請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95350完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張瑞峰 | zh_TW |
| dc.contributor.advisor | Ruey-Feng Chang | en |
| dc.contributor.author | 黃寅 | zh_TW |
| dc.contributor.author | Yin Huang | en |
| dc.date.accessioned | 2024-09-05T16:18:18Z | - |
| dc.date.available | 2024-09-06 | - |
| dc.date.copyright | 2024-09-05 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2024-08-14 | - |
| dc.identifier.citation | [1] F. Bray, M. Laversanne, H. Sung, J. Ferlay, R. L. Siegel, I. Soerjomataram et al., "Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries," CA: A Cancer Journal for Clinicians, vol. 74, no. 3, pp. 229-263, FEB 2024, doi: https://doi.org/10.3322/caac.21834.
[2] C. Allemani, T. Matsuda, V. Di Carlo, R. Harewood, M. Matz, M. Nikšić et al., "Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37513025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries," The Lancet, vol. 391, no. 10125, pp. 1023-1075, JAN 2018, doi: 10.1016/S0140-6736(17)33326-3. [3] "Lung Cancer Incidence and Mortality with Extended Follow-up in the National Lung Screening Trial," Journal of Thoracic Oncology, vol. 14, no. 10, pp. 1732-1742, 2019/10/01/, MAY 2019, doi: https://doi.org/10.1016/j.jtho.2019.05.044. [4] H. J. d. Koning, C. M. v. d. Aalst, P. A. d. Jong, E. T. Scholten, K. Nackaerts, M. A. Heuvelmans et al., "Reduced Lung-Cancer Mortality with Volume CT Screening in a Randomized Trial," New England Journal of Medicine, vol. 382, no. 6, pp. 503-513, FEB 2020, doi: doi:10.1056/NEJMoa1911793. [5] H. MacMahon, D. P. Naidich, J. M. Goo, K. S. Lee, A. N. Leung, J. R. Mayo et al., "Guidelines for management of incidental pulmonary nodules detected on CT images: from the Fleischner Society 2017," Radiology, vol. 284, no. 1, pp. 228-243, JUL 2017. [6] B. Jiang, N. Li, X. Shi, S. Zhang, J. Li, G. H. de Bock et al., "Deep Learning Reconstruction Shows Better Lung Nodule Detection for Ultra–Low-Dose Chest CT," Radiology, vol. 303, no. 1, pp. 202-212, NOV 2022, doi: 10.1148/radiol.210551. [7] W. Chen, Y. Wang, D. Tian, and Y. Yao, "CT Lung Nodule Segmentation: A Comparative Study of Data Preprocessing and Deep Learning Models," IEEE Access, vol. 11, pp. 34925-34931, MAR 2023, doi: 10.1109/ACCESS.2023.3265170. [8] S. Tomassini, N. Falcionelli, P. Sernani, L. Burattini, and A. F. Dragoni, "Lung nodule diagnosis and cancer histology classification from computed tomography data by convolutional neural networks: A survey," Computers in Biology and Medicine, vol. 146, p. 105691, 2022/07/01/, MAY 2022, doi: https://doi.org/10.1016/j.compbiomed.2022.105691. [9] Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, no. 7553, pp. 436-444, 2015/05/01, MAY 2015, doi: 10.1038/nature14539. [10] J. Pedrosa, G. Aresta, C. Ferreira, G. Atwal, H. A. Phoulady, X. Chen et al., "LNDb challenge on automatic lung cancer patient management," Medical image analysis, vol. 70, p. 102027, MAR 2021. [11] J. Mei, M. M. Cheng, G. Xu, L. R. Wan, and H. Zhang, "SANet: A Slice-Aware Network for Pulmonary Nodule Detection," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 8, pp. 4374-4387, AUG 2022, doi: 10.1109/TPAMI.2021.3065086. [12] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proceedings of the IEEE conference on computer vision and pattern recognition, DEC 2016, pp. 770-778. [13] S. Kornblith, J. Shlens, and Q. V. Le, "Do better imagenet models transfer better?," in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, JUN 2019, pp. 2661-2671. [14] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, "Inception-v4, inception-resnet and the impact of residual connections on learning," in Proceedings of the AAAI conference on artificial intelligence, AUG 2017, vol. 31, no. 1. [15] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, "Rethinking the inception architecture for computer vision," in Proceedings of the IEEE conference on computer vision and pattern recognition, DEC 2016, pp. 2818-2826. [16] M. Hassanin, S. Anwar, I. Radwan, F. S. Khan, and A. Mian, "Visual attention methods in deep learning: An in-depth survey," Information Fusion, vol. 108, p. 102417, APR 2024. [17] J. Hu, L. Shen, and G. Sun, "Squeeze-and-excitation networks," in Proceedings of the IEEE conference on computer vision and pattern recognition, MAY 2018, pp. 7132-7141. [18] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez et al., "Attention is all you need," Advances in neural information processing systems, vol. 30, AUG 2017. [19] K. Fukushima, "Cognitron: A self-organizing multilayered neural network," Biological cybernetics, vol. 20, no. 3, pp. 121-136, FEB 1975. [20] P.-F. Verhulst, Deuxième mémoire sur la loi d'accroissement de la population. Mémoires de l'Académie Royale des Sciences, des Lettres et des Beaux-Arts de Belgique: Hayez, 1847. [21] G. LemaÃŽtre, F. Nogueira, and C. K. Aridas, "Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine learning," Journal of machine learning research, vol. 18, no. 17, pp. 1-5, SEP 2017. [22] D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," arXiv preprint arXiv:1412.6980, JAN 2014. [23] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair et al., "Generative adversarial nets," Advances in neural information processing systems, vol. 27, JAN 2014. [24] I. Loshchilov and F. Hutter, "Decoupled weight decay regularization," arXiv preprint arXiv:1711.05101, JAN 2017. [25] M. Sokolova and G. Lapalme, "A systematic analysis of performance measures for classification tasks," Information processing & management, vol. 45, no. 4, pp. 427-437, MAY 2009. [26] Q. McNemar, "Note on the sampling error of the difference between correlated proportions or percentages," Psychometrika, vol. 12, no. 2, pp. 153-157, JUN 1947. [27] S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, "Cbam: Convolutional block attention module," in Proceedings of the European conference on computer vision (ECCV), JUL 2018, pp. 3-19. [28] X. Li, W. Wang, X. Hu, and J. Yang, "Selective kernel networks," in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, MAR 2019, pp. 510-519. [29] Q. Wang, B. Wu, P. Zhu, P. Li, W. Zuo, and Q. Hu, "ECA-Net: Efficient channel attention for deep convolutional neural networks," in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, APR 2020, pp. 11534-11542. [30] J.-J. Qiu, J. Yin, W. Qian, J.-H. Liu, Z.-X. Huang, H.-P. Yu et al., "A novel multiresolution-statistical texture analysis architecture: radiomics-aided diagnosis of PDAC based on plain CT images," IEEE Transactions on Medical Imaging, vol. 40, no. 1, pp. 12-25, JAN 2020. [31] J. Yang, C. Li, P. Zhang, X. Dai, B. Xiao, L. Yuan et al., "Focal self-attention for local-global interactions in vision transformers," arXiv preprint arXiv:2107.00641, JUL 2021. [32] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie, "A convnet for the 2020s," in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, MAR 2022, pp. 11976-11986. [33] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang et al., "Swin transformer: Hierarchical vision transformer using shifted windows," in Proceedings of the IEEE/CVF international conference on computer vision, AUG 2021, pp. 10012-10022. [34] S. Khan, M. Naseer, M. Hayat, S. W. Zamir, F. S. Khan, and M. Shah, "Transformers in vision: A survey," ACM computing surveys (CSUR), vol. 54, no. 10s, pp. 1-41, SEP 2022. [35] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, "Imagenet: A large-scale hierarchical image database," in 2009 IEEE conference on computer vision and pattern recognition, AUG 2009: Ieee, pp. 248-255. [36] W. Liu, C. Li, M. M. Rahaman, T. Jiang, H. Sun, X. Wu et al., "Is the aspect ratio of cells important in deep learning? A robust comparison of deep learning methods for multi-scale cytopathology cell image classification: From convolutional neural networks to visual transformers," Computers in biology and medicine, vol. 141, p. 105026, NOV 2022. [37] F. Renard, S. Guedria, N. D. Palma, and N. Vuillerme, "Variability and reproducibility in deep learning for medical image segmentation," Scientific Reports, vol. 10, no. 1, p. 13724, AUG 2020. [38] X. Bouthillier, P. Delaunay, M. Bronzi, A. Trofimov, B. Nichyporuk, J. Szeto et al., "Accounting for variance in machine learning benchmarks," Proceedings of Machine Learning and Systems, vol. 3, pp. 747-769, MAR 2021. [39] M. Liu, J. Mu, F. Song, X. Liu, W. Jing, and F. Lv, "Growth characteristics of early-stage (IA) lung adenocarcinoma and its value in predicting lymph node metastasis," Cancer Imaging, vol. 23, no. 1, p. 115, DEC 2023. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95350 | - |
| dc.description.abstract | 肺癌是全球癌症發生和死亡的主要原因之一。此外,肺癌的預後仍然不理想,大部分國家的五年存活率低於20%。而低劑量電腦斷層掃描(low-dose computed tomography, LDCT)是一種廣泛使用的三維(three-dimensional, 3-D)篩檢方法,可以幫助醫生檢查肺結節,從而降低死亡率。實體結節(solid nodule, SN)、毛玻璃樣陰影(ground-glass opacity, GGO)和部分實體結節(part-solid nodule, PSN)是三種具有不同密度和良惡性程度的結節類型。準確的結節分類是一項具有挑戰性的工作,但可以通過基於深度學習的電腦輔助診斷(computer-aided diagnosis, CADx)系統得到改善。卷積神經網絡(convolutional neural network, CNN)和注意力機制現在是電腦輔助診斷系統設計中最常用的深度學習方法,因為它們具有強大的特徵提取和重新加權能力。因此,本研究提出了一種基於卷積神經網絡架構和注意力機制的三維電腦輔助診斷系統,用於結節類型分類。我們的電腦輔助診斷系統包括影像前處理和結節分類兩個部分。首先進行影像前處理,包括感興趣區域(volumes of interest, VOI)提取和影像縮放,以從低劑量電腦斷層掃描影像中提取結節及其周圍組織。然後,將提取的感興趣區域輸入到結節分類模型中,也就是我們提出的三維SE-Inception模型,它由Inception-v4、Inception-ResNet-v2和squeeze-and-excitation(SE)模組構建而成,可以預測結節類型。此外,我們也提出F1引導的動態平衡訓練(F1-guided dynamic balance training, FDBT)方法,以實現更快的訓練和更好的性能。進行實驗時,從8,789個低劑量電腦斷層掃描影像提取的34,898個肺結節被使用於評估系統。根據實驗結果, 我們的電腦輔助診斷系統達到90.0%的micro accuracy和83.6%的macro F1-score,這證明了其結節分類的有效性。 | zh_TW |
| dc.description.abstract | Lung cancer is a leading cause of cancer incidence and mortality worldwide. The prognosis for lung cancer remains unsatisfactory, with five-year survival rates below 20% in most countries. Low-dose computed tomography (LDCT) is a widely used three-dimensional (3-D) screening modality to help physicians check lung nodules to reduce mortality. Solid nodules (SNs), ground-glass opacities (GGOs), and part-solid nodules (PSNs) are three types of nodules with different densities and degrees of benignity and malignancy. Accurate nodule classification is challenging but could be improved with a computer-aided diagnosis (CADx) system based on deep learning. Convolutional neural networks (CNN) and attention mechanisms are now two of the most commonly used deep learning methods for CADx system design due to the powerful feature extraction and reweighting. Therefore, a 3-D CADx based on CNN architecture and attention scheme is proposed for nodule-type classification.
Our CADx system consists of image preprocessing and nodule classification. First, the image preprocessing composed of volume of interest (VOI) extraction and image resizing is performed to crop nodules and surrounding tissues from LDCT images. Then, the extracted VOIs are fed into the nodule classification model. Our classification model, the 3-D SE-Inception model, is built with Inception-v4, Inception-ResNet-v2, and squeeze-and-excitation (SE) modules to determine nodule types. Furthermore, the F1-guided dynamic balance training (FDBT) is introduced for faster training and better performance. In experiments, 34,898 pulmonary nodules from 8,789 3-D lung CT scans were used for system evaluation. According to the experiment, the CADx system achieved 90.0% micro accuracy and 83.6% macro F1-score, which proved its nodule classification effectiveness. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-05T16:18:18Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-05T16:18:18Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 摘要 iii Abstract v Table of Contents vii List of Figures ix List of Tables x Chapter 1 Introduction 1 Chapter 2 Materials 5 Chapter 3 Method 7 3.1 Image Preprocessing 9 3.2 Lung Nodule Classification 9 3.2.1 Extraction Stage 10 3.2.2 Inception Stage 12 3.2.3 Attention Stage 16 3.3 Model Training 18 3.3.1 F1-guided Dynamic Balance Training 19 3.3.2 Data Augmentation 20 3.3.3 Hyperparameters 20 Chapter 4 Results and Discussion 23 4.1 Experiment Environment 23 4.2 Evaluation 23 4.3 Experiment Result 23 4.3.1 Ablation Study 24 4.3.2 Comparison of Different Input Dimensions 27 4.3.3 Comparison of Different Attention Mechanisms 29 4.3.4 Comparison of Different Architectures 31 4.4 Discussion 33 Chapter 5 Conclusion 41 References 44 | - |
| dc.language.iso | en | - |
| dc.subject | 計算機輔助診斷系統 | zh_TW |
| dc.subject | 肺癌 | zh_TW |
| dc.subject | 卷積神經網絡 | zh_TW |
| dc.subject | 電腦斷層掃描 | zh_TW |
| dc.subject | 肺結節 | zh_TW |
| dc.subject | 注意力機制 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | attention mechanism | en |
| dc.subject | Lung cancer | en |
| dc.subject | lung nodule | en |
| dc.subject | computed tomography | en |
| dc.subject | computer-aided diagnosis system | en |
| dc.subject | deep learning | en |
| dc.subject | convolutional neural network | en |
| dc.title | 使用 3-D 卷積神經網路於肺部 CT 結節診斷 | zh_TW |
| dc.title | Lung CT Nodule Classification using 3-D Convolutional Neural Networks | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 羅崇銘;黃耀賢 | zh_TW |
| dc.contributor.oralexamcommittee | Chung-Ming Lo;Yao-Hsien Huang | en |
| dc.subject.keyword | 肺癌,肺結節,電腦斷層掃描,計算機輔助診斷系統,深度學習,卷積神經網絡,注意力機制, | zh_TW |
| dc.subject.keyword | Lung cancer,lung nodule,computed tomography,,computer-aided diagnosis system,deep learning,convolutional neural network,attention mechanism, | en |
| dc.relation.page | 47 | - |
| dc.identifier.doi | 10.6342/NTU202401286 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-15 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 資訊工程學系 | - |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 1.29 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
