physical Chemistry C 2019, 123 (8), 4632-4637. DOI: 10.1021/acs.jpcc.8b09774.
(53) Chen, C.-H.; Li, Y.-S.; Fang, S.-C.; Lin, B.-Y.; Li, C.-Y.; Liao, Y.-C.; Chen, D.-G.; Chen, Y.-R.; Kung, Y.-C.; Wu, C.-C.; et al. High‐Performance Deep‐Blue OLEDs Harnessing Triplet–Triplet Annihilation Under Low Dopant Concentration. Advanced Photonics Research 2023, 4 (2), 2200204. DOI: 10.1002/adpr.202200204.
(54) G. Heinrich , S. S. a. H. G. 9,10-Diphenylanthracene as a fluorescence quantum yield standard. J. Photochem. 1974, 3, 315-320.
(55) Lee, J.-H.; Chen, C.-H.; Lee, P.-H.; Lin, H.-Y.; Leung, M.-k.; Chiu, T.-L.; Lin, C.-F. Blue organic light-emitting diodes: current status, challenges, and future outlook. Journal of Materials Chemistry C 2019, 7 (20), 5874-5888. DOI: 10.1039/c9tc00204a.
(56) Qiao, X.; Ma, D. Nonlinear optoelectronic processes in organic optoelectronic devices: Triplet-triplet annihilation and singlet fission. Materials Science and Engineering: R: Reports 2020, 139, 100519. DOI: 10.1016/j.mser.2019.100519.
(57) Monguzzi, A.; Tubino, R.; Hoseinkhani, S.; Campione, M.; Meinardi, F. Low power, non-coherent sensitized photon up-conversion: modelling and perspectives. Physical Chemistry Chemical Physics 2012, 14 (13), 4322-4332. DOI: 10.1039/c2cp23900k.
(58) Nishimura, N.; Gray, V.; Allardice, J. R.; Zhang, Z.; Pershin, A.; Beljonne, D.; Rao, A. Photon Upconversion from Near-Infrared to Blue Light with TIPS-Anthracene as an Efficient Triplet–Triplet Annihilator. ACS Materials Letters 2019, 1 (6), 660-664. DOI: 10.1021/acsmaterialslett.9b00287.
(59) Gray, V.; Dzebo, D.; Lundin, A.; Alborzpour, J.; Abrahamsson, M.; Albinsson, B.; Moth-Poulsen, K. Photophysical characterization of the 9,10-disubstituted anthracene chromophore and its applications in triplet–triplet annihilation photon upconversion. Journal of Materials Chemistry C 2015, 3 (42), 11111-11121. DOI: 10.1039/c5tc02626a.
(60) Kiseleva, N.; Busko, D.; Richards, B. S.; Filatov, M. A.; Turshatov, A. Determination of Upconversion Quantum Yields Using Charge-Transfer State Fluorescence of Heavy-Atom-Free Sensitizer as a Self-Reference. The Journal of Physical Chemistry Letters 2020, 11 (16), 6560-6566. DOI: 10.1021/acs.jpclett.0c01902.
(61) Madirov, E.; Busko, D.; Cardona, F. A.; Hudry, D.; Kuznetsov, S. V.; Konyushkin, V. A.; Nakladov, A. N.; Alexandrov, A. A.; Howard, I. A.; Richards, B. S.; et al. Comparison of Quantum Yield of Upconversion Nanocrystals Determined by Absolute and Relative Methods. Advanced Photonics Research 2023, 4 (2), 2200187. DOI: 10.1002/adpr.202200187.
(62) Yiu, T. C.; Gnanasekaran, P.; Chen, W.-L.; Lin, W.-H.; Lin, M.-J.; Wang, D.-Y.; Lu, C.-W.; Chang, C.-H.; Chang, Y. J. Multifaceted Sulfone–Carbazole-Based D–A–D Materials: A Blue Fluorescent Emitter as a Host for Phosphorescent OLEDs and Triplet–Triplet Annihilation Up-Conversion Electroluminescence. ACS Applied Materials & Interfaces 2023, 15 (1), 1748-1761. DOI: 10.1021/acsami.2c21294.
(63) Andruleviciene, V.; Leitonas, K.; Volyniuk, D.; Sini, G.; Grazulevicius, J. V.; Getautis, V. TADF versus TTA emission mechanisms in acridan and carbazole-substituted dibenzo[a,c]phenazines: Towards triplet harvesting emitters and hosts. Chemical Engineering Journal 2021, 417, 127902. DOI: 10.1016/j.cej.2020.127902.
(64) Gao, C.; Prasad, S. K. K.; Zhang, B.; Dvořák, M.; Tayebjee, M. J. Y.; McCamey, D. R.; Schmidt, T. W.; Smith, T. A.; Wong, W. W. H. Intramolecular Versus Intermolecular Triplet Fusion in Multichromophoric Photochemical Upconversion. The Journal of Physical Chemistry C 2019, 123 (33), 20181-20187. DOI: 10.1021/acs.jpcc.9b07098.
(65) Sakamoto, Y.; Tamai, Y.; Ohkita, H. Sensitizer-host-annihilator ternary-cascaded triplet energy landscape for efficient photon upconversion in the solid state. J Chem Phys 2020, 153 (16), 161102. DOI: 10.1063/5.0025438.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95432-
dc.description.abstract對於三重態三重態湮滅上轉換之藍色發光材料的研究,分別以下列兩個章節做敘述,分別為分子內鄰位兩個蒽發光基團的設計,以及單發光基團並引入咔唑取代的蒽衍生物:第一章中,我們合成了四種具有不同程度芳香環-芳香環 (Aryl-Aryl) 堆疊的雙蒽結構分子(An1、An2、An3、An4)。通過立體效應,我們的目標是最大程度地減小兩個蒽單元之間的距離,以最大化π-π相互作用。這種方法旨在觀察光物理行為的變化。此外,利用An4和環芳烷9的獨特光致變色和熱致變色性質,我們實現了可逆的分子內開環和閉環。於第二章,藉由第一章所得到的研究基礎,我們開發了三種咔唑取代的蒽衍生物:2CbzAn、26CbzAn和246CbzAn。這些結構中咔唑取代基的引入導致產生更多能量接近 2 x E(T1) 的三重態 E(Tm),有效促進了三重態-三重態湮滅-上轉換 (TTA-UC) 過程,實現了更高的上轉換效率。不僅如此,隨著咔唑的引入,亦提高了螢光放光過程的效率 (PLQY)。在有機發光二極體元件的研究中,非摻雜狀態的元件展示了最高5.82%的外部量子效率(EQEmax)並展示了出色的純藍色發光(CIEy為0.101)。此外,DPaNIF摻雜的DMPPP/26CbzAn雙發光層(EML)結構的元件達到了相當不錯結果 (EQEmax=11.12%)。zh_TW
dc.description.abstractIn our research focusing on blue light-emitting materials based on triplet-triplet annihilation upconversion (TTA-UC), we have structured the study into two main chapters. The first chapter concentrates on intramolecular ortho-dianthracene designs, while the second chapter explores carbazole-based anthracene derivatives. In the first chapter of our study, we synthesized four molecules featuring varying degrees of aryl-aryl (Ar-Ar) stacking within di-anthracene structures (An1, An2, An3, An4). Utilizing steric effects, we aimed to minimize the distance between the two anthracene units to maximize π-π interactions. This approach was undertaken to observe changes in photophysical behavior. Additionally, leveraging the unique photochromism and thermochromism properties of An4 and cyclophane 9, we achieved reversible intramolecular ring-opening and closing. Building on the insights from Chapter 1, we developed three carbazole-substituted anthracenes: 2CbzAn, 26CbzAn, and 246CbzAn. The introduction of carbazole substituents in these structures resulted in the generation of more triplet states with energy levels near 2 x E(T1), effectively facilitating the TTA-UC process for a higher upconversion quantum yield. This finding aligns with the Adachi theory on TTA-UC mechanisms. In our OLED device studies, in its non-doped form, demonstrated a maximum external quantum efficiency (EQEmax) of 5.82% and exhibited exceptional pure-blue emission (CIEy of 0.101). Moreover, the OLED with a DPaNIF-doped DMPPP/26CbzAn bilayer structure achieved an impressive EQEmax of 11.12%, highlighting the potential of these materials in OLED applications.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-06T16:31:32Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-06T16:31:32Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents中文摘要 i
Abstract ii
Content iii
List of Figure vii
List of Scheme xi
List of Table xii
Chapter 1: Investigating the Photophysical Behavior with ortho-Dianthracene Derivatives Through Varying Intramolecular Arrangements and Stacking - 1 -
1.1 Introduction: - 1 -
1.1.1 Principles of Fluorescence and Phosphorescence. - 1 -
1.1.2 Effective utilization of delayed fluorescence in blue emitters. - 3 -
1.1.3 Triplet-triplet annihilation - 4 -
1.1.4 High-performance TTA-UC mechanism - 10 -
1.2 Research background and motivation: - 15 -
1.2.1 Preface: - 15 -
1.2.2 Key literature survey - 16 -
1.2.3 Molecular design - 21 -
1.3 Results and Discussion - 23 -
1.3.1 Synthesis procedure - 23 -
1.3.2 Control experiments for isomerization - 26 -
1.3.2 X-ray crystallographic analysis - 28 -
1.3.3 Photophysical characterization - 34 -
1.3.4 Triplet-triplet annihilation upconversion study - 37 -
1.3.5 Computation analysis - 39 -
1.3.6 Photochromism study - 42 -
1.4 Conclusion - 45 -
1.5 Experimental details of the Synthesis procedure - 46 -
Chapter 2: Enhancing Triplet-Triplet Annihilation Upconversion Performance through Anthracene-carbazole Interactions for Organic Optoelectronic Applications - 55 -
2.1 Introduction - 55 -
2.1.1 Preface - 55 -
2.2 Results and Discussion - 57 -
2.2.1 Synthesis Procedure - 57 -
2.2.2 X-ray crystallographic analysis - 59 -
2.2.3 Photophysical characterization - 62 -
2.2.4 Triplet-triplet annihilation upconversion study - 66 -
2.2.5 Stern-Volmer quenching analysis - 71 -
2.2.6 Electrochemical analysis - 75 -
2.2.7 Thermal analysis - 77 -
2.2.8 Computation analysis - 78 -
2.3 Organic light-emitting diodes (OLEDs) - 87 -
2.3.1 Device Structure - 87 -
2.3.2 OLEDs performances of non-doped and single layer device structure. - 89 -
2.3.3 Hole and electron mobilities. - 97 -
2.3.4 Delay electroluminescence study - 101 -
2.4 Conclusion - 105 -
2.5 Experiment details of synthesis procedure - 106 -
3. Reference - 112 -
4. Appendix - 122 -
4.1 1H, 13C NMR Spectroscopy - 122 -
4.2 High Resolution Mass Spectroscopy - 134 -
4.3 Theoretical Computation - 144 -
4.4 X-ray Crystallographic Data - 149 -
9-(anthracen-1-ylethynyl)-10-phenylanthracene (13) - 149 -
10,10'-((4'r,5's)-3',6'-diphenyl-[1,1':2',1''-terphenyl]-4',5'-diyl)bis(9-phenylanthracene) (An1) - 161 -
1,1'-((4'R,5'R)-3',6'-diphenyl-[1,1':2',1''-terphenyl]-4',5'-diyl)dianthracene (An2) - 169 -
9-((3's,4'S)-4'-(anthracen-1-yl)-5',6'-diphenyl-[1,1':2',1''-terphenyl]-3'-yl)-10-phenylanthracene (An3) - 185 -
Cyclophane 9 - 197 -
9-(2-fluorophenyl)-10-phenylanthracene (2FAn) - 213 -
9-phenyl-10-(2,4,6-trifluorophenyl)anthracene (246FAn) - 216 -
(r)-9-(2-(10-phenylanthracen-9-yl)phenyl)-9H-carbazole (2CbzAn) - 219 -
9,9'-((1r,3r)-2-(10-phenylanthracen-9-yl)-1,3-phenylene)bis(9H-carbazole) (26CbzAn) - 232 -
9,9',9''-((1r,3r)-2-(10-phenylanthracen-9-yl)benzene-1,3,5-triyl)tris(9H-carbazole) (246CbzAn) - 246 -
(r)-9-(2,5-bis(10-phenylanthracen-9-yl)phenyl)-9H-carbazole (2Cbz14An) - 262 -
4.5 CheckCIF - 275 -
-
dc.language.isoen-
dc.subject熱致變色zh_TW
dc.subject三重態三重態湮滅上轉換zh_TW
dc.subject有機藍色發光材料zh_TW
dc.subject有機發光二極體zh_TW
dc.subject光致變色zh_TW
dc.subject咔唑蒽衍生物zh_TW
dc.subjectorganic light-emitting diodesen
dc.subjecttriplet–triplet annihilation upconversionen
dc.subjectanthraceneen
dc.subjectblue emissionen
dc.subjecthost materialen
dc.title高性能三重態-三重態湮滅上轉換藍色發光材料的開發及應用在有機發光二極體中的研究zh_TW
dc.titleInvestigation of the High-Performance Triplet-Triplet Annihilation Upconversion Blue Luminescent Materials and Their Potential in OLED Applicationsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee李君浩;邱天隆;李怡葶;尤嘯華zh_TW
dc.contributor.oralexamcommitteeJiun-Haw Lee;Tien-Lung Chiu;Yi-Ting Lee;Hsiao-hua Yuen
dc.subject.keyword三重態三重態湮滅上轉換,有機藍色發光材料,有機發光二極體,光致變色,熱致變色,咔唑蒽衍生物,zh_TW
dc.subject.keywordanthracene,blue emission,host material,organic light-emitting diodes,triplet–triplet annihilation upconversion,en
dc.relation.page300-
dc.identifier.doi10.6342/NTU202403824-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-13-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
dc.date.embargo-lift2029-08-07-
Appears in Collections:化學系

Files in This Item:
File SizeFormat 
ntu-112-2.pdf
  Until 2029-08-07
16.39 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved