Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 氣候變遷與永續發展國際學位學程(含碩士班、博士班)
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95420
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor童慶斌zh_TW
dc.contributor.advisorChing-Pin Tungen
dc.contributor.author張清惠zh_TW
dc.contributor.authorTruong Thanh Hueen
dc.date.accessioned2024-09-06T16:28:03Z-
dc.date.available2024-09-07-
dc.date.copyright2024-09-06-
dc.date.issued2024-
dc.date.submitted2024-08-13-
dc.identifier.citationJournals
Abraham, B. P., & Moitra, S. D. (2001a). Innovation assessment through patent analysis. Technovation, 21(4), 245–252. https://doi.org/10.1016/s0166-4972(00)00040-7
Albino, V., Ardito, L., Dangelico, R. M., & Messeni Petruzzelli, A. (2014). Understanding the development trends of low-carbon energy technologies: A patent analysis. Applied Energy, 135, 836–854. https://doi.org/10.1016/j.apenergy.2014.08.012
Andreas, J.-J., Serdoner, A., & Whiriskey, K. (2018). An Industry’s Guide to Climate Action (The Bellona Foundation). Retrieved from https://network.bellona.org/content/uploads/sites/3/2018/11/Industry-Report-final.pdf
Angki Pramana Satya Adidharma. (2023). Internal And External Analysis (IE) In Determining The Business Development Strategy Of Sweet Corn Seeds At UD. Agro Nusantara Prima, Bantul District, Yogyakarta Special Region. International Journal of Scientific and Research Publications, 13(2), 236–245. https://doi.org/10.29322/ijsrp.13.02.2023.p13428
Antonella Deorsola, Alexandre, Carla, Claudio, Amorim, R., Sonia Girardi Bencke, & Winter, E. (2013). Patent documents as a technology mapping tool in the Brazilian energy sector focused on the oil, gas and coke industries. 35(1), 42–51. https://doi.org/10.1016/j.wpi.2012.10.006
Anwar, M. N., Fayyaz, A., Sohail, N. F., Khokhar, M. F., Baqar, M., Khan, W. D., Rasool, K., Rehan, M., & Nizami, A. S. (2018). CO2 capture and storage: A way forward for sustainable environment. Journal of Environmental Management, 226, 131–144. https://doi.org/10.1016/j.jenvman.2018.08.009
Arning, K., Offermann-van Heek, J., Linzenich, A., Kaetelhoen, A., Sternberg, A., Bardow, A., & Ziefle, M. (2019). Same or different? Insights on public perception and acceptance of carbon capture and storage or utilization in Germany. Energy Policy, 125, 235–249. https://doi.org/10.1016/j.enpol.2018.10.039
Arning, K., Offermann-van Heek, J., Sternberg, A., Bardow, A., & Ziefle, M. (2020). Risk-benefit perceptions and public acceptance of Carbon Capture and Utilization. Environmental Innovation and Societal Transitions. https://doi.org/10.1016/j.eist.2019.05.003
Asayama, S., & Ishii, A. (2017). Selling stories of techno-optimism? The role of narratives on discursive construction of carbon capture and storage in the Japanese media. Energy Research & Social Science, 31, 50–59. https://doi.org/10.1016/j.erss.2017.06.010
Audi, M., Ali, A., & Kassem, M. (2020). GREENHOUSE GASES: A REVIEW OF LOSSES AND BENEFITS. International Journal of Energy Economics and Policy, 10(1), 403–418. https://doi.org/10.32479/ijeep.8416
Bae, J., Chung, Y., Lee, J., & Seo, H. (2020). Knowledge spillover efficiency of carbon capture, utilization, and storage technology: A comparison among countries. Journal of Cleaner Production, 246, 119003. https://doi.org/10.1016/j.jclepro.2019.119003
Bayer, P., & Aklin, M. (2020). The European Union Emissions Trading System reduced CO 2 emissions despite low prices. Proceedings of the National Academy of Sciences, 117(16), 8804–8812. https://doi.org/10.1073/pnas.1918128117
Birkmann, J., & von Teichman, K. (2010). Integrating disaster risk reduction and climate change adaptation: key challenges—scales, knowledge, and norms. Sustainability Science, 5(2), 171–184. https://doi.org/10.1007/s11625-010-0108-y
Bessen, J. (2008). The value of U.S. patents by owner and patent characteristics. Research Policy, 37(5), 932–945. https://doi.org/10.1016/j.respol.2008.02.005
Blazquez, J., Fuentes, R., & Manzano, B. (2020). On some economic principles of the energy transition. Energy Policy, 147, 111807. https://doi.org/10.1016/j.enpol.2020.111807
Boehm, S., & Schumer, C. (2023). 10 big findings from the 2023 IPCC report on climate change. World Resources Institute. https://www.wri.org/insights/2023-ipcc-ar6-synthesis-report-climate-change-findings
Bointner, R. (2014). Innovation in the energy sector: Lessons learnt from R&D expenditures and patents in selected IEA countries. Energy Policy, 73, 733–747. https://doi.org/10.1016/j.enpol.2014.06.001
Borrero-Santiago, A. R., Ribicic, D., Bonnail, E., Netzer, R., Koseto, D., & Ardelan, M. V. (2020). Response of bacterial communities in Barents Sea sediments in case of a potential CO2 leakage from carbon reservoirs. Marine Environmental Research, 160, 105050. https://doi.org/10.1016/j.marenvres.2020.105050
Bossink, B. A. G. (2017). Demonstrating sustainable energy: A review-based model of sustainable energy demonstration projects. Renewable and Sustainable Energy Reviews, 77, 1349–1362. https://doi.org/10.1016/j.rser.2017.02.002
Bui, M., Adjiman, C. S., Bardow, A., Anthony, E. J., Boston, A., Brown, S., Fennell, P. S., Fuss, S., Galindo, A., Hackett, L. A., Hallett, J. P., Herzog, H. J., Jackson, G., Kemper, J., Krevor, S., Maitland, G. C., Matuszewski, M., Metcalfe, I. S., Petit, C., . . . Mac Dowell, N. (2018). Carbon capture and storage (CCS): the way forward. Energy & Environmental Science, 11(5), 1062–1176. https://doi.org/10.1039/c7ee02342a
Bui, M. (2018). Carbon capture and storage (CCS): the way forward. Energy & Environmental Science, 11, 1062-1176. https://doi.org/10.1039/c7ee02342a
Cai, L., Tan, L., Liang, Y., Fu, Y., & Guan, Y. (2024). Investigation on the integration of supercritical CO2 cycle with natural gas oxy-fuel combustion power plant. Process Safety and Environmental Protection/Transactions of the Institution of Chemical Engineers. Part B, Process Safety and Environmental Protection/Chemical Engineering Research and Design/Chemical Engineering Research & Design, 205, 148–160. https://doi.org/10.1016/j.cherd.2024.03.027
Castillo Castillo, A., & Angelis-Dimakis, A. (2019). Analysis and recommendations for European carbon dioxide utilization policies. Journal of Environmental Management, 247, 439–448. https://doi.org/10.1016/j.jenvman.2019.06.092
Cardoso, B., Procópio, D. P., Borrego, B. B., Gracioso, L. H., Stevani, C. V., Freire, R. S., Claudio, & Perpetuo, E. A. (2022). Overview of CO2 Bioconversion into Third-Generation (3G) Bioethanol—a Patent-Based Scenario. BioEnergy Research/BioEnergy Research, 16(3), 1229–1245. https://doi.org/10.1007/s12155-022-10535-w
Casero, P., Francisco García Peña, Coca, P., & Trujillo, J. (2014). ELCOGAS 14 MWth pre-combustion carbon dioxide capture pilot. Technical & economical achievements. Fuel, 116, 804–811. https://doi.org/10.1016/j.fuel.2013.07.027
Castro, M., Gómez-Díaz, D., Navaza, J. M., & Rumbo, A. (2020). Carbon Dioxide Capture by Chemical Solvents based on Amino Acids: Absorption and Regeneration. Chemical Engineering & Technology. https://doi.org/10.1002/ceat.201900562
Castiñeira, D., Jha, B., & Juanes, R. (2016). Uncertainty Quantification and Inverse Modeling of Fault Poromechanics and Induced Seismicity: Application to a Synthetic Carbon Capture and Storage (CCS) Problem. 50th U.S. Rock Mechanics/Geomechanics Symposium.
Cavalheiro, G. M. do C., Joia, L. A., & Gonçalves, A. C. (2014). Strategic patenting in the upstream oil and gas industry: Assessing the impact of the pre-salt discovery on patent applications in Brazil. World Patent Information, 39, 58–68. https://doi.org/10.1016/j.wpi.2014.04.003
Chadwick, R. A., Zweigel, P., Gregersen, U., Kirby, G. A., Holloway, S., & Johannessen, P. N. (2004). Geological reservoir characterization of a CO2 storage site: The Utsira Sand, Sleipner, northern North Sea. Energy, 29(9-10), 1371–1381. https://doi.org/10.1016/j.energy.2004.03.071
Choi, H., & Woo, J. (2022). Investigating emerging hydrogen technology topics and comparing national level technological focus: Patent analysis using a structural topic model. Applied Energy, 313, 118898. https://doi.org/10.1016/j.apenergy.2022.118898
Cuéllar-Franca, R. M., & Azapagic, A. (2015). Carbon capture, storage and utilization technologies: A critical analysis and comparison of their life cycle environmental impacts. Journal of CO2 Utilization, 9, 82–102. https://doi.org/10.1016/j.jcou.2014.12.001
Chao, C., Deng, Y., Dewil, R., Baeyens, J., & Fan, X. (2021, March). Post-combustion carbon capture. Renewable and Sustainable Energy Reviews, 138, 110490. https://doi.org/10.1016/j.rser.2020.110490
Chauvy, R., & De Weireld, G. (2020, September 30). CO2 Utilization Technologies in Europe: A Short Review. Energy Technology, 8(12). https://doi.org/10.1002/ente.202000627
Chauvy, R., Meunier, N., Thomas, D., & De Weireld, G. (2019). Selecting emerging CO2 utilization products for short- to mid-term deployment. Applied Energy, 236, 662–680. https://doi.org/10.1016/j.apenergy.2018.11.096
Chauvy, R., Lai, Y.-Y., & Chen, P.-C. (2022). A geographical source-sink matching for carbon capture and utilization deployment in Taiwan. International Journal of Greenhouse Gas Control, 119, 103722. https://doi.org/10.1016/j.ijggc.2022.103722
Chen, S., Liu, J., Zhang, Q., Teng, F., & McLellan, B. C. (2022). A critical review on deployment planning and risk analysis of carbon capture, utilization, and storage (CCUS) toward carbon neutrality. Renewable and Sustainable Energy Reviews, 167, 112537. https://doi.org/10.1016/j.rser.2022.112537
Chen, Z., & Zhang, J. (2019). Types of patents and driving forces behind the patent growth in China. Economic Modelling, 80, 294–302. https://doi.org/10.1016/j.econmod.2018.11.015
Cormos, C.-C. (2016). Oxy-combustion of coal, lignite and biomass: A techno-economic analysis for a large scale Carbon Capture and Storage (CCS) project in Romania. Fuel, 169, 50–57. https://doi.org/10.1016/j.fuel.2015.12.005
Costantini, V., Crespi, F., & Palma, A. (2017). Characterizing the policy mix and its impact on eco-innovation: A patent analysis of energy-efficient technologies. Research Policy, 46(4), 799–819. https://doi.org/10.1016/j.respol.2017.02.004
Cruz, T. T. da, Perrella Balestieri, J. A., de Toledo Silva, J. M., Vilanova, M. R. N., Oliveira, O. J., & Ávila, I. (2021). Life cycle assessment of carbon capture and storage/utilization: From current state to future research directions and opportunities. International Journal of Greenhouse Gas Control, 108, 103309. https://doi.org/10.1016/j.ijggc.2021.103309
de Coninck, H., & Benson, S. M. (2014). Carbon Dioxide Capture and Storage: Issues and Prospects. Annual Review of Environment and Resources, 39(1), 243–270. https://doi.org/10.1146/annurev-environ-032112-095222
Deng, Q., Ling, X., Zhang, K., Tan, L., Qi, G., & Zhang, J. (2022). CCS and CCUS Technologies: Giving the Oil and Gas Industry a Green Future. Frontiers in Energy Research, 10. https://doi.org/10.3389/fenrg.2022.919330
Duch-Brown, N., & Costa-Campi, M. T. (2015). The diffusion of patented oil and gas technology with environmental uses: A forward patent citation analysis. Energy Policy, 83, 267–276. https://doi.org/10.1016/j.enpol.2015.03.001
Ediger, V., & Berk, I. (2023). Future availability of natural gas: Can it support sustainable energy transition? Resources Policy, 85, 103824. https://doi.org/10.1016/j.resourpol.2023.103824
Emodi, N. V., Murthy, G. P., Emodi, C. C., & Emodi, A. S. A. (2017). A Literature Review on the Factors Influencing Patent Propensity. International Journal of Innovation and Technology Management, 14(03), 1750015. https://doi.org/10.1142/s0219877017500158
Fan, N., Wang, J., Deng, C., Fan, Y., Mu, Y., & Wang, T. (2020). Numerical study on enhancing coalbed methane recovery by injecting N 2 /CO 2 mixtures and its geological significance. Energy Science & Engineering, 8(4), 1104–1119. https://doi.org/10.1002/ese3.571
Fankhauser, M., Moser, C., & Nyfeler, T. (2018). Patents as Early Indicators of Technology and Investment Trends: Analyzing the Microbiome Space as a Case Study. Frontiers in Bioengineering and Biotechnology, 6. https://doi.org/10.3389/fbioe.2018.00084
Fattouh, B., Poudineh, R., & West, R. (2019). The rise of renewables and energy transition: what adaptation strategy exists for oil companies and oil-exporting countries? Energy Transitions, 3. https://doi.org/10.1007/s41825-019-00013-x
Feng, X., & Fuhai, L. (2012). Patent text mining and informetric-based patent technology morphological analysis: an empirical study. Technology Analysis & Strategic Management, 24(5), 467–479. https://doi.org/10.1080/09537325.2012.674669
Fernyhough, J. (2023, May 17). Chevron’s Carbon Capture Flagship Is Stuck at One-Third Capacity. Bloomberg. https://www.bloomberg.com/news/articles/2023-05-17/chevron-s-carbon-capture-flagship-is-stuck-at-one-third-capacity#xj4y7vzkg
Frishammar, J., Söderholm, P., Bäckström, K., Hellsmark, H., & Ylinenpää, H. (2014). The role of pilot and demonstration plants in technological development: synthesis and directions for future research. Technology Analysis & Strategic Management, 27(1), 1–18. https://doi.org/10.1080/09537325.2014.943715
Fukai, I., Mishra, S., & Moody, M. A. (2016). Economic analysis of CO2-enhanced oil recovery in Ohio: Implications for carbon capture, utilization, and storage in the Appalachian Basin region. International Journal of Greenhouse Gas Control, 52, 357–377. https://doi.org/10.1016/j.ijggc.2016.07.015
García, J. H., & Torvanger, A. (2019). Carbon leakage from geological storage sites: Implications for carbon trading. Energy Policy, 127, 320–329. https://doi.org/10.1016/j.enpol.2018.11.015
Gellers, J. C. (2016). Crowdsourcing global governance: sustainable development goals, civil society, and the pursuit of democratic legitimacy. International Environmental Agreements: Politics, Law and Economics, 16(3), 415–432. https://doi.org/10.1007/s10784-016-9322-0
Gerard, D., & Wilson, E. J. (2009). Environmental bonds and the challenge of long-term carbon sequestration. Journal of Environmental Management, 90(2), 1097–1105. https://doi.org/10.1016/j.jenvman.2008.04.005
Gkika, D. A., Kontogoulidou, C., Nolan, J. W., Mitropoulos, A. Ch., Vansant, E. F., Cool, P., & Braet, J. (2016). Nano - patents and Literature Frequency as Statistical Innovation Indicator for the use of Nano - porous Material in Three Major Sectors: Medicine, Energy and Environment. Journal of Engineering Science and Technology Review, 9(5), 24–35. https://doi.org/10.25103/jestr.095.03
Gough, C. (2008). State of the art in carbon dioxide capture and storage in the UK: An experts’ review. International Journal of Greenhouse Gas Control, 2(1), 155–168. https://doi.org/10.1016/s1750-5836(07)00073-4
Guo, X., Yan, X., Yu, J., Yang, Y., Zhang, Y., Chen, S., Mahgerefteh, H., Martynov, S., & Collard, A. (2017). Pressure responses and phase transitions during the release of high pressure CO 2 from a large-scale pipeline. Energy, 118, 1066–1078. https://doi.org/10.1016/j.energy.2016.10.133
Hassani, H., Beneki, C., Unger, S., Mazinani, M. T., & Yeganegi, M. R. (2020). Text Mining in Big Data Analytics. Big Data and Cognitive Computing, 4(1), 1. https://doi.org/10.3390/bdcc4010001
Hartmann, J., Inkpen, A. C., & Ramaswamy, K. (2020). Different shades of green: Global oil and gas companies and renewable energy. Journal of International Business Studies, 52. https://doi.org/10.1057/s41267-020-00326-w
Haszeldine, R. S. (2009). Carbon Capture and Storage: How Green Can Black Be? Science, 325(5948), 1647–1652. https://doi.org/10.1126/science.1172246
Hawkes, A., Muûls, M. and Hamilton, J.W. (2023) ‘Big Oil and the energy transition: Evidence from M&A’. Energy Policy, 183, p. 113762. doi:10.1016/j.enpol.2023.113762.
He, W. (2013). Examining students’ online interaction in a live video streaming environment using data mining and text mining. Computers in Human Behavior, 29(1), 90–102. https://doi.org/10.1016/j.chb.2012.07.020
Hendrickson, N. (2022). How to explain the value of intelligence analysis: external consequences or internal characteristics? Intelligence and National Security, 1–14. https://doi.org/10.1080/02684527.2022.2076336
Hong, G.-B., Ma, C.-M., Hsiao, C.-C., & Chang, C.-T. (2015). A case study of greenhouse gas inventory and mitigation measures in the cement industry of Taiwan. Carbon Management, 6(3-4), 141–150. https://doi.org/10.1080/17583004.2015.1090316
Hong, W. Y. (2022). A techno-economic review on carbon capture, utilisation and storage systems for achieving a net-zero CO2 emissions future. Carbon Capture Science & Technology, 3, 100044. https://doi.org/10.1016/j.ccst.2022.100044
Hou, R., Fong, C., Freeman, B. D., Hill, M. R., & Xie, Z. (2022). Current status and advances in membrane technology for carbon capture. Separation and Purification Technology, 300, 121863. https://doi.org/10.1016/j.seppur.2022.121863
Hu, A. G., & Jefferson, G. H. (2009). A great wall of patents: What is behind China’s recent patent explosion? Journal of Development Economics, 90(1), 57–68. https://doi.org/10.1016/j.jdeveco.2008.11.004
Hu, A. G. Z., Zhang, P., & Zhao, L. (2017). China as number one? Evidence from China’s most recent patenting surge. Journal of Development Economics, 124, 107–119. https://doi.org/10.1016/j.jdeveco.2016.09.004
Huang, C., Chen, L., Tadikamalla, P. R., & Gordon, M. (2020). Valuation and investment strategies of carbon capture and storage technology under uncertainties in technology, policy and market. Journal of the Operational Research Society, 72(2), 292–303. https://doi.org/10.1080/01605682.2019.1678402
Huang, C.-M., Hsu, H.-W., Liu, W.-H., Cheng, J.-Y., Chen, W.-C., Wen, T.-W., & Chen, W. (2011). Development of post-combustion CO2 capture with CaO/CaCO3 looping in a bench scale plant. Energy Procedia, 4, 1268–1275. https://doi.org/10.1016/j.egypro.2011.01.183
Hunt, J. D., Nascimento, A., Nascimento, N., Vieira, L. W., & Romero, O. J. (2022). Possible pathways for oil and gas companies in a sustainable future: From the perspective of a hydrogen economy. Renewable and Sustainable Energy Reviews, 160, 112291. https://doi.org/10.1016/j.rser.2022.112291
Hussin, F., & Aroua, M. K. (2020). Recent trends in the development of adsorption technologies for carbon dioxide capture: A brief literature and patent reviews (2014–2018). Journal of Cleaner Production, 253, 119707. https://doi.org/10.1016/j.jclepro.2019.119707
Ishii, A., & Langhelle, O. (2011). Toward policy integration: Assessing carbon capture and storage policies in Japan and Norway. Global Environmental Change, 21(2), 358–367. https://doi.org/10.1016/j.gloenvcha.2011.02.005
Ivana Kottasová, CNN. (2023, March 27). EU was set to ban internal combustion engine cars. Then Germany suddenly changed its mind. Retrieved from https://edition.cnn.com/2023/03/24/cars/eu-combustion-engine-debate-climate-intl/index.html
Jayakrishnan, K. U., Bala, G., Cao, L., & Caldeira, K. (2022). Contrasting climate and carbon-cycle consequences of fossil-fuel use versus deforestation disturbance. Environmental Research Letters. https://doi.org/10.1088/1748-9326/ac69fd
Jeanne, P., Jonny Rutqvist, Wainwright, H. M., Foxall, W., Bachmann, C. E., Zhou, Q., Antonio Pio Rinaldi, & Jens Birkholzer. (2016). Effects of in situ stress measurement uncertainties on assessment of predicted seismic activity and risk associated with a hypothetical industrial-scale geologic CO2 sequestration operation. Journal of Rock Mechanics and Geotechnical Engineering, 8(6), 873–885. https://doi.org/10.1016/j.jrmge.2016.06.008
Jia, B., Tsau, J.-S., & Barati, R. (2019). A review of the current progress of CO2 injection EOR and carbon storage in shale oil reservoirs. Fuel, 236, 404–427. https://doi.org/10.1016/j.fuel.2018.08.103
Jiang, K., Ashworth, P., Zhang, S., Liang, X., Sun, Y., & Angus, D. (2020). China’s carbon capture, utilization and storage (CCUS) policy: A critical review. Renewable and Sustainable Energy Reviews, 119, 109601. https://doi.org/10.1016/j.rser.2019.109601
Jiang, K., & Ashworth, P. (2021). The development of Carbon Capture Utilization and Storage (CCUS) research in China: A bibliometric perspective. Renewable and Sustainable Energy Reviews, 138, 110521. https://doi.org/10.1016/j.rser.2020.110521
Jiang, L., Zou, F., Qiao, Y., & Huang, Y. (2022). Patent analysis for generating the technology landscape and competition situation of renewable energy. Journal of Cleaner Production, 378, 134264. https://doi.org/10.1016/j.jclepro.2022.134264
Jin, L., Sun, X., Ren, H., & Huang, H. (2023). Hotspots and trends of biological water treatment based on bibliometric review and patents analysis. Journal of Environmental Sciences, 125, 774–785. https://doi.org/10.1016/j.jes.2022.03.037
Johnstone, N., Haščič, I., & Popp, D. (2009). Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts. Environmental and Resource Economics, 45(1), 133–155. https://doi.org/10.1007/s10640-009-9309-1
Kang, J.-N., Wei, Y.-M., Liu, L., & Wang, J.-W. (2021). Observing technology reserves of carbon capture and storage via patent data: Paving the way for carbon neutral. Technological Forecasting and Social Change, 171, 120933. https://doi.org/10.1016/j.techfore.2021.120933
Kaushal, P., Majumdar, S., Purushotham, H. (2021). Patent Landscape Analysis in Carbon Dioxide Capture Technologies. In: Goel, M., Satyanarayana, T., Sudhakar, M., Agrawal, D.P. (eds) Climate Change and Green Chemistry of CO2 Sequestration. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-0029-6_7
Keiner, D., Gulagi, A., & Breyer, C. (2023). Energy demand estimation using a pre-processing macro-economic modelling tool for 21st century transition analyses. Energy, 272, 127199. https://doi.org/10.1016/j.energy.2023.127199
Khosroabadi, F., Aslani, A., Bekhrad, K., & Zolfaghari, Z. (2021). Analysis of Carbon Dioxide Capturing Technologies and their technology developments. Cleaner Engineering and Technology, 5, 100279. https://doi.org/10.1016/j.clet.2021.100279
Kim, J.-H., & Lee, Y.-G. (2020). Patent Analysis on the Development of the Shale Petroleum Industry Based on a Network of Technological Indices. Energies, 13(24), 6746. https://doi.org/10.3390/en13246746
Kirsch G.J., and C.F. Brown. (2006). “Using Patents in Competitive Intelligence.” Competitive Intelligence Magazine 9 (1)
Kirschbaum, M. U., Cowie, A. L., Peñuelas, J., Smith, P., Conant, R. T., Sage, R. F., Brandão, M., Cotrufo, M. F., Luo, Y., Way, D. A., & Robinson, S. A. (2024, January). Is tree planting an effective strategy for climate change mitigation? Science of the Total Environment, 909, 168479. https://doi.org/10.1016/j.scitotenv.2023.168479
Kolawole, O., Millikan, C., Kumar, M., Ispas, I., Schwartz, B., Weber, J., Luka Badurina, & Branimir Šegvić. (2022). Impact of microbial-rock- CO2 interactions on containment and storage security of supercritical CO2 in carbonates. 120, 103755–103755. https://doi.org/10.1016/j.ijggc.2022.103755
Lambin, E. F., & Thorlakson, T. (2018). Sustainability Standards: Interactions Between Private Actors, Civil Society, and Governments. Annual Review of Environment and Resources, 43(1), 369–393. https://doi.org/10.1146/annurev-environ-102017-025931
Lane, J., Greig, C., & Garnett, A. (2021). Uncertain storage prospects create a conundrum for carbon capture and storage ambitions. Nature Climate Change, 11(11), 925–936. https://doi.org/10.1038/s41558-021-01175-7
Lee, M., & He, G. (2021). An empirical analysis of applications of artificial intelligence algorithms in wind power technology innovation during 1980–2017. Journal of Cleaner Production, 297, 126536. https://doi.org/10.1016/j.jclepro.2021.126536
Lee, K., & Lee, S. (2013). Patterns of technological innovation and evolution in the energy sector: A patent-based approach. Energy Policy, 59, 415–432. https://doi.org/10.1016/j.enpol.2013.03.054
Lei, X.-P., Zhao, Z.-Y., Zhang, X., Chen, D.-Z., Huang, M.-H., Zheng, J., Liu, R.-S., Zhang, J., & Zhao, Y.-H. (2013). Technological collaboration patterns in solar cell industry based on patent inventors and assignees analysis. Scientometrics, 96(2), 427–441.
Lenzen, M. (2011). Global Warming Effect of Leakage From CO2 Storage. Critical Reviews in Environmental Science and Technology, 41(24), 2169-2185. https://doi.org/10.1080/10643389.2010.497442
Leu, H.-J., Wu, C.-C., & Lin, C.-Y. (2012). Technology exploration and forecasting of biofuels and biohydrogen energy from patent analysis. International Journal of Hydrogen Energy, 37(20), 15719–15725. https://doi.org/10.1016/j.ijhydene.2012.04.143
Levin, R. C., Klevorick, A. K., Nelson, R. R., Winter, S. G., Gilbert, R., & Griliches, Z. (1987). Appropriating the Returns from Industrial Research and Development. Brookings Papers on Economic Activity, 1987(3), 783. https://doi.org/10.2307/2534454
Li, B., Duan, Y., Luebke, D., & Morreale, B. (2013). Advances in CO2 capture technology: A patent review. Applied Energy, 102, 1439–1447. https://doi.org/10.1016/j.apenergy.2012.09.009
Li, K., Yang, J., & Wei, Y. (2023). Impacts of carbon markets and subsidies on carbon capture and storage retrofitting of existing coal-fired units in China. Journal of Environmental Management, 326, 116824. https://doi.org/10.1016/j.jenvman.2022.116824
Li, Q., & Liu, G. (2016). Risk Assessment of the Geological Storage of CO2: A Review. Geologic Carbon Sequestration, 249–284. https://doi.org/10.1007/978-3-319-27019-7_13
Li, S., Zhang, X., Gao, L., & Jin, H. (2012). Learning rates and future cost curves for fossil fuel energy systems with CO2 capture: Methodology and case studies. Applied Energy, 93, 348–356. https://doi.org/10.1016/j.apenergy.2011.12.046
Li, X., Xie, Q., Jiang, J., Zhou, Y., & Huang, L. (2019). Identifying and monitoring the development trends of emerging technologies using patent analysis and Twitter data mining: The case of perovskite solar cell technology. Technological Forecasting and Social Change, 146, 687–705. https://doi.org/10.1016/j.techfore.2018.06.004
Lin, B. W., Chen, C. J., & Wu, Y. C. (2015). Benefiting from external knowledge: Commercialization capability as a moderator. In Management of Engineering and Technology (PICMET), 2015 Portland International Conference on (pp. 931-941). IEEE.
Lin, Q., Zhang, X., Wang, T., Zheng, C., & Gao, X. (2022). Technical perspective of carbon capture, utilization, and storage. Engineering. https://doi.org/10.1016/j.eng.2021.12.013
Lu, H., Guo, L., & Zhang, Y. (2019). Oil and gas companies’ low-carbon emission transition to integrated energy companies. Science of the Total Environment, 686, 1202–1209. https://doi.org/10.1016/j.scitotenv.2019.06.014
Lu, H., Ma, X., Huang, K., Fu, L., & Azimi, M. (2020). Carbon dioxide transport via pipelines: A systematic review. Journal of Cleaner Production, 266, 121994. https://doi.org/10.1016/j.jclepro.2020.121994
Lu, J., Chen, H., & Cai, X. (2022). From global to national scenarios: Exploring carbon emissions to 2050. Energy Strategy Reviews, 41, 100860. https://doi.org/10.1016/j.esr.2022.100860
Luis Míguez, J., Porteiro, J., Pérez-Orozco, R., Patiño, D., & Rodríguez, S. (2018). Evolution of CO2 capture technology between 2007 and 2017 through the study of patent activity. Applied Energy, 211, 1282–1296. https://doi.org/10.1016/j.apenergy.2017.11.107
Mac Dowell, N., Fennell, P. S., Shah, N., & Maitland, G. C. (2017). The role of CO2 capture and utilization in mitigating climate change. Nature Climate Change, 7(4), 243–249. https://doi.org/10.1038/nclimate3231
Maghzian, A., Aslani, A., & Zahedi, R. (2022). Review on the direct air CO2 capture by microalgae: Bibliographic mapping. Energy Reports, 8, 3337–3349. https://doi.org/10.1016/j.egyr.2022.02.125
Malekli, M., Aslani, A., Zolfaghari, Z., Zahedi, R., & Moshari, A. (2022). Advanced bibliometric analysis on the development of natural gas combined cycle power plant with CO2 capture and storage technology. Sustainable Energy Technologies and Assessments, 52, 102339. https://doi.org/10.1016/j.seta.2022.102339
Mehdi Mahdaviara, Menad Nait Amar, Abdolhossein Hemmati-Sarapardeh, Dai, Z., Zhang, C., Xiao, T., & Zhang, X. (2021). Toward smart schemes for modeling CO2 solubility in crude oil: Application to carbon dioxide enhanced oil recovery. Fuel, 285, 119147–119147. https://doi.org/10.1016/j.fuel.2020.119147
Mikulčić, H. et al. (2019) ‘Flexible carbon capture and utilization technologies in future energy systems and the utilization pathways of captured CO2’, Renewable and Sustainable Energy Reviews, 114, p. 109338. doi:10.1016/j.rser.2019.109338.
Ming Chau Chang, Huang, C. M., Liu, W.-H., Chen, W.-C., Jui Yen Cheng, Wen, T., Ouyang, S., Shen, C.-H., & Heng Wen Hsu. (2013). Design and Experimental Investigation of Calcium Looping Process for 3‐kWth and 1.9‐MWth Facilities. Chemical Engineering & Technology, 36(9), 1525–1532. https://doi.org/10.1002/ceat.201300081
Moser, P. (2016). Patents and Innovation in Economic History. Annual Review of Economics, 8(1), 241–258. https://doi.org/10.1146/annurev-economics-080315-015136
Neacsa, A. et al. (2022) ‘The transition to renewable energy—a sustainability issue?’, Energy Transition, pp. 29–72. doi:10.1007/978-981-19-3540-4_2.
Nematollahi, M. H., & Carvalho, P. J. (2019). Green solvents for CO2 Capture. Current Opinion in Green and Sustainable Chemistry, 18, 25–30. https://doi.org/10.1016/j.cogsc.2018.11.012
Nemet, G. F., Zipperer, V., & Kraus, M. (2018). The valley of death, the technology pork barrel, and public support for large demonstration projects. Energy Policy, 119, 154–167. https://doi.org/10.1016/j.enpol.2018.04.008
Nong, D., Simshauser, P., & Nguyen, D. B. (2021). Greenhouse gas emissions vs CO2 emissions: Comparative analysis of a global carbon tax. Applied Energy, 298, 117223. https://doi.org/10.1016/j.apenergy.2021.117223
Norhasyima, R. S., & Mahlia, T. M. I. (2018). Advances in CO2 utilization technology: A patent landscape review. Journal of CO2 Utilization, 26, 323–335. https://doi.org/10.1016/j.jcou.2018.05.022
Nunes, L. J. R. (2023). The Rising Threat of Atmospheric CO2: A Review on the Causes, Impacts, and Mitigation Strategies. Environments, 10(4), 66. https://doi.org/10.3390/environments10040066
Osman, A. I., Hefny, M., Abdel Maksoud, M. I. A., Elgarahy, A. M., & Rooney, D. W. (2020). Recent Advances in Carbon Capture Storage and Utilisation technologies: a Review. Environmental Chemistry Letters, 19. https://doi.org/10.1007/s10311-020-01133-3
Ozkan, M., Nayak, S. P., Ruiz, A. D., & Jiang, W. (2022). Current Status and Pillars of Direct Air Capture Technologies. IScience, 25(4), 103990. https://doi.org/10.1016/j.isci.2022.103990
Pal, M., Karaliūtė, V. and Malik, S. (2023) ‘Exploring the potential of carbon capture, utilization, and storage in Baltic Sea Region countries: A review of CCUS patents from 2000 to 2022’, Processes, 11(2), p. 605. doi:10.3390/pr11020605.
Pan, W., Jian, L., & Liu, T. (2022). Knowledge generation and diffusion in science & technology: an empirical study of SiC-MOSFET based on scientific papers and patents. Technology Analysis & Strategic Management, 1–17. https://doi.org/10.1080/09537325.2022.2106419
Perrons, R. K. (2014). How innovation and R&D happen in the upstream oil & gas industry: Insights from a global survey. Journal of Petroleum Science and Engineering, 124, 301–312. https://doi.org/10.1016/j.petrol.2014.09.027
Persoon, P. G. J., Bekkers, R. N. A., & Alkemade, F. (2020). The science base of renewables. Technological Forecasting and Social Change, 158, 120121. https://doi.org/10.1016/j.techfore.2020.120121
Pickl, M. J. (2019). The renewable energy strategies of oil majors – From oil to energy? Energy Strategy Reviews, 26, 100370. https://doi.org/10.1016/j.esr.2019.100370
Pires da Mata Costa, L., Micheline Vaz de Miranda, D., Couto de Oliveira, A. C., Falcon, L., Stella Silva Pimenta, M., Guilherme Bessa, I., Juarez Wouters, S., Andrade, M. H. S., & Pinto, J. C. (2021). Capture and Reuse of Carbon Dioxide (CO2) for a Plastics Circular Economy: A Review. Processes, 9(5), 759. https://doi.org/10.3390/pr9050759
Plantec, Q., Le Masson, P., & Weil, B. (2021). Impact of knowledge search practices on the originality of inventions: A study in the oil & gas industry through dynamic patent analysis. Technological Forecasting and Social Change, 168, 120782. https://doi.org/10.1016/j.techfore.2021.120782
Plaza, M. G., Martínez, S., & Rubiera, F. (2020). CO2 Capture, Use, and Storage in the Cement Industry: State of the Art and Expectations. Energies, 13(21), 5692. https://doi.org/10.3390/en13215692
P. Ramesh Babu, Wen, H., & Praveen Linga. (2016). A systematic kinetic study to evaluate the effect of tetrahydrofuran on the clathrate process for pre-combustion capture of carbon dioxide. Energy, 94, 431–442. https://doi.org/10.1016/j.energy.2015.11.009
Pollak, M., Phillips, S. J., & Vajjhala, S. (2011). Carbon capture and storage policy in the United States: A new coalition endeavors to change existing policy. Global Environmental Change, 21(2), 313–323. https://doi.org/10.1016/j.gloenvcha.2011.01.009
Qiu, H.-H., & Yang, J. (2018). An Assessment of Technological Innovation Capabilities of Carbon Capture and Storage Technology Based on Patent Analysis: A Comparative Study between China and the United States. Sustainability, 10(3), 877. https://doi.org/10.3390/su10030877
Rao, C., Zhang, Y., Wen, J., Xiao, X., & Goh, M. (2022). Energy demand forecasting in China: A support vector regression-compositional data second exponential smoothing model. Energy, 125955. https://doi.org/10.1016/j.energy.2022.125955
Roy, P., Mohanty, A. K., & Misra, M. (2023). Prospects of carbon capture, utilization and storage for mitigating climate change. Environmental Science: Advances, 2(3), 409–423. https://doi.org/10.1039/d2va00236a
Rubin, E. S., Mantripragada, H., Marks, A., Versteeg, P., & Kitchin, J. (2012). The outlook for improved carbon capture technology. Progress in Energy and Combustion Science, 38(5), 630–671. https://doi.org/10.1016/j.pecs.2012.03.003
Rinscheid, A., Pianta, S., & Weber, E. U. (2019). Fast track or Slo-Mo? Public support and temporal preferences for phasing out fossil fuel cars in the United States. Climate Policy, 1–16. https://doi.org/10.1080/14693062.2019.1677550
Roussanaly, S., Berghout, N., Fout, T., Garcia, M., Gardarsdottir, S., Nazir, S. M., Ramirez, A., & Rubin, E. S. (2021). Towards improved cost evaluation of Carbon Capture and Storage from industry. International Journal of Greenhouse Gas Control, 106, 103263. https://doi.org/10.1016/j.ijggc.2021.103263
Safi, R., Agarwal, R. K., & Banerjee, S. (2016). Numerical simulation and optimization of CO2 utilization for enhanced oil recovery from depleted reservoirs. Chemical Engineering Science, 144, 30–38. https://doi.org/10.1016/j.ces.2016.01.021
Sanchez, D. L., Johnson, N., McCoy, S. T., Turner, P. A., & Mach, K. J. (2018). Near-term deployment of carbon capture and sequestration from biorefineries in the United States. Proceedings of the National Academy of Sciences, 115(19), 4875–4880. https://doi.org/10.1073/pnas.1719695115
Schleich, J., Walz, R., & Ragwitz, M. (2017). Effects of policies on patenting in wind-power technologies. Energy Policy, 108, 684–695. https://doi.org/10.1016/j.enpol.2017.06.043
Sharifzadeh, M., Triulzi, G., & Magee, C. L. (2019). Quantification of technological progress in greenhouse gas (GHG) capture and mitigation using patent data. Energy & Environmental Science, 12(9), 2789–2805. https://doi.org/10.1039/c9ee01526d
Shin, J., Lee, C.-Y., & Kim, H. (2016). Technology and demand forecasting for carbon capture and storage technology in South Korea. Energy Policy, 98, 1–11. https://doi.org/10.1016/j.enpol.2016.08.009
Shojaeddini, E., Naimoli, S., Ladislaw, S., & Bazilian, M. (2019). Oil and gas company strategies regarding the energy transition. Progress in Energy, 1(1), 012001. https://doi.org/10.1088/2516-1083/ab2503
Skobelev, D., Cherepovitsyna, A., & Guseva, T. (2023). Carbon capture and storage: net zero contribution and cost estimation approaches. Journal of Mining Institute, 259, 125–140. https://doi.org/10.31897/pmi.2023.10
Stavi, I. (2023). Urgent reduction in greenhouse gas emissions is needed to avoid irreversible tipping points: time is running out. All Earth, 35(1), 38–45. https://doi.org/10.1080/27669645.2023.2178127
Stork, A. L., Verdon, J. P., & Kendall, J.-M. (2015). The microseismic response at the In Salah Carbon Capture and Storage (CCS) site. International Journal of Greenhouse Gas Control, 32, 159–171. https://doi.org/10.1016/j.ijggc.2014.11.014
Talabis, M. (2015). Information security analytics : finding security insights, patterns and anomalies in big data (pp. 123–150). Syngress Uuuu-Uuuu. https://www.sciencedirect.com/science/article/abs/pii/B978012800207000006X?via%3Dihub
Tagliapietra, S. (2019). The impact of the global energy transition on MENA oil and gas producers. Energy Strategy Reviews, 26, 100397. https://doi.org/10.1016/j.esr.2019.100397
Theo, W. L., Lim, J. S., Hashim, H., Mustaffa, A. A., & Ho, W. S. (2016). Review of pre-combustion capture and ionic liquid in carbon capture and storage. Applied Energy, 183, 1633–1663. https://doi.org/10.1016/j.apenergy.2016.09.103
Thomas, M., DeCillia, B., Santos, J. B., & Thorlakson, L. (2022). Great expectations: Public opinion about energy transition. Energy Policy, 162, 112777. https://doi.org/10.1016/j.enpol.2022.112777
Torp, T. A., & Gale, J. (2004). Demonstrating storage of CO2 in geological reservoirs: The Sleipner and SACS projects. Energy, 29(9), 1361–1369. https://doi.org/10.1016/j.energy.2004.03.104
Trupp, M., Frontczak, J., & Torkington, J. (2013). The Gorgon CO2 Injection Project – 2012 Update. Energy Procedia, 37, 6237–6247. https://doi.org/10.1016/j.egypro.2013.06.552
Tsai, Y.-C., Huang, Y.-F., & Yang, J.-T. (2016). Strategies for the development of offshore wind technology for far-east countries – A point of view from patent analysis. Renewable and Sustainable Energy Reviews, 60, 182–194. https://doi.org/10.1016/j.rser.2016.01.102
van Rooijen, S. N. M., & van Wees, M. T. (2006). Green electricity policies in the Netherlands: an analysis of policy decisions. Energy Policy, 34(1), 60–71. https://doi.org/10.1016/j.enpol.2004.06.002
Verdon, J. P., & Stork, A. L. (2016). Carbon capture and storage, geomechanics and induced seismic activity. Journal of Rock Mechanics and Geotechnical Engineering, 8(6), 928–935. https://doi.org/10.1016/j.jrmge.2016.06.004
Verluise, C., Cristelli, G., Higham, K., & de Rassenfosse, G. (2020). The Missing 15 Percent of Patent Citations. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3754772
Vilarrasa, V., Carrera, J., Olivella, S., Rutqvist, J., & Laloui, L. (2019). Induced seismicity in geologic carbon storage. Solid Earth, 10(3), 871–892. https://doi.org/10.5194/se-10-871-2019
Wang, C., & Chen, D. (2016). Patent analysis in external technology acquisition: A case of Taiwan Semiconductor Manufacturing Company. https://doi.org/10.1109/picmet.2016.7806685
Wang, J., & Azam, W. (2023). Natural resource scarcity, fossil fuel energy consumption, and total greenhouse gas emissions in top emitting countries. Geoscience Frontiers, 15(2), 101757. https://doi.org/10.1016/j.gsf.2023.101757
Wei, X., Li, Q., Li, X., & Sun, Y. (2015). Impact indicators for caprock integrity and induced seismicity in CO2 geosequestration: insights from uncertainty analyses. Natural Hazards, 81(1), 1–21. https://doi.org/10.1007/s11069-015-2063-5
Wennersten, R., Sun, Q., & Li, H. (2015). The future potential for Carbon Capture and Storage in climate change mitigation – an overview from perspectives of technology, economy and risk. Journal of Cleaner Production, 103, 724–736.
Wiesberg, I. L., Brigagão, G. V., de Medeiros, J. L., & de Queiroz Fernandes Araújo, O. (2017). Carbon dioxide utilization in a microalga-based biorefinery: Efficiency of carbon removal and economic performance under carbon taxation. Journal of Environmental Management, 203, 988–998. https://doi.org/10.1016/j.jenvman.2017.03.005
Wilberforce, T., Olabi, A. G., Sayed, E. T., Elsaid, K., & Abdelkareem, M. A. (2020). Progress in carbon capture technologies. Science of the Total Environment, 761(143203), 143203. https://doi.org/10.1016/j.scitotenv.2020.143203
Yadav, S., & Mondal, S. S. (2022). A review on the progress and prospects of oxy-fuel carbon capture and sequestration (CCS) technology. Fuel, 308, 122057. https://doi.org/10.1016/j.fuel.2021.122057
Yan, J. (2015). Carbon Capture and Storage (CCS). Applied Energy, 148, A1–A6. https://doi.org/10.1016/j.apenergy.2015.03.019
Yan, J., & Zhang, Z. (2019). Carbon Capture, Utilization and Storage (CCUS). Applied Energy, 235, 1289–1299. https://doi.org/10.1016/j.apenergy.2018.11.019
Yang, X., & Yu, X. (2020). Preventing Patent Risks in Artificial Intelligence Industry for Sustainable Development: A Multi-Level Network Analysis. Sustainability, 12(20), 8667. https://doi.org/10.3390/su12208667
Yao, J.-J., & Peng, H. (2014). Research on the Status quo of Anti-cancer Pharmaceutical Patents in China: Based on the Patent Analysis. Advances in Economics, Business and Management Research/Advances in Economics, Business and Management Research. https://doi.org/10.2991/msmi-14.2014.44
Yin, C., Gu, H., & Zhang, S. (2020). Measuring technological collaborations on carbon capture and storage based on patents: A social network analysis approach. Journal of Cleaner Production, 274, 122867. https://doi.org/10.1016/j.jclepro.2020.122867
Yin, C. and Huang, Z. (2018) ‘The development of carbon capture and storage in China: Progress, Challenge and collaboration’, 2018 Portland International Conference on Management of Engineering and Technology (PICMET) [Preprint]. doi:10.23919/picmet.2018.8481820.
Yu, C.-W., Chen, S., Shao, K.-S., Chiao, C.-H., Hw Ang, L.-T., & Chen, J.-L. (2011). Development of CCS technology for coal-fired power plant in Taiwan. Energy Procedia, 4, 4806–4813. https://doi.org/10.1016/j.egypro.2011.02.446
Yu, K., Curcic, I., Gabriel, J., & Tsang, S. C. E. (2010). Apology: Recent Advances in CO2 Capture and Utilization. ChemSusChem, 3(6), 644–644. https://doi.org/10.1002/cssc.201090023
Yu, N. (2017). Innovation of renewable energy generation technologies at a regional level in China: a study based on patent data analysis. International Economics and Economic Policy, 14(3), 431–448. https://doi.org/10.1007/s10368-017-0382-6
Zahedi, R., Aslani, A., Ali, M., & Zolfaghari, Z. (2022). Advanced bibliometric analysis on the coupling of energetic dark greenhouse with natural gas combined cycle power plant for CO2 capture. Korean Journal of Chemical Engineering, 39(11), 3021–3031. https://doi.org/10.1007/s11814-022-1233-x
Zhang, H., Li, D., Gu, X., & Chen, N. (2022). Three decades of topic evolution, hot spot mining and prospect in CCUS Studies based on CitNetExplorer. Chinese Journal of Population, Resources and Environment, 20(1), 91–104. https://doi.org/10.1016/j.cjpre.2022.03.010
Zhang, M., Guo, W., & Lei, Z. (2014). Patent Analysis of Shale Gas Technology in China and Implications for its Exploitation. Energy Technology, 2(12), 1040–1045. https://doi.org/10.1002/ente.201402038
Zhang, X., Ma, X., & Song, H. (2022). Quality degradation of alfalfa caused by CO2 leakage from carbon capture and storage. 246, 114147–114147. https://doi.org/10.1016/j.ecoenv.2022.114147
Zhang, Z., Hu, G., Mu, X., & Kong, L. (2022). From low carbon to carbon neutrality: A bibliometric analysis of the status, evolution and development trend. Journal of Environmental Management, 322, 116087. https://doi.org/10.1016/j.jenvman.2022.116087
Zhang, Z., & Huisingh, D. (2017). Carbon dioxide storage schemes: Technology, assessment and deployment. Journal of Cleaner Production, 142, 1055–1064. https://doi.org/10.1016/j.jclepro.2016.06.199
Zhu, X., Xie, W., Wu, J., Miao, Y., Xiang, C., Chen, C., Ge, B., Gan, Z., Yang, F., Zhang, M., O’Hare, D., Li, J., Ge, T., & Wang, R. (2022). Recent advances in direct air capture by adsorption. Chemical Society Reviews, 51(15), 6574–6651. https://doi.org/10.1039/d1cs00970b
Zhu, Y., Wang, Y., Zhou, B., Hu, X., & Xie, Y. (2023). A Patent Bibliometric Analysis of Carbon Capture, Utilization, and Storage (CCUS) Technology. Sustainability, 15(4), 3484. https://doi.org/10.3390/su15043484
Zolfaghari, Z., Aslani, A., Moshari, A., & Malekli, M. (2021). Direct air capture from demonstration to commercialization stage: A Bibliometric analysis. International Journal of Energy Research, 46(1), 383–396. https://doi.org/10.1002/er.7203
Zulfequar Ahmad Khan, Md. (2017). Causes and Consequences of Greenhouse Effect & Its Catastrophic Problems for Earth. International Journal of Sustainability Management and Information Technologies, 3(4), 34. https://doi.org/10.11648/j.ijsmit.20170304.11
Books
Bird, S., Klein, E., & Loper, E. (2009). Natural language processing with Python. O’reilly.
İbrahim Dinçer, Can Ozgur Colpan, & Onder Kizilkan. (2018). Exergetic, energetic and environmental dimensions. Academic Press.
Kumar, B.R. (2022). Case 38: Boundary Dam Power Station. In: Project Finance. Management for Professionals. Springer, Cham. https://doi.org/10.1007/978-3-030-96725-3_42
Talabis, M., McPherson, R., Miyamoto, I., & Martin, J. L. (2015). Information security analytics: Finding security insights, patterns, and anomalies in big data (pp. 1–12). Syngress. https://www.sciencedirect.com/science/article/pii/B9780128002070000010?via%3Dihub (Chapter 1 - Analytics Defined).
Talabis, M., McPherson, R., Miyamoto, I., & Martin, J. L. (2015). Information security analytics: Finding security insights, patterns, and anomalies in big data (pp. 123-150). Syngress. https://www.sciencedirect.com/science/article/pii/B9780128002070000010?via%3Dihub (Chapter 6 - Security and Text Mining).
Legal references
37 CFR 1.77 (2023). Arrangement of application Elements.
Climate Change Response Act, (2023). Taiwan Ministry of Environment. https://law.moj.gov.tw/ENG/LawClass/LawAll.aspx?pcode=O0020098
United States Code. Title 35 U.S.C. Section § 112 - Specification.
Taiwan Enforcement Rules of the Patent Act. Arts. 16-18 (2023)
United States Patent and Trademark Office (USPTO) (2022). Section 2163 - Arrangement of Application Elements. Retrieved from https://www.uspto.gov/web/offices/pac/mpep/s2163.html
United States Patent and Trademark Office (USPTO) (2019). Section 2173 - Arrangement of Application Elements. Retrieved from https://www.uspto.gov/web/offices/pac/mpep/s2173.html
Websites
Budinis, S. (2023, July 11). Direct Air Capture - Energy System. IEA. https://www.iea.org/energy-system/carbon-capture-utilisation-and-storage/direct-air-capture
China Steel Corporation. (2022). 2022 Annual Report. Retrieved from https://www.csc.com.tw/csc_e/ss/bd/pdf/stock112_03.pdf
CPC Corporation, Taiwan. (2024). Featured Story 3: Carbon capture, utilization, and storage technologies. Retrieved July 30, 2024, from https://www.cpc.com.tw/en/cl.aspx?n=4106
Energy Administration, Ministry of Economic Affairs (2024). Retrieved from https://www.moeaea.gov.tw/ECW/populace/Law/Content.aspx?menu_id=615
Environment and Climate Change Canada. (2024, May 3). Carbon pollution pricing systems across Canada. Government of Canada. Retrieved from https://www.canada.ca/en/environment-climate-change/services/climate-change/pricing-pollution-how-it-will-work.html
European Commission. (2024). What is the EU ETS? Retrieved May 19, 2024, from https://climate.ec.europa.eu/eu-action/eu-emissions-trading-system-eu-ets/what-eu-ets_en
European Commission. (2005). Development of the EU ETS (2005-2020). Retrieved May 19, 2024, from https://climate.ec.europa.eu/eu-action/eu-emissions-trading-system-eu-ets/development-eu-ets-2005-2020_en
European Commission. (2015). COP21 Paris Agreement. Retrieved from http://ec.europa.eu/clima/policies/international/negotiations/paris/index_en.htm
Formosa Plastics Group. (2024). Carbon capture. Formosa Plastics Group. Retrieved from https://www.fpg.taipei/esg/en/issue/content/environmental-sustainability/carbon-capture
Formosa Plastics Group. (2018). 2018 Formosa Plastics Corporation Corporate Social Responsibility Report. Retrieved from https://www.fpc.com.tw/fpcwuploads/files/FPC%202018%20CSR-EN%20FINAL.pdf
Ge, M., Friedrich, J., & Vigna, L. (2020). 4 Charts Explain Greenhouse Gas Emissions by Countries and Sectors. Retrieved from https://www.wri.org/insights/4-charts-explain-greenhouse-gas-emissions-countries-and-sectors
Global CCS Institute. (2017). Saga City: The world's best kept secret (for now). https://www.globalccsinstitute.com/news-media/insights/saga-city-the-worlds-best-kept-secret-for-now/
National Oceanic and Atmospheric Administration (NOAA); 2024 https://gml.noaa.gov/ccgg/trends/gl_trend.html
Intergovernmental Panel on Climate Change (IPCC). (2023). Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Core Writing Team, H. Lee and J. Romero, Eds.). IPCC. https://doi.org/10.59327/IPCC/AR6-9789291691647
Intergovernmental Panel on Climate Change (IPCC). 2022. "Summary for Policymakers." In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, V.R. Barros, A. Dube, P. Gworek, J. Luo, R. Urquhart (eds.)]. IPCC, Geneva, Switzerland. Available at: https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_SummaryVolume.pdf
Intergovernmental Panel on Climate Change. (2018). Global warming of 1.5 °C: An IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change. Geneva: Intergovernmental Panel on Climate Change.
International Energy Agency. (2024). CO2 Emissions in 2023: Executive Summary. Retrieved from https://www.iea.org/reports/co2-emissions-in-2023/executive-summary
International Energy Agency (IEA). (2024). Carbon Capture, Utilisation and Storage (CCUS) - Direct Air Capture. Retrieved from https://www.iea.org/energy-system/carbon-capture-utilisation-and-storage/direct-air-capture
International Energy Agency. (2019). World Energy Outlook 2019: The gold standard of energy analysis. Report. Paris: International Energy Agency.
International Energy Agency (IEA). Energy Technology Perspectives 2020. https://www.iea.org/reports/energy-technology-perspectives-2020
International Trade Administration (2023). Taiwan Energy Carbon Capture. Retrieve from https://www.trade.gov/market-intelligence/taiwan-energy-carbon-capture
IPCC. (2022). Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Eds. Shukla, P. R. et al.). Cambridge University Press. https://doi.org/10.1017/9781009157926
Intergovernmental Panel on Climate Change. (2014). Climate Change 2014: Mitigation of Climate Change. Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
IPCC (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Core Writing Team (eds Pachauri, R. K. et al.) (Intergovernmental Panel on Climate Change IPCC, 2014).
Joint Research Centre (JRC). (2018). Heterogeneity of technology-specific R&D investments: Evidence from top R&D investors worldwide (JRC Working Papers on Corporate R&D and Innovation No. 04/2018).
Liu, K., & Teng, K.-y. (2024, April 9). Taiwan’s largest steelmaker faces green transition challenge. CommonWealth Magazine. Retrieved from https://english.cw.com.tw/article/article.action?id=3665
Liu, K. (2022, March 23). Chang Chun turns CO2 into chemicals. CommonWealth Magazine, (744). Retrieved from https://english.cw.com.tw/article/article.action?id=3189
Marketsandmarkets. (2023). Carbon Capture, Utilization, and Storage (CCUS) market. LinkedIn. https://www.linkedin.com/pulse/carbon-capture-utilization-storage-market-2030-pooja-palande-ygp6c
María J. Nieto. (2022). Whatever It Takes to Reach Net Zero Emissions Around 2050 and Limit Global Warming to 1.5C: The Cases of United States, China, European Union and Japan.
Meredith, S. (2022, January 24). Shell CCS facility in Canada emits more than it captures, study says. CNBC. https://www.cnbc.com/2022/01/24/shell-ccs-facility-in-canada-emits-more-than-it-captures-study-says.html
Moutinho, P., & Schwartzman, S. (2005). Tropical deforestation and climate change. Amazon Institute for Environmental Research, Belém, Brazil
Organization for Economic Cooperation and Development (OECD) (2009). OECD Patent Statistics Manual. https://www.oecd-ilibrary.org/science-and-technology/oecd-patent-statistics-manual_9789264056442-en
Organization for Economic Cooperation and Development (OECD) (2009). Patent Statistics Manual. Available online: https://www.oecd-ilibrary.org/science-and-technology/oecd-patent-statistics-manual_9789264056442-en (accessed on 22 May 2024).
Organization of the Petroleum Exporting Countries. (2018). World Oil Outlook 2040. Retrieved from https://www.opec.org/opec_web/static_files_project/media/downloads/publications/WOO_2018.pdf
Pryor, J., & Putti, V. R. (2023, October 16). Carbon Pricing: Almost 25% of emissions now covered globally, but coverage and prices must rise further. Energy Post. Retrieved from https://energypost.eu/carbon-pricing-almost-25-of-emissions-now-covered-globally-but-coverage-and-prices-must-rise-further/
Renewable Energy—Powering a Safer Future. United Nations. Available online: https://www.un.org/en/climatechange/raising-ambition/renewable-energy (accessed on 10 May 2024).
Taipower (2024). Taipower Signs Ammonia Co-Firing MOU with IHI and Sumitomo for 9,000-Ton Annual Carbon Reduction at Dalin Plant by 2030. Retrieve from https://www.taipower.com.tw/en/news_info.aspx?id=176&chk=d39b51f5-bda2-4cd6-bd13-b9e4053f2700&mid=4412
Taiwan Today. (2023, May 22). Taiwan opens world’s largest calcium looping carbon capture plant. Taiwan Today. Retrieved from https://taiwantoday.tw/news.php?unit=6&post=11635
United Nations Development Programme (UNDP). (2023). Global Climate Promise. The Climate Dictionary: An everyday guide to climate change. Retrieved from https://climatepromise.undp.org/news-and-stories/climate-dictionary-everyday-guide-climate-change
United Nations Framework Convention on Climate Change. (2024). Kyoto Protocol. Retrieved May 19, 2024, from https://unfccc.int/kyoto_protocol?gad_source=1&gclid=Cj0KCQjwxqayBhDFARIsAANWRnTylB9fVpJJNb5xDdU6RW3GWUl3-UXmpYbLuH9sVrqFzR07hK3FKZAaAo87EALw_wcB
United Nations. For a livable climate: Net-zero commitments must be backed by credible action. Retrieved from https://www.un.org/en/climatechange/net-zero-coalition (accessed on 10 May 2024)
United States Patent and Trademark Office (USPTO). (2024, April 3). Regulatory impact analysis: Setting and adjusting patent fees during fiscal year 2025 in accordance with Section 10 of the Leahy-Smith America Invents Act proposed rule.
United States Patent and Trademark Office (USPTO) (2014). General Information Concerning Patents. https://www.uspto.gov/sites/default/files/inventors/edu-inf/BasicPatentGuide.pdf
United States Environmental Protection Agency (EPA) (2024). Overview of Greenhouse Gases. Retrieved from https://www.epa.gov/ghgemissions/overview-greenhouse-gases
World Intellectual Property Organization (WIPO), Patent Landscape Report. http://www.wipo.int/patentscope/en/programs/patent_landscapes/ (last visited: June 6, 2024).
World Intellectual Property Organization (WIPO) (2007). WIPO Patent Drafting Manual. Retrieved from https://innovation.unilag.edu.ng/assets/forms/PatentDraftingManual_wipo_pub_867.pdf
World Intellectual Property Organization (WIPO) (2023). WIPO Patent Drafting Manual. Second edition. Retrieved from https://www.wipo.int/edocs/pubdocs/en/wipo-pub-867-23-en-wipo-patent-drafting-manual.pdf
World Intellectual Property Organization (WIPO). Patents. What is a patent? Retrieved from https://www.wipo.int/patents/en/ (accessed on 11 May 2024)
World Intellectual Property Organization (WIPO). Frequently Asked Questions: Patents. Retrieved from https://www.wipo.int/patents/en/faq_patents.html (accessed on 22 May 2024)
World Intellectual Property Organization (WIPO). MODULE 03. Inventions and Patents. https://www.wipo.int/export/sites/www/sme/en/documents/pdf/ip_panorama_3_learning_points.pdf
Wu, C. F. (2022, April 6). Formosa Plastics: Ready to take on carbon? CommonWealth Magazine (Vol. 744). Retrieved from https://english.cw.com.tw/article/article.action?id=3194
台灣經濟部,能源署(2024)。能源供應事業及能源用戶達應辦理能源管理法規定事項之能源供應數量、使用數量基準及應儲存之安全存量。 (Energy Administration, Ministry of Economic Affairs, 2024. Energy supply enterprises and energy users must comply with the energy supply quantity, usage quantity standards, and the required safety stock storage as stipulated by the Energy Management Act). Retrieved from https://www.moeaea.gov.tw/ECW/populace/Law/Content.aspx?menu_id=615
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95420-
dc.description.abstract碳捕捉、利用與封存(CCUS)在減少二氧化碳(CO₂)這一主要導致全球變暖和氣候變遷的溫室氣體的排放方面發揮著關鍵作用。石油和天然氣產業作為溫室氣體的重要排放者,對於CCUS技術的部署至關重要。然而,目前缺乏將產業層面與國家層級策略相連結的全面分析。本研究首先從全球背景下考察氣候倡議,提供CCUS技術採用和影響的廣泛視角,以彌補這一差距。隨後,分析聚焦於全球前五大石油和天然氣公司所採取的氣候倡議,特別強調他們在CCUS方面的推進。
從1990年到2023年,全球共記錄了14,299件與CCUS技術相關的專利。其中,目前有效的專利有7,792件,佔總數的近55%。相較之下,有5,708件專利處於無效狀態,約佔總數的40%。分析顯示,中國以6,662件專利領先,美國以2,106件專利緊隨其後,日本則以1,436件專利排名第三。值得注意的是,中國在2023年佔全球CCUS專利的70%以上,成為重要的貢獻者。這一顯著貢獻凸顯了中國將CCUS技術作為其氣候政策和產業戰略的重要部分。
在能源產業範圍內,對五家主要石油公司2000年至2022年的98,730件專利進行分析,結果顯示他們共註冊了871件CCUS相關專利。其中,埃克森美孚(ExxonMobil)以359件專利位居首位,殼牌(Shell)以228件專利位居第二;然而,殼牌有70%的專利處於無效狀態。對這些公司的CCUS計劃的分析也表明,所有五家公司都已策略性地將CCUS融入其業務運營中。他們與第三方排放者建立了合作關係,既作為合作夥伴也作為客戶,並實施了各種減少碳足跡的措施。這些推進涵蓋了一系列CCUS計劃,包括早期研究和開發、大規模試點計劃及商業運營,展示了通過CCUS技術減少碳排放的綜合方法。
另外,值得注意的是,全球主要國家及五家石油公司的主要技術領域為Y02C-0020/40,涉及二氧化碳作為溫室氣體的捕獲和處置。在CCUS技術排名前20的國家中,有16個國家對此技術最為關注,顯示出其在該領域的重要性。這一技術重點反映了主要參與者在開發有效二氧化碳捕集和處理方法方面的共同優先事項,這是強有力的CCUS策略的重要組成部分。
此外,研究結果顯示,2005年《京都議定書》和2015年《巴黎協定》的通過對全球石油公司和國家都產生了影響,但對石油公司的影響不如全球範圍內的影響顯著。值得注意的是,在全球範圍內,《巴黎協定》簽署後,專利件數的成長趨勢顯著加快,儘管面臨COVID-19疫情的挑戰,專利件數仍從2020年的906件急劇增致2023年的2,716件。這一巨大增長表明 CCUS 技術在全球氣候戰略中的緊迫性與必要性。儘管疫情期間經濟受到干擾,但並未阻礙專利活動的加速,這顯示出推進CCUS技術的承諾堅定且具彈性。
這些發現預計將幫助企業從研究中獲得見解,以識別各行業中的潛在合作者或競爭對手,從而適應正在進行的轉型並根據氣候穩定要求評估其行動。政策制定者則可以利用這項研究作為資源,為其國家制定明確的指導方針,協助順利過渡到低碳未來。了解 CCUS 創新的動態使利害關係人能夠有效地將其策略和投資與全球氣候目標結合。這種協調確保他們的努力對減緩氣候變遷和推動永續發展做出決定性貢獻。
zh_TW
dc.description.abstractCarbon capture, utilization, and storage (CCUS) is crucial in mitigating carbon dioxide (CO₂) emissions, a primary greenhouse gas that contributes to global warming and climate change. The oil and gas industries, as significant emitters of greenhouse gases, are essential to the deployment of CCUS technologies. However, there is a lack of comprehensive analysis linking industry-level efforts to national-level strategies in combating this issue. This study addresses this gap by first examining climate initiatives in a global context, offering a comprehensive view of the adoption and impact of CCUS technologies worldwide. Subsequently, the analysis focuses on climate initiatives implemented by five major oil and gas corporations, specifically highlighting their efforts in CCUS.
At the global level, a total of 14,299 patent publications related to CCUS technologies from 1990 to 2023 were recorded. Of these, 7,792 patents are currently active, representing nearly 55% of the total. In contrast, 5,708 patents are inactive, accounting for approximately 40% of the total. The analysis also shows that China leads with 6,662 patents, followed by the United States with 2,106 patents, and Japan in third place with 1,436 patents. Notably, China stands out as a significant contributor, accounting for more than 70% of global CCUS patents in 2023. This substantial contribution from China highlights its strategic focus on CCUS technologies as part of its broader climate policy and industrial strategy.
Analyzing 98,730 patents of the five leading oil firms from 2000 to 2022, the analysis reveals that a total of 871 patents are related to CCUS. ExxonMobil holds the highest number with 359 patents, while the second position is Shell with 228; however, 70% of Shell’s patents are inactive. The examination of the CCUS projects of these companies also reveals that all five have strategically incorporated CCUS into their business practices. They have established collaborations with third-party emitters, serving both as partners and clients, and have launched multiple initiatives aimed at reducing their carbon footprint. These efforts include a wide range of CCUS initiatives, including early-stage research and development, large-scale pilot projects, and commercial operations, demonstrating a comprehensive approach to lowering carbon emissions through CCUS technologies.
It is also worth noting that the primary technical field of the leading countries globally as well as the five oil companies is Y02C-0020/40, which deals with the capture and disposal of CO₂ as greenhouse gases. Sixteen out of the top 20 countries in CCUS technology show their highest attention to this technology, underscoring its importance in the field. This technical focus reflects the shared priority among major players to develop effective methods for CO₂ capture and disposal, which are essential components of a robust CCUS strategy.
Furthermore, the findings reveal that the adoption of the Kyoto Protocol in 2005 and the Paris Agreement in 2015 have influenced both oil firms and nations globally, while the impact on oil companies is less significant than the worldwide effect. Notably, in the global context, after the Paris Agreement, the trend of patents accelerated substantially, with a sharp increase from 906 in 2020 to 2,716 in 2023, even amid the COVID-19 pandemic. This tremendous growth demonstrates the increasing urgency and necessity of CCUS technologies in global climate strategies. The pandemic period, despite its economic disruptions, did not hinder the acceleration of patent activities, indicating a robust and resilient commitment to advancing CCUS technologies.
These findings are expected to help companies gain insights from this study to identify potential collaborators or competitors in their respective industries, thus adjusting to the ongoing transition and evaluating their actions in line with climate stabilization requirements. Policymakers can utilize this research as a resource to develop clear guidelines for the transition of their country to a low-carbon economy. Understanding the dynamics of CCUS innovation enables stakeholders to align their strategies and investments effectively with global climate goals. This alignment ensures that their efforts contribute decisively to mitigating climate change and advancing sustainable development.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-06T16:28:03Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-06T16:28:03Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsOral Examination Committee Verification Letter i
Acknowledgment ii
Chinese Abstract v
Abstract and Keywords vii
Table of Contents x
List of Figures xii
List of Tables xiv
Abbreviations xv
Chapter 1. Introduction 1
1.1 Problem Statement 1
1.2 Overview of Technologies for Carbon Capture, Utilization, and Storage (CCUS) 10
1.3 Research Objectives, Contributions, and Summary of the Methodology 14
1.4. Thesis Structure 14
Chapter 2. Literature Review 22
2.1 Introduction 22
2.2 Theoretical Background 23
2.3. Introduction of the Two Research Topics 31
Chapter 3. Analysis of Research Trends and Innovations in CCUS Technologies: A Text Mining and Patent Approach 33
3.1 Introduction 33
3.2 Text Mining and Its Applications in Low Carbon and CCUS Technological Research 35
3.3 Methodology 39
3.4 Patent Claims and Keyword Network Analysis 45
3.5 Analysis of CCUS Patents Worldwide 61
3.6 Conclusion and Future Work 83
Chapter 4. Clean and Sustainable Low-Carbon Transitions: Oil Company Progress in the Implementation of CCUS Technologies 87
4.1 Introduction 87
4.2 Overview of Patent Analysis in Energy Innovations: Oil, Gas, and CCUS 90
4.3 Methodology 93
4.4 Patent Activity in the Five Oil and Gas Companies 96
4.5 Engagement of Oil Companies in CCUS Initiatives 118
4.6 Conclusion and Future Work 122
Chapter 5. Discussion 126
5.1 Challenges, Opportunities, and Trends in CCUS Implementation 126
5.2 The Role of CCUS Technologies in Achieving SDGs and Net Zero Goals 133
5.3 Development and Potential of CCUS in Taiwan 136
Chapter 6. Conclusion 146
6.1 Differences and Similarities of CCUS Technologies in the Oil and Gas Field and Global Context 146
6.2 Summary of the Key Findings 148
6.3 Policy Implications 149
6.4 The Role of Stakeholder Engagement and Public Perception 150
6.5 Limitations and Recommendations for Future Research 152
References 154
-
dc.language.isoen-
dc.subject文本探勘zh_TW
dc.subject全球趨勢zh_TW
dc.subject石油和天然氣產業zh_TW
dc.subject專利分析zh_TW
dc.subject二氧化碳(CO₂)排放zh_TW
dc.subjectCCUS技術zh_TW
dc.subject全球暖化zh_TW
dc.subjectoil and gas industryen
dc.subjectCCUS technologiesen
dc.subjectcarbon dioxide (CO₂) emissionsen
dc.subjectglobal warmingen
dc.subjectpatent analysisen
dc.subjecttext miningen
dc.subjectglobal trendsen
dc.title面向低碳未來的碳捕捉、利用及封存(CCUS)技術: 專利分析見解zh_TW
dc.titleCarbon capture, utilization, and storage (CCUS) technologies for low carbon future: Insights from patent analysisen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree博士-
dc.contributor.coadvisor林博文zh_TW
dc.contributor.coadvisorBou-Wen Linen
dc.contributor.oralexamcommittee林子倫;李明旭;邱祈榮;葉欣誠;張元杰zh_TW
dc.contributor.oralexamcommitteeAlan Lin;Ming-Hsu Li;Chyi-Rong Chiou;Shin-Cheng Yeh;Yuan-Chieh Changen
dc.subject.keywordCCUS技術,二氧化碳(CO₂)排放,全球暖化,專利分析,文本探勘,全球趨勢,石油和天然氣產業,zh_TW
dc.subject.keywordCCUS technologies,carbon dioxide (CO₂) emissions,global warming,patent analysis,text mining,global trends,oil and gas industry,en
dc.relation.page174-
dc.identifier.doi10.6342/NTU202403699-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-14-
dc.contributor.author-college理學院-
dc.contributor.author-dept氣候變遷與永續發展國際學位學程-
dc.date.embargo-lift2026-08-06-
顯示於系所單位:氣候變遷與永續發展國際學位學程(含碩士班、博士班)

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
4.03 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved