請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95337
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張日新 | zh_TW |
dc.contributor.advisor | Jih-Hsin Chang | en |
dc.contributor.author | 黃謙煜 | zh_TW |
dc.contributor.author | Chian-Yu Huang | en |
dc.date.accessioned | 2024-09-05T16:14:27Z | - |
dc.date.available | 2024-09-06 | - |
dc.date.copyright | 2024-09-05 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-09 | - |
dc.identifier.citation | 英文文獻
Angelier, J. (1986). Preface to the special issue on “Geodynamics of the Eurasian-Philippine Sea Plate Boundary”: Tectonophysics, 125. Angelier, J., Chang, T.-Y., Hu, J.-C., Chang, C.-P., Siame, L., Lee, J.-C., Deffontaines, B., Chu, H.-T., & Lu, C.-Y. (2009). Does extrusion occur at both tips of the Taiwan collision belt? Insights from active deformation studies in the Ilan Plain and Pingtung Plain regions. Tectonophysics, 466(3), 356-376. Angelier, J., Chu, H. T., & Lee, J. C. (1997). Shear concentration in a collision zone: Kinematics of the Chihshang Fault as revealed by outcrop-scale quantification of active faulting, Longitudinal Valley, eastern Taiwan. Tectonophysics, 274(1-3), 117-143. Aurelio, M. A. (2000). Shear partitioning in the Philippines: Contraits from the Philippine fault and global positioning system data. Island Arc, 9(4), 584-597. Barrier, E., & Müller, C. (1984). New observations and discussions on the origin and age of the Lichi Mélange: Geological Society of China Memoir 6. Berglar, K., Gaedicke, C., Ladage, S., & Thöle, H. (2017). The Mentawai forearc sliver off Sumatra: A model for a strike-slip duplex at a regional scale. Tectonophysics, 710-711, 225-231. Biq, C. (1971). Comparison of mélange tectonics in Taiwan and in some other mountain belts. Petroleum Geology of Taiwan, 9, 79-106. Chang, C. P., Angelier, J., & Huang, C. Y. (2000). Origin and evolution of a mélange: the active plate boundary and suture zone of the Longitudinal Valley, Taiwan. Tectonophysics, 325(1), 43-62. Chang, C. P., Angelier, J., Huang, C. Y., & Liu, C. S. (2001). Structural evolution and significance of a mélange in a collision belt: the Lichi Mélange and the Taiwan arc–continent collision. Geological Magazine, 138(6), 633-651. Chang, L.-S. (1967). A biostratigraphic study of the Tertiary in the Coastal Range, eastern Taiwan, based on smaller foraminifera (I. Southern Part). Proc. Geol. Soc. China, Chen, T.-W., Chu, M.-F., Chen, W.-S., Chung, S.-L., Lee, H.-Y., & Iizuka, Y. (2023). Retro-Foredeep Basin Evolution in Taiwan: Zircon U-Pb and Hf Isotope Constraints From the Coastal Range. Geochemistry, Geophysics, Geosystems, 24(3), e2022GC010787. Chen, W.-S. (1997a). Lithofacies analysis of the arc-related sequence in Coastal Range, eastern Taiwan. Journal of the Geological Society of China, 40. Chen, W.-S. (1997b). Mesoscopic structures developed in the Lichi Mélange during the arc-continent collision in the Taiwan region. Jounal of the Geological Society of China, 40(2), 415-434. Chen, W.-S., Yang, C.-Y., Chen, S.-T., & Huang, Y.-C. (2020). New insights into Holocene marine terrace development caused by seismic and aseismic faulting in the Coastal Range, eastern Taiwan. Quaternary Science Reviews, 240, 106369. Chen, W.-S., Yen, I. C., Fengler, K. P., Rubin, C. M., Yang, C.-C., Yang, H.-C., Chang, H.-C., Lin, C.-W., Lin, W.-H., Liu, Y.-C., & Lin, Y.-H. (2007). Late Holocene paleoearthquake activity in the middle part of the Longitudinal Valley fault, eastern Taiwan. Earth and Planetary Science Letters, 264(3), 420-437. Chi, W.-C., Chen, L., Liu, C.-S., & Brookfield, M. (2014). Development of arc–continent collision mélanges: Linking onshore geological and offshore geophysical observations of the Pliocene Lichi Mélange, southern Taiwan and northern Luzon arc, western Pacific. Tectonophysics, 636, 70-82. Ching, K. E., Rau, R. J., Johnson, K. M., Lee, J. C., & Hu, J. C. (2011). Present-day kinematics of active mountain building in Taiwan from GPS observations during 1995-2005 [Article]. Journal of Geophysical Research: Solid Earth, 116(9), Article B09405. Dorsey, R. J. (1992). Collapse of the Luzon Volcanic Arc during onset of arc‐continent collision: Evidence from a Miocene‐Pliocene unconformity, eastern Taiwan. Tectonics, 11(2), 177-191. Draut, A. E., & Clift, P. D. (2011). Basins in arc‐continent collisions. Tectonics of sedimentary basins: Recent advances, 347-368. Fuh, S.-C., Liu, C.-S., Lundberg, N., & Reed, D. L. (1997). Strike-slip faults offshore southern Taiwan: implications for the oblique arc-continent collision processes. Tectonophysics, 274(1-3), 25-39. Fuh, S.-C., Liu, C.-S., & Song, G.-S. (1994). Decoupled transcurrent faults in the offshore area south of Taiwan. Petroleum Geology of Taiwan 29:, 27-46. Hall, R., Ali, J. R., Anderson, C. D., & Baker, S. J. (1995). Origin and motion history of the Philippine Sea Plate. Tectonophysics, 251(1), 229-250. Hall, R., Fuller, M., Ali, J. R., & Anderson, C. D. (1995). The Philippine Sea plate: magnetism and reconstructions. Active margins and marginal basins of the Western Pacific, 88, 371-404. Hilde, T. W. C., & Chao-Shing, L. (1984). Origin and evolution of the West Philippine Basin: A new interpretation. Tectonophysics, 102(1), 85-104. Hirtzel, J., Chi, W.-C., Reed, D., Chen, L., Liu, C.-S., & Lundberg, N. (2009). Destruction of Luzon forearc basin from subduction to Taiwan arc–continent collision. Tectonophysics, 479(1-2), 43-51. Hsü, K. J. (1968). Principles of mélanges and their bearing on the Franciscan-Knoxville paradox. Geological Society of America Bulletin, 79(8), 1063-1074. Hsieh, Y. h., Liu, C. s., Suppe, J., Byrne, T. B., & Lallemand, S. (2020). The chimei submarine canyon and fan: A record of Taiwan arc‐continent collision on the rapidly deforming overriding plate. Tectonics, 39(11), e2020TC006148. Hsu, K. (1988). Melange and the melange tectonics of Taiwan. Hu, J.-C., Angelier, J., Homberg, C., Lee, J.-C., & Chu, H.-T. (2001). Three-dimensional modeling of the behavior of the oblique convergent boundary of southeast Taiwan: friction and strain partitioning. Tectonophysics, 333(1-2), 261-276. Hu, J.-C., Hou, C.-S., Shen, L.-C., Chan, Y.-C., Chen, R.-F., Huang, C., Rau, R.-J., Chen, K. H.-H., Lin, C.-W., Huang, M.-H., & Nien, P.-F. (2007). Fault activity and lateral extrusion inferred from velocity field revealed by GPS measurements in the Pingtung area of southwestern Taiwan. Journal of Asian Earth Sciences, 31(3), 287-302. Huang, C.-Y., Chen, W.-H., Wang, M.-H., Lin, C.-T., Yang, S., Li, X., Yu, M., Zhao, X., Yang, K.-M., & Liu, C.-S. (2018). Juxtaposed sequence stratigraphy, temporal-spatial variations of sedimentation and development of modern-forming forearc Lichi Mélange in North Luzon Trough forearc basin onshore and offshore eastern Taiwan: An overview. Earth-Science Reviews, 182, 102-140. Huang, C.-Y., Chien, C.-W., Yao, B., & Chang, C.-P. (2008). The Lichi Mélange: A collision mélange formation along early arcward backthrusts during forearc basin closure, Taiwan arc-continent collision. Huang, C.-Y., Shyu, C.-T., Lin, S. B., Lee, T.-Q., & Sheu, D. D. (1992). Marine geology in the arc-continent collision zone off southeastern Taiwan: Implications for late neogene evolution of the coastal range. Marine Geology, 107(3), 183-212. Huang, C.-Y., & Yin, Y.-C. (1990). Bathymetric ridges and troughs in the active arc-continent collision region off southeastern Taiwan. Huang, C.-Y., Yuan, P. B., Lin, C.-W., Wang, T. K., & Chang, C.-P. (2000). Geodynamic processes of Taiwan arc–continent collision and comparison with analogs in Timor, Papua New Guinea, Urals and Corsica. Tectonophysics, 325(1-2), 1-21. Huang, C.-Y., Yuan, P. B., & Tsao, S.-J. (2006). Temporal and spatial records of active arc-continent collision in Taiwan: A synthesis. Geological Society of America Bulletin, 118(3-4), 274-288. Huang, M.-H., Bürgmann, R., & Hu, J.-C. (2016). Fifteen years of surface deformation in Western Taiwan: Insight from SAR interferometry. Tectonophysics, 692, 252-264. Juang, W.-S., & Chen, J.-C. (1990). Geochronology and chemical variations of volcanic rocks along the arc-continent collision zone in eastern Taiwan. Collection and Research(2), 89-118. Lai, L. S.-H., Dorsey, R. J., Horng, C.-S., Chi, W.-R., Shea, K.-S., & Yen, J.-Y. (2021). Polygenetic mélange in the retrowedge foredeep of an active arc-continent collision, Coastal Range of eastern Taiwan. Sedimentary Geology, 418, 105901. Lee, J.-C., Angelier, J., Chu, H.-T., Hu, J.-C., & Jeng, F.-S. (2001). Continuous monitoring of an active fault in a plate suture zone: a creepmeter study of the Chihshang Fault, eastern Taiwan. Tectonophysics, 333(1-2), 219-240. Lee, J. C., Angelier, J., Chu, H. T., Yu, S. B., & Hu, J. C. (1998). Plate-boundary strain partitioning along the sinistral collision suture of the Philippine and Eurasian plates: Analysis of geodetic data and geological observation in southeastern Taiwan. Tectonics, 17(6), 859-871. Legg, M. R., & Borrero, J. C. (2001). Tsunami potential of major restraining bends along submarine strike-slip faults. Proceedings of the international tsunami symposium, Lewis, S. D., & Hayes, D. E. (1984). A geophysical study of the Manila Trench, Luzon, Philippines: 2. Fore arc basin structural and stratigraphic evolution. Journal of Geophysical Research: Solid Earth, 89(B11), 9196-9214. Lin, A., Watts, A. B., & Hesselbo, S. (2003). Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region. Basin Research, 15(4), 453-478. Lundberg, N., Reed, D. L., Liu, C.-S., & Lieske, J. (1997). Forearc-basin closure and arc accretion in the submarine suture zone south of Taiwan. Tectonophysics, 274(1), 5-23. Malavieille, J., Lallemand, S. E., Dominguez, S., Deschamps, A., Lu, C.-Y., Liu, C.-S., & Schnurle, P. (2002). Arc-continent collision in Taiwan: New marine observations and tectonic evolution. Special Paper- Geological Society of America, 187-211. Malavieille, J., & Trullenque, G. (2009). Consequences of continental subduction on forearc basin and accretionary wedge deformation in SE Taiwan: Insights from analogue modeling. Tectonophysics, 466(3-4), 377-394. Meng, C.-Y., & Chiang, S. (1965). Subsurface data from wildcat SS-1, Shihshan, Taitung. Petroleum Geology of Taiwan, 4, 283-286. Mitchum Jr, R., Vail, P. R., & Thompson III, S. (1977). Seismic stratigraphy and global changes of sea level: Part 2. The depositional sequence as a basic unit for stratigraphic analysis: Section 2. Application of seismic reflection configuration to stratigraphic interpretation. Molnar, P., & Tapponnier, P. (1978). Active tectonics of Tibet. Journal of Geophysical Research: Solid Earth, 83(B11), 5361-5375. Page, B. M., & Suppe, J. (1981). The Pliocene Lichi melange of Taiwan; its plate-tectonic and olistostromal origin. American Journal of Science, 281(3), 193-227. Pelletier, B., & Stephan, J. F. (1986). Middle miocene deduction and late miocene beginning of collision registered in the hengchun peninsula: Geodynamic implications for the evolution of Taiwan. Tectonophysics, 125(1), 133-160. Posamentier, H. W., & Kolla, V. (2003). Seismic geomorphology and stratigraphy of depositional elements in deep-water settings. Journal of sedimentary research, 73(3), 367-388. Pubellier, M., Monnier, C., Maury, R., & Tamayo, R. (2004). Plate kinematics, origin and tectonic emplacement of supra-subduction ophiolites in SE Asia. Tectonophysics, 392(1-4), 9-36. Ratschbacher, L., Frisch, W., Linzer, H. G., & Merle, O. (1991). Lateral extrusion in the Eastern Alps, part 2: structural analysis. Tectonics, 10(2), 257-271. Raymond, L. A. (1984). Classification of melanges. Melanges: their nature, origin, and significance: Geological Society of America Special Paper, 198, 7-20. Reed, D. L. (1992). Structural relations along the margins of the off-shore Taiwan accretionary wedge: Implications for accretion and crustal kinematics. Acta Geologica Taiwanica, 30, 105-122. Regard, V., Bellier, O., Thomas, J. C., Abbassi, M., Mercier, J., Shabanian, E., Feghhi, K., & Soleymani, S. (2004). Accommodation of Arabia‐Eurasia convergence in the Zagros‐Makran transfer zone, SE Iran: A transition between collision and subduction through a young deforming system. Tectonics, 23(4). Ringenbach, J. C., Pinet, N., Stéphan, J. F., & Delteil, J. (1993). Structural variety and tectonic evolution of strike‐slip basins related to the Philippine Fault System, northern Luzon, Philippines. Tectonics, 12(1), 187-203. Ringenbach, J. C., Stephan, J. F., Maleterre, P., & Bellon, H. (1990). Structure and geological history of the Lepanto-Cervantes releasing bend on the Abra River fault, Luzon Central Cordillera, Philippines. Tectonophysics, 183(1-4), 225-241. Rutland. (1967). A tectonic study of part of the Philippine fault zone. Quarterly Journal of the Geological Society, 123(1-4), 293-323. Schnurle, P., Liu, C.-S., Lallemand, S., & Reed, D. (1998). Structural controls of the Taitung Canyon in the Huatung Basin east of Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 9(3), 446-453. Seno, T. (1977). The instantaneous rotation vector of the Philippine sea plate relative to the Eurasian plate. Tectonophysics, 42(2), 209-226. Shyu, Sieh, K., Chen, Y. G., & Liu, C. S. (2005). Neotectonic architecture of Taiwan and its implications for future large earthquakes. Journal of Geophysical Research: Solid Earth, 110(B8). Shyu, J. B. H., Wu, Y.-M., Chang, C.-H., & Huang, H.-H. (2011). Tectonic erosion and the removal of forearc lithosphere during arc-continent collision: Evidence from recent earthquake sequences and tomography results in eastern Taiwan. Journal of Asian Earth Sciences, 42(3), 415-422. Sibuet, J.-C., Zhao, M., Wu, J., & Lee, C.-S. (2021). Geodynamic and plate kinematic context of South China Sea subduction during Okinawa trough opening and Taiwan orogeny. Tectonophysics, 817, 229050. Sibuet, J. C., Hsu, S. K., Le Pichon, X., Le Formal, J. P., Reed, D., Moore, G., & Liu, C. S. (2002). East Asia plate tectonics since 15 Ma: Constraints from the Taiwan region. Tectonophysics, 344(1-2), 103-134. Sinclair, H. (1997). Flysch to molasse transition in peripheral foreland basins: The role of the passive margin versus slab breakoff. Geology, 25(12), 1123-1126. Sungi, Q.-C. (1991). Depositional mechanism of the Fukang sandstone, Lichi mélange, eastern taiwan. Suppe, J. (1981). Mechanics of mountain building and metamorphism in Taiwan. Mem. Geol. Soc. China, 4(6), 67-89. Suppe, J. (1984). Kinematics of arc-continent collision, flipping of subduction and back-arc spreading near Taiwan. Tapponnier, P., Peltzer, G., Le Dain, A., Armijo, R., & Cobbold, P. (1982). Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology, 10(12), 611-616. Taylor, B., & Goodliffe, A. M. (2004). The West Philippine Basin and the initiation of subduction, revisited. Geophysical Research Letters, 31(12). Teng, L. S. (1979). Petrographical study of the Neogene sandstones of the Coastal Range, eastern Taiwan.(I. Northern part). Teng, L. S. (1987). Stratigraphic records of the late Cenozoic Penglai orogeny of Taiwan. Yánjiū bàogào-Guólì Táiwān dàxué. Lǐxuéyuàn dìzhìxué xì(25), 205-224. Teng, L. S. (1990). Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics, 183(1), 57-76. Teng, L. S., Chen, W.-S., Wang, Y., Song, S.-R., & Lo, H.-J. (1988). Toward a comprehensive stratigraphic system of the Coastal Range, eastern Taiwan. Acta Geologica Taiwanica, 26, 19-36. Tsai, M.-C., Yu, S.-B., Shin, T.-C., Kuo, K.-W., Leu, P.-L., Chang, C.-H., & Ho, M.-Y. (2015). Velocity Field Derived from Taiwan Continuous GPS Array (2007-2013). Terrestrial, Atmospheric & Oceanic Sciences, 26(5). Wang, C. (1976). The Lichi Formation of the Coastal Range and arc-continent collision in eastern Taiwan: Geological Survey of Taiwan Bulletin 25. Wu, J., Suppe, J., Lu, R., & Kanda, R. (2016). Philippine Sea and East Asian plate tectonics since 52 Ma constrained by new subducted slab reconstruction methods. Journal of Geophysical Research: Solid Earth, 121, 4670–4741. Yang, T. F., Lee, T., Chen, C.-H., Cheng, S.-N., Knittel, U., Punongbayan, R. S., & Rasdas, A. R. (1996). A double island arc between Taiwan and Luzon: consequence of ridge subduction. Tectonophysics, 258(1), 85-101. Yu, S.-B., Chen, H.-Y., & Kuo, L.-C. (1997). Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274(1-3), 41-59. Yu, S. B., Hsu, Y. J., Bacolcol, T., Yang, C. C., Tsai, Y. C., & Solidum, R. (2013). Present-day crustal deformation along the Philippine Fault in Luzon, Philippines. Journal of Asian Earth Sciences, 65, 64-74. Zhang, R., Li, S., Suo, Y., Liu, J., Cao, X., Zhou, J., Jiang, Z., & Li, X. (2022). A forearc pull-apart basin under oblique arc-continent collision: Insights from the North Luzon Trough. Tectonophysics, 837, 229461. 中文文獻 何春蓀(1986)臺灣地質概論。經濟部中央地質調查所。 林益正(1993)台灣東部利吉層中基質泥及沙岩岩塊之構造分析與其構造環境之意義。國立臺灣大學地質科學研究所碩士論文。 林偉雄、林啟文、劉彥求、陳柏村(2008)台東、知本五萬分之一臺灣地質圖及說明書。經濟部中央地質調查所。 林啟文、石瑞銓、林燕慧(2004)台東縱谷南段的活動斷層特性研究。經濟部中央地質調查所特刊,第15號,第 161-174頁。 林啟文、陳文山、劉彥求、陳柏村(2009)臺灣東部與南部的活動斷層。經濟部中央地質調查所特刊,第23號。 紀文榮(1982)臺灣利吉層與墾丁層內之超微化石及其在地質構造上之意義。地質,第4卷,第 99-114頁。 紀權窅(2007)南段花東縱谷之新期構造研究-利吉斷層與鹿野斷層的活動特性。國立臺灣大學地質科學研究所碩士論文。 徐鐵良(1956)臺灣東部海岸山脈地質。臺灣省地質調查所彙刊,第8號,第 15-41頁。 陳文山(1988)台灣海岸山脈沈積盆地之演化及其在地體構造上之意義。國立臺灣大學地質科學研究所博士論文。 陳文山(1991)臺灣東部海岸山脈利吉層的成因。經濟部中央地質調查所特刊,第5號,第 257-266頁。 陳文山(2009)海岸山脈火山島弧與碰撞盆地的地層架構與年代。西太平洋地質科學,第 9卷,第 67-98頁。 陳文山(2020)。海岸山脈火山弧與前陸盆地之層序架構。經濟部中央地質調查所彙刊,第33號,第 83-95頁。 陳文山、王源(1996)臺灣東部海岸山脈地質。經濟部中央地質調查所。 陳文山、吳逸民、葉柏逸、賴奕修、柯明淳、柯孝勳、林義凱(2019)。臺灣東南海域隱沒至碰撞轉換帶的孕震構造34號,第 125-140頁。 陳文山、林益正、顏一勤、楊志成、紀權窅、黃能偉、林啟文、林偉雄、侯進雄劉彥求(2008)從古地震研究與 GPS 資料探討縱谷斷層的分段意義。經濟部中央地質調查所特刊,第20號,第 165-191頁。 陳文山、俞何興、俞震甫、鍾孫霖、林正洪、林啟文、游能悌、吳逸民、王國龍(2016)台灣地質概論。中華民國地質學會。 陳文山、陳志雄、王源、黃敦友(1990)臺灣海岸山脈之地層。經濟部中央地質調查所特刊,第4號,第 239-260頁。 陳思婷(2018)晚更新世以來花東海岸南段的階地演化。國立臺灣大學地質科學研究所碩士論文。 陳麗雯(2006)台灣東南海域弧前盆地之構造演化特徵。國立臺灣大學海洋研究所碩士論文。 黃政愷(2018)南縱海槽之構造形貌與沉積過程。國立臺灣大學海洋研究所碩士論文。 潘玉生、陳讚煌、鍾火盛、游銘銳(1992)。震測資料之認識與解釋。中國石油股份有限公司海域及海外石油探勘處。 簡至暐(2003)台灣東部海岸山脈利吉混同岩體成因之硏究:微體古生物證據。國立臺灣大學地質科學研究所碩士論文。 龐麒修(2019)台灣海岸山脈最南端利吉混同層構造演化。國立臺灣大學地質科學研究所碩士論文。 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95337 | - |
dc.description.abstract | 由於歐亞大陸邊緣與呂宋島弧之間的斜向聚合,使得臺灣成為研究隱沒系統轉變為碰撞系統的天然實驗室。而臺灣東南區域,陸域的海岸山脈以及近岸海域的臺東海槽,被認為是了解初始弧陸碰撞的重要過渡帶。為了瞭解臺東海槽最北端和海岸山脈最南端之間的構造發育,我們進行了陸域野外調查以及海域多頻道反射震測,透過資料探討海陸域地體架構的連接關係,進一步瞭解區域演化歷史。
陸域研究部分,我們將焦點放在海岸山脈最南端的永豐斷層,以及位於永豐斷層西南側、與永豐斷層走向接近平行的利吉斷層。在縱谷內部,永豐斷層為利吉層與八里灣層的邊界,走向近南北向,為向東傾的逆斷層,然而在海岸山脈最南端,永豐斷層的位置與走向尚未定論,接觸關係也存在不同的解釋,如構造接觸或沉積接觸,根據野外調查,我們認為永豐斷層走向約為東西向,並且更傾向將其解釋為具有活動性的構造邊界。利吉斷層同樣為走向近南北向的逆斷層,並且在海岸山脈最南端同樣有向東南方轉彎的趨勢。海域研究部分,本研究震測資料範圍主要涵蓋緊鄰陸域的臺東海槽。地層部分,利用震測地層學的方法,我們將剖面中不同的震測相進行區分,並且與陸域海岸山脈的都鑾山層、蕃薯寮層與八里灣層、卑南山礫岩、利吉層等地層進行對比。構造部分,根據水深與震測資料,顯示臺東海槽最北端存在數個呈現東西走向的階狀地形,從震測剖面來看這些階狀地形是由一系列轉換正斷層所構成的花狀構造。 我們認為臺東海槽北緣的東西走向的轉換斷層,與縱谷斷層與綠島-蘭嶼斷層的左移運動有關,即菲律賓海板塊與歐亞板塊的走向滑移相對運動,促使了縱谷斷層與綠島-蘭嶼斷層的左移運動,造成兩條斷層之間產生平移拉張環境,進而在臺東海槽北緣形成拉張盆地。除此之外,根據海域近岸區的擠壓構造特徵與正斷層震源機制分布,結合區域GPS速度場資料,我們提出海岸山脈最南端的小規模逃逸構造模型,由於弧陸碰撞產生的擠壓環境,促使位於花東縱谷內的利吉層有往東南海域逃逸的趨勢。 | zh_TW |
dc.description.abstract | Due to the oblique convergence between the Eurasian continental margin and the Luzon Arc, Taiwan serves as a natural laboratory for studying the transition from subduction to collision systems. In southeastern Taiwan, the Coastal Range and the adjacent offshore Taitung Trough are considered crucial transitional zones for understanding the initial arc-continent collision. To understand the tectonic development between the northernmost Taitung Trough and the southernmost Coastal Range, we conducted terrestrial field investigations and offshore multi-channel seismic surveys. By examining the data, we explore the connections between terrestrial and marine tectonic frameworks, providing insights into the regional evolutionary history.
For the terrestrial research, we focused on the Yungfeng Fault and the Lichi Fault at the southern end of the Coastal Range. Within the Longitudinal Valley, the Yungfeng Fault forms the boundary between the Lichi Mélange and the Paliwan Formation, trending nearly north-south and acting as an east-dipping reverse fault. However, at the southern end of the Coastal Range, the position and trend of the Yungfeng Fault remain unresolved, with varying interpretations of the contact relationships, such as structural contact (Huang et al., 2018; Chen & Wang, 1996) or depositional contact (Lai et al., 2021). Based on field investigations, we suggest that the Yungfeng Fault trends approximately east-west and is more likely to be interpreted as an active tectonic boundary. The Lichi Fault is also a north-south trending reverse fault and shows a tendency to bend southeastward at the southern end of the Coastal Range. For the marine research, our seismic data mainly cover the Taitung Trough adjacent to the terrestrial area. We distinguish different seismic sequences S1, S2, S3, S4, and S5 in the profiles and correlate them with terrestrial formations such as the Tuluanshan Fm., Lichi Mélange, Fanshuliao Fm., Paliwan Fm., Peinanshan Congl., and modern fluvial alluvium of the Coastal Range. According to bathymetric and seismic data, the northernmost Taitung Trough exhibits several east-west trending stepped topographies, which are identified as flower structure composed of a series of transfer normal faults. We interpret these east-west trending transfer faults as resulting from the left-lateral motion of the Longitudinal Valley Fault and the Lutao-Lanyu Fault. The strike-slip relative motion between the Philippine Sea Plate and the Eurasian Plate has resulted in the left-lateral motion of the Longitudinal Valley Fault and the Lutao-Lanyu Fault. The left-lateral motion of the Longitudinal Valley Fault and the Lutao-Lanyu Fault create a transtensional environment between the two faults, leading to the formation of a pull-apart basin at the northern Taitung Trough. Additionally, considering the compressional structural features nearshore and the distribution of normal fault focal mechanisms, combined with local GPS velocity field data, we propose a small-scale extrusion model for the southern end of the Coastal Range. The compressional environment generated by arc-continent collision results in the southeastward extrusion of the Lichi Mélange from the Longitudinal Valley towards the southeastern offshore area. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-05T16:14:27Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-09-05T16:14:27Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審訂書 i
致謝 ii 摘要 iii Abstract iv 目次 vi 圖次 ix 表次 xiii 第一章 緒論 1 1-1 研究動機與目的 1 第二章 區域地質背景 8 2-1 臺灣島的地質架構 8 2-2 海岸山脈最南端地質架構 11 2-2-1 海岸山脈最南端地層 13 2-2-2 海岸山脈最南端斷層 23 2-2-3 利吉層與八里灣層之邊界位置與接觸關係 24 2-3 東南海域地質架構 27 2-3-1 東南海域地質構造單元 27 2-3-2 東南海域斷層與速度構造 31 第三章 研究材料與方法 37 3-1 陸域研究資料 37 3-1-1 野外調查區域 37 3-1-2 野外地層辨識 38 3-2 海域研究資料 39 3-2-1 反射震測資料範圍、來源與參數 39 3-2-2 資料處理流程 41 3-2-3 資料解釋 45 第四章 陸域研究結果 49 4-1 八里灣層 50 4-1-1 幸溪露頭 50 4-1-2 郡界溪露頭 50 4-1-3 天水溪露頭 51 4-2 利吉層與富岡砂岩 54 4-2-1 潮來溪露頭 54 4-2-2 入江溪露頭 54 4-3 八里灣層與利吉層之邊界位置 59 第五章 海域研究結果 65 5-1 震測層序邊界與震測相特徵描述 65 5-1-1 震測層序邊界特徵描述 65 5-1-2 震測層序特徵描述 66 5-2 反射震測剖面解釋 69 5-2-1 近岸側南北向剖面 69 5-2-2 島弧側南北向剖面 72 5-2-3 東西向剖面 74 5-3 海域構造分布 84 第六章 討論 86 6-1 海域與陸域之地層對比 86 6-1-1 海域震測層序之地質意義 86 6-1-2 海域震測層序與海岸山脈最南端地層之對比 90 6-1-3 與前人研究中海陸域地層對比之比較 96 6-2 海域與陸域之構造特徵與機制 102 6-2-1 海陸域斷層分布與震源機制特徵 102 6-2-2 構造機制與成因:拉張盆地 107 6-2-3 板塊邊界上的拉張盆地案例 110 6-2-4 近岸側的新期構造活動:逃逸構造 120 6-3 區域地體構造演化歷史 129 第七章 結論 132 參考文獻 134 | - |
dc.language.iso | zh_TW | - |
dc.title | 臺東海槽北緣之海陸域地質特徵、接連與構造機制 | zh_TW |
dc.title | Marine and terrestrial geological features, linkage, and structural mechanism of the northern Taitung Trough | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 劉家瑄;許鶴瀚;陳麗雯;張中白 | zh_TW |
dc.contributor.oralexamcommittee | Char-Shine Liu;Ho-Han Hsu;Li-Wen Chen;Chung-Pai Chang | en |
dc.subject.keyword | 臺東海槽,海岸山脈,利吉層,弧前盆地,拉張盆地,逃逸構造, | zh_TW |
dc.subject.keyword | Taitung Trough,Coastal Range,Lichi Mélange,forearc basin,pull-apart basin,extrusion structure, | en |
dc.relation.page | 141 | - |
dc.identifier.doi | 10.6342/NTU202403569 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-08-12 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 海洋研究所 | - |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 此日期後於網路公開 2025-08-06 | 18.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。