請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95335完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 童心欣 | zh_TW |
| dc.contributor.advisor | Hsin-Hsin Tung | en |
| dc.contributor.author | 顏逢毅 | zh_TW |
| dc.contributor.author | Feng-Yi YEN | en |
| dc.date.accessioned | 2024-09-05T16:13:51Z | - |
| dc.date.available | 2024-09-06 | - |
| dc.date.copyright | 2024-09-05 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-12 | - |
| dc.identifier.citation | Berney, M., Vital, M., Hülshoff, I., Weilenmann, H.-U., Egli, T., & Hammes, F. (2008). Rapid, cultivation-independent assessment of microbial viability in drinking water. Water research, 42(14), 4010-4018.
Berry, D., Xi, C., & Raskin, L. (2006). Microbial ecology of drinking water distribution systems. Current opinion in biotechnology, 17(3), 297-302. Bichai, F., Payment, P., & Barbeau, B. (2008). Protection of waterborne pathogens by higher organisms in drinking water: a review. Canadian journal of microbiology, 54(7), 509-524. Boe-Hansen, R., Albrechtsen, H.-J., Arvin, E., & Jørgensen, C. (2002). Bulk water phase and biofilm growth in drinking water at low nutrient conditions. Water Research, 36(18), 4477-4486. Cao, Y., Raith, M. R., & Griffith, J. F. (2015). Droplet digital PCR for simultaneous quantification of general and human-associated fecal indicators for water quality assessment. Water research, 70, 337-349. Carrière, A., Gauthier, V., Desjardins, R., & Barbeau, B. (2005). Evaluation of loose deposits in distribution systems through: unidirectional flushing. Journal‐American Water Works Association, 97(9), 82-92. de Vera, G. A., & Wert, E. C. (2019). Using discrete and online ATP measurements to evaluate regrowth potential following ozonation and (non) biological drinking water treatment. Water research, 154, 377-386. Deininger, R., & Lee, J. (2005). Rapid detection of bacteria in drinking water. Modern Tools and Methods of Water Treatment for Improving Living Standards: Proceedings of the NATO Advanced Research Workshop on Modern Tools and Methods of Water Treatment for Improving Living Standards Dnepropetrovsk, Ukraine 19–22 November 2003, Delahaye, E., Welte, B., Levi, Y., Leblon, G., & Montiel, A. (2003). An ATP-based method for monitoring the microbiological drinking water quality in a distribution network. Water Research, 37(15), 3689-3696. Directive, C. (1998). On the quality of water intended for human consumption. Official Journal of the European Communities, 330, 32-54. El-Chakhtoura, J., Prest, E., Saikaly, P., van Loosdrecht, M., Hammes, F., & Vrouwenvelder, H. (2015). Dynamics of bacterial communities before and after distribution in a full-scale drinking water network. Water research, 74, 180-190. Emtiazi, F., Schwartz, T., Marten, S. M., Krolla-Sidenstein, P., & Obst, U. (2004). Investigation of natural biofilms formed during the production of drinking water from surface water embankment filtration. Water research, 38(5), 1197-1206. Flemming, H.-C., & Wingender, J. (2010). The biofilm matrix. Nature reviews microbiology, 8(9), 623-633. Frankland, P., & Frankland, G. C. T. (1894). Micro-organisms in Water: Their Significance, Identification and Removal, Together with an Account of the Bacteriological Methods Employed in Their Investigation. Longmans, Green. Gauthier, V., Gérard, B., Portal, J.-M., Block, J.-C., & Gatel, D. (1999). Organic matter as loose deposits in a drinking water distribution system. Water research, 33(4), 1014-1026. Hammes, F., Berger, C., Köster, O., & Egli, T. (2010). Assessing biological stability of drinking water without disinfectant residuals in a full-scale water supply system. Journal of Water Supply: Research and Technology—AQUA, 59(1), 31-40. Hammes, F., Berney, M., Wang, Y., Vital, M., Köster, O., & Egli, T. (2008). Flow-cytometric total bacterial cell counts as a descriptive microbiological parameter for drinking water treatment processes. Water research, 42(1-2), 269-277. Hammes, F., & Egli, T. (2010). Cytometric methods for measuring bacteria in water: advantages, pitfalls and applications. Analytical and bioanalytical chemistry, 397, 1083-1095. Harwood, V. J., Levine, A. D., Scott, T. M., Chivukula, V., Lukasik, J., Farrah, S. R., & Rose, J. B. (2005). Validity of the indicator organism paradigm for pathogen reduction in reclaimed water and public health protection. Applied and environmental microbiology, 71(6), 3163-3170. Hasan, J., Goldbloom-Helzner, D., Ichida, A., Rouse, T., & Gibson, M. (2005). Technologies and techniques for early warning systems to monitor and evaluate drinking water quality: A state-of-the-art review. Environmental Protection Agency Washington DC Office of Water: Washington, DC, USA. Her, N., Amy, G., McKnight, D., Sohn, J., & Yoon, Y. (2003). Characterization of DOM as a function of MW by fluorescence EEM and HPLC-SEC using UVA, DOC, and fluorescence detection. Water Research, 37(17), 4295-4303. Hoefel, D., Grooby, W. L., Monis, P. T., Andrews, S., & Saint, C. P. (2003). Enumeration of water-borne bacteria using viability assays and flow cytometry: a comparison to culture-based techniques. Journal of microbiological methods, 55(3), 585-597. Huang, G., Ng, T.-W., Chen, H., Chow, A. T., Liu, S., & Wong, P. K. (2020). Formation of assimilable organic carbon (AOC) during drinking water disinfection: A microbiological prospect of disinfection byproducts. Environment international, 135, 105389. Inkinen, J., Kaunisto, T., Pursiainen, A., Miettinen, I. T., Kusnetsov, J., Riihinen, K., & Keinänen-Toivola, M. M. (2014). Drinking water quality and formation of biofilms in an office building during its first year of operation, a full scale study. Water research, 49, 83-91. Karl, D. M. (1980). Cellular nucleotide measurements and applications in microbial ecology. Microbiological reviews, 44(4), 739-796. Knowles, J. R. (1980). Enzyme-catalyzed phosphoryl transfer reactions. Annual review of biochemistry, 49(1), 877-919. Kooij, D. v. d. (1992). Assimilable organic carbon as an indicator of bacterial regrowth. Journal‐American Water Works Association, 84(2), 57-65. Lautenschlager, K., Hwang, C., Liu, W.-T., Boon, N., Köster, O., Vrouwenvelder, H., . . . Hammes, F. (2013). A microbiology-based multi-parametric approach towards assessing biological stability in drinking water distribution networks. Water research, 47(9), 3015-3025. LeChevallier, M. W., Babcock, T. M., & Lee, R. G. (1987). Examination and characterization of distribution system biofilms. Applied and environmental microbiology, 53(12), 2714-2724. LeChevallier, M. W., Shaw, N. E., Kaplan, L. A., & Bott, T. L. (1993). Development of a rapid assimilable organic carbon method for water. Applied and environmental microbiology, 59(5), 1526-1531. LeChevallier, M. W., Welch, N. J., & Smith, D. B. (1996). Full-scale studies of factors related to coliform regrowth in drinking water. Applied and Environmental Microbiology, 62(7), 2201-2211. Lehtola, M. J., Juhna, T., Miettinen, I. T., Vartiainen, T., & Martikainen, P. J. (2004). Formation of biofilms in drinking water distribution networks, a case study in two cities in Finland and Latvia. Journal of Industrial Microbiology and Biotechnology, 31(11), 489-494. Lehtola, M. J., Torvinen, E., Kusnetsov, J., Pitkänen, T., Maunula, L., von Bonsdorff, C.-H., . . . Miettinen, I. T. (2007). Survival of Mycobacterium avium, Legionella pneumophila, Escherichia coli, and caliciviruses in drinking water-associated biofilms grown under high-shear turbulent flow. Applied and Environmental Microbiology, 73(9), 2854-2859. Leitão, J. M., & da Silva, J. C. E. (2010). Firefly luciferase inhibition. Journal of Photochemistry and Photobiology B: Biology, 101(1), 1-8. Liu, G., Ling, F., Magic-Knezev, A., Liu, W., Verberk, J., & Van Dijk, J. (2013). Quantification and identification of particle-associated bacteria in unchlorinated drinking water from three treatment plants by cultivation-independent methods. Water research, 47(10), 3523-3533. Liu, G., Van der Mark, E., Verberk, J., & Van Dijk, J. (2013). Flow cytometry total cell counts: a field study assessing microbiological water quality and growth in unchlorinated drinking water distribution systems. BioMed research international, 2013. Liu, G., Verberk, J., & Van Dijk, J. (2013). Bacteriology of drinking water distribution systems: an integral and multidimensional review. Applied microbiology and biotechnology, 97, 9265-9276. Liu, G., Zhang, Y., Knibbe, W.-J., Feng, C., Liu, W., Medema, G., & van der Meer, W. (2017). Potential impacts of changing supply-water quality on drinking water distribution: A review. Water research, 116, 135-148. Liu, J., Yin, P., Chen, B., Gao, F., Song, H., & Li, M. (2016). Distribution and contamination assessment of heavy metals in surface sediments of the Luanhe River Estuary, northwest of the Bohai Sea. Marine pollution bulletin, 109(1), 633-639. Liu, L., Hu, Q., Le, Y., Chen, G., Tong, Z., Xu, Q., & Wang, G. (2017). Chlorination-mediated EPS excretion shapes early-stage biofilm formation in drinking water systems. Process Biochemistry, 55, 41-48. Liu, S., Gunawan, C., Barraud, N., Rice, S. A., Harry, E. J., & Amal, R. (2016). Understanding, monitoring, and controlling biofilm growth in drinking water distribution systems. Environmental science & technology, 50(17), 8954-8976. Liu, W., Wu, H., Wang, Z., Ong, S., Hu, J., & Ng, W. (2002). Investigation of assimilable organic carbon (AOC) and bacterial regrowth in drinking water distribution system. Water research, 36(4), 891-898. Massa, S., Caruso, M., Trovatelli, F., & Tosques, M. (1998). Comparison of plate count agar and R2A medium for enumeration of heterotrophic bacteria in natural mineral water. World Journal of Microbiology and Biotechnology, 14, 727-730. Nawrocki, J., Raczyk-Stanisławiak, U., Świetlik, J., Olejnik, A., & Sroka, M. J. (2010). Corrosion in a distribution system: Steady water and its composition. Water research, 44(6), 1863-1872. Nescerecka, A., Rubulis, J., Vital, M., Juhna, T., & Hammes, F. (2014). Biological instability in a chlorinated drinking water distribution network. PLoS One, 9(5), e96354. Organization, W. H. (2004). Guidelines for drinking-water quality (Vol. 1). World Health Organization. Organization, W. H., & WHO. (2004). Guidelines for drinking-water quality (Vol. 1). World Health Organization. Pan, R., Zhang, K., Cen, C., Zhou, X., Xu, J., Wu, J., & Wu, X. (2021). Characteristics of biostability of drinking water in aged pipes after water source switching: ATP evaluation, biofilms niches and microbial community transition. Environmental Pollution, 271, 116293. Park, S., Rana, A., Sung, W., & Munir, M. (2021). Competitiveness of quantitative polymerase chain reaction (qPCR) and droplet digital polymerase chain reaction (ddPCR) technologies, with a particular focus on detection of antibiotic resistance genes (ARGs). Applied Microbiology, 1(3), 426-444. Peng, C.-Y., Korshin, G. V., Valentine, R. L., Hill, A. S., Friedman, M. J., & Reiber, S. H. (2010). Characterization of elemental and structural composition of corrosion scales and deposits formed in drinking water distribution systems. Water Research, 44(15), 4570-4580. Prévost, M., Rompré, A., Coallier, J., Servais, P., Laurent, P., Clément, B., & Lafrance, P. (1998). Suspended bacterial biomass and activity in full-scale drinking water distribution systems: impact of water treatment. Water research, 32(5), 1393-1406. Prest, E., Weissbrodt, D., Hammes, F., Van Loosdrecht, M., & Vrouwenvelder, J. S. (2016). Long-term bacterial dynamics in a full-scale drinking water distribution system. PLoS One, 11(10), e0164445. Prest, E. I., Hammes, F., Van Loosdrecht, M. C., & Vrouwenvelder, J. S. (2016). Biological stability of drinking water: controlling factors, methods, and challenges. Frontiers in microbiology, 7, 45. Reasoner, D., & Geldreich, E. (1985). A new medium for the enumeration and subculture of bacteria from potable water. Applied and environmental microbiology, 49(1), 1-7. Reasoner, D. J. (1990). Monitoring heterotrophic bacteria in potable water. In Drinking Water Microbiology: Progress and Recent Developments (pp. 452-477). Springer. Reasoner, D. J. (2004). Heterotrophic plate count methodology in the United States. International journal of food microbiology, 92(3), 307-315. Reasoner, D. J., & Geldreich, E. (1985). A new medium for the enumeration and subculture of bacteria from potable water. Applied and Environmental Microbiology, 49(1), 1-7. Risebro, H. L., Doria, M. F., Andersson, Y., Medema, G., Osborn, K., Schlosser, O., & Hunter, P. R. (2007). Fault tree analysis of the causes of waterborne outbreaks. Journal of water and health, 5(S1), 1-18. Sarin, P., Snoeyink, V., Bebee, J., Kriven, W., & Clement, J. (2001). Physico-chemical characteristics of corrosion scales in old iron pipes. Water research, 35(12), 2961-2969. Sartory, D. P. (2004). Heterotrophic plate count monitoring of treated drinking water in the UK: a useful operational tool. International journal of food microbiology, 92(3), 297-306. Schwartz, T., Kohnen, W., Jansen, B., & Obst, U. (2003). Detection of antibiotic-resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms. FEMS microbiology ecology, 43(3), 325-335. Seifert, K., & Lyons, T. C. (1976). Water quality law in Federal Republic of Germany. Journal of the Water Resources Planning and Management Division, 102(1), 23-33. Servais, P., Laurent, P., & Randon, G. (1995). Comparison of the bacterial dynamics in various French distribution systems. AQUA-LONDON THEN OXFORD-JOURNAL OF THE INTERNATIONAL WATER SUPPLY ASSOCIATION-, 44, 10-10. Shrestha, R. G., Tanaka, Y., Malla, B., Bhandari, D., Tandukar, S., Inoue, D., . . . Haramoto, E. (2017). Next-generation sequencing identification of pathogenic bacterial genes and their relationship with fecal indicator bacteria in different water sources in the Kathmandu Valley, Nepal. Science of the Total Environment, 601, 278-284. Siebel, E., Wang, Y., Egli, T., & Hammes, F. (2008). Correlations between total cell concentration, total adenosine tri-phosphate concentration and heterotrophic plate counts during microbial monitoring of drinking water. Drinking Water Engineering and Science, 1(1), 1-6. Sousi, M., Salinas-Rodriguez, S. G., Liu, G., Dusseldorp, J., Kemperman, A. J., Schippers, J. C., . . . Kennedy, M. D. (2021). Comparing the bacterial growth potential of ultra-low nutrient drinking water assessed by growth tests based on flow cytometric intact cell count versus adenosine triphosphate. Water research, 203, 117506. Stanley, P. E. (1989). A review of bioluminescent ATP techniques in rapid microbiology. Journal of Bioluminescence and Chemiluminescence, 4(1), 375-380. Thomas, J. M., & Ashbolt, N. J. (2011). Do free-living amoebae in treated drinking water systems present an emerging health risk? Environmental science & technology, 45(3), 860-869. Van Der Kooij, D. (2000). Biological stability: a multidimensional quality aspect of treated water. Environmental Challenges, 25-34. van der Kooij, D., Veenendaal, H. R., van der Mark, E. J., & Dignum, M. (2017). Assessment of the microbial growth potential of slow sand filtrate with the biomass production potential test in comparison with the assimilable organic carbon method. Water research, 125, 270-279. Van Der Kooij, D., Visser, A., & Hijnen, W. (1982). Determining the concentration of easily assimilable organic carbon in drinking water. Journal‐American Water Works Association, 74(10), 540-545. Van der Wielen, P. W., & van der Kooij, D. (2010). Effect of water composition, distance and season on the adenosine triphosphate concentration in unchlorinated drinking water in the Netherlands. Water research, 44(17), 4860-4867. Van Nevel, S., Koetzsch, S., Proctor, C. R., Besmer, M. D., Prest, E. I., Vrouwenvelder, J. S., . . . Hammes, F. (2017). Flow cytometric bacterial cell counts challenge conventional heterotrophic plate counts for routine microbiological drinking water monitoring. Water research, 113, 191-206. Vang, Ó. K., Corfitzen, C. B., Smith, C., & Albrechtsen, H.-J. (2014). Evaluation of ATP measurements to detect microbial ingress by wastewater and surface water in drinking water. Water research, 64, 309-320. Vital, M., Dignum, M., Magic-Knezev, A., Ross, P., Rietveld, L., & Hammes, F. (2012). Flow cytometry and adenosine tri-phosphate analysis: alternative possibilities to evaluate major bacteriological changes in drinking water treatment and distribution systems. Water research, 46(15), 4665-4676. Wang, F. W. F., Chen, Y.-h. C. Y.-h., Huang, T. H. T., Chen, P.-h. C. P.-h., & Mikhailova, R. (2015). Comparison of the current sanitation situation and quality standards of drinking water between China and Russia. Методологические проблемы изучения, оценки и регламентирования химического загрязнения окружающей среды и его влияние на здоровье населения, Wang, H., Bedard, E., Prévost, M., Camper, A. K., Hill, V. R., & Pruden, A. (2017). Methodological approaches for monitoring opportunistic pathogens in premise plumbing: A review. Water Research, 117, 68-86. Wang, Q., Tao, T., Xin, K., Li, S., & Zhang, W. (2014). A review research of assimilable organic carbon bioassay. Desalination and Water Treatment, 52(13-15), 2734-2740. Webster, J. J., Hampton, G. J., Wilson, J. T., Ghiorse, W. C., & Leach, F. R. (1985). Determination of microbial cell numbers in subsurface samples. Groundwater, 23(1), 17-25. Wen, X., Chen, F., Lin, Y., Zhu, H., Yuan, F., Kuang, D., . . . Yuan, Z. (2020). Microbial indicators and their use for monitoring drinking water quality—A review. Sustainability, 12(6), 2249. Wingender, J., & Flemming, H.-C. (2011). Biofilms in drinking water and their role as reservoir for pathogens. International journal of hygiene and environmental health, 214(6), 417-423. Yin, W., Yang, L., Zhou, X., Liu, T., Zhang, L., Xu, Y., . . . Zhang, Y. (2023). Peracetic acid disinfection induces antibiotic-resistant E. coli into VBNC state but ineffectively eliminates the transmission potential of ARGs. Water research, 120260. Yu, W.-Z., Gregory, J., Liu, T., Yang, Y.-l., Sun, M., & Li, G.-b. (2011). Effect of enhanced coagulation by KMnO4 on the fouling of ultrafiltration membranes. Water Science and Technology, 64(7), 1497-1502. Zhang, K., Pan, R., Zhang, T., Xu, J., Zhou, X., & Yang, Y. (2019). A novel method: using an adenosine triphosphate (ATP) luminescence–based assay to rapidly assess the biological stability of drinking water. Applied microbiology and biotechnology, 103, 4269-4277. Zhang, W., & DiGiano, F. A. (2002). Comparison of bacterial regrowth in distribution systems using free chlorine and chloramine: a statistical study of causative factors. Water research, 36(6), 1469-1482. Zhu, Z., Shan, L., Zhang, X., Hu, F., Zhong, D., Yuan, Y., & Zhang, J. (2021). Effects of bacterial community composition and structure in drinking water distribution systems on biofilm formation and chlorine resistance. Chemosphere, 264, 128410. Zlatanović, L., van der Hoek, J. P., & Vreeburg, J. (2017). An experimental study on the influence of water stagnation and temperature change on water quality in a full-scale domestic drinking water system. Water research, 123, 761-772. Van der Wielen, P. W., & van der Kooij, D. (2010). Effect of water composition, distance and season on the adenosine triphosphate concentration in unchlorinated drinking water in the Netherlands. Water research, 44(17), 4860-4867 Francisque, A., Rodriguez, M. J., Sadiq, R., Miranda, L. F., & Proulx, F. (2011). Classification of heterotrophic plate counts (HPC) in a water distribution network: a fuzzy rule-based approach. International Journal of System Assurance Engineering and Management, 2, 286-300. Means, E. G., Hanami, L., Ridgway, H. F., & Olson, B. H. (1981). Evaluating mediums and plating techniques for enumerating bacteria in water distribution systems. Journal‐American Water Works Association, 73(11), 585-590. Berry, D., Xi, C., and Raskin, L. (2006). "Microbial ecology of drinking water distribution systems." Current opinion in biotechnology, 17(3), 297-302. Bichai, F., Payment, P., and Barbeau, B. (2008). "Protection of waterborne pathogens by higher organisms in drinking water: a review." Canadian journal of microbiology, 54(7), 509-524. Boe-Hansen, R., Albrechtsen, H.-J., Arvin, E., and Jørgensen, C. (2002). "Bulk water phase and biofilm growth in drinking water at low nutrient conditions." Water Research, 36(18), 4477-4486. Cao, Y., Raith, M. R., and Griffith, J. F. (2015). "Droplet digital PCR for simultaneous quantification of general and human-associated fecal indicators for water quality assessment." water research, 70, 337-349. Carrière, A., Gauthier, V., Desjardins, R., and Barbeau, B. (2005). "Evaluation of loose deposits in distribution systems through: unidirectional flushing." Journal‐American Water Works Association, 97(9), 82-92. Chowdhury, S. (2012). "Heterotrophic bacteria in drinking water distribution system: a review." Environmental monitoring and assessment, 184, 6087-6137. de Vera, G. A., and Wert, E. C. (2019). "Using discrete and online ATP measurements to evaluate regrowth potential following ozonation and (non) biological drinking water treatment." Water research, 154, 377-386. Deininger, R., and Lee, J. "Rapid detection of bacteria in drinking water." Modern Tools and Methods of Water Treatment for Improving Living Standards: Proceedings of the NATO Advanced Research Workshop on Modern Tools and Methods of Water Treatment for Improving Living Standards Dnepropetrovsk, Ukraine 19–22 November 2003, 71-78. Delahaye, E., Welte, B., Levi, Y., Leblon, G., and Montiel, A. (2003). "An ATP-based method for monitoring the microbiological drinking water quality in a distribution network." Water research, 37(15), 3689-3696. Directive, C. (1998). "On the quality of water intended for human consumption." Official Journal of the European Communities, 330, 32-54. El-Chakhtoura, J., Prest, E., Saikaly, P., van Loosdrecht, M., Hammes, F., and Vrouwenvelder, H. (2015). "Dynamics of bacterial communities before and after distribution in a full-scale drinking water network." water research, 74, 180-190. Emtiazi, F., Schwartz, T., Marten, S. M., Krolla-Sidenstein, P., and Obst, U. (2004). "Investigation of natural biofilms formed during the production of drinking water from surface water embankment filtration." Water research, 38(5), 1197-1206. Flemming, H.-C., and Wingender, J. (2010). "The biofilm matrix." Nature reviews microbiology, 8(9), 623-633. Francisque, A., Rodriguez, M. J., Sadiq, R., Miranda, L. F., and Proulx, F. (2011). "Classification of heterotrophic plate counts (HPC) in a water distribution network: a fuzzy rule-based approach." International Journal of System Assurance Engineering and Management, 2, 286-300. Gauthier, V., Gérard, B., Portal, J.-M., Block, J.-C., and Gatel, D. (1999). "Organic matter as loose deposits in a drinking water distribution system." Water Research, 33(4), 1014-1026. Gilca, A. F., Teodosiu, C., Fiore, S., and Musteret, C. P. (2020). "Emerging disinfection byproducts: A review on their occurrence and control in drinking water treatment processes." Chemosphere, 259, 127476. Hammes, F., Berger, C., Köster, O., and Egli, T. (2010). "Assessing biological stability of drinking water without disinfectant residuals in a full-scale water supply system." Journal of Water Supply: Research and Technology—AQUA, 59(1), 31-40. Hammes, F., Berney, M., Wang, Y., Vital, M., Köster, O., and Egli, T. (2008). "Flow-cytometric total bacterial cell counts as a descriptive microbiological parameter for drinking water treatment processes." Water research, 42(1-2), 269-277. Hammes, F., and Egli, T. (2010). "Cytometric methods for measuring bacteria in water: advantages, pitfalls and applications." Analytical and bioanalytical chemistry, 397, 1083-1095. Harwood, V. J., Levine, A. D., Scott, T. M., Chivukula, V., Lukasik, J., Farrah, S. R., and Rose, J. B. (2005). "Validity of the indicator organism paradigm for pathogen reduction in reclaimed water and public health protection." Applied and environmental microbiology, 71(6), 3163-3170. Hasan, J., Goldbloom-Helzner, D., Ichida, A., Rouse, T., and Gibson, M. (2005). "Technologies and techniques for early warning systems to monitor and evaluate drinking water quality: A state-of-the-art review." Environmental Protection Agency Washington DC Office of Water: Washington, DC, USA. Her, N., Amy, G., McKnight, D., Sohn, J., and Yoon, Y. (2003). "Characterization of DOM as a function of MW by fluorescence EEM and HPLC-SEC using UVA, DOC, and fluorescence detection." Water research, 37(17), 4295-4303. Hoefel, D., Grooby, W. L., Monis, P. T., Andrews, S., and Saint, C. P. (2003). "Enumeration of water-borne bacteria using viability assays and flow cytometry: a comparison to culture-based techniques." Journal of microbiological methods, 55(3), 585-597. Hu, D., Hong, H., Rong, B., Wei, Y., Zeng, J., Zhu, J., Bai, L., Guo, F., and Yu, X. (2021). "A comprehensive investigation of the microbial risk of secondary water supply systems in residential neighborhoods in a large city." Water Research, 205, 117690. Huang, G., Ng, T.-W., Chen, H., Chow, A. T., Liu, S., and Wong, P. K. (2020). "Formation of assimilable organic carbon (AOC) during drinking water disinfection: A microbiological prospect of disinfection byproducts." Environment international, 135, 105389. Inkinen, J., Kaunisto, T., Pursiainen, A., Miettinen, I. T., Kusnetsov, J., Riihinen, K., and Keinänen-Toivola, M. M. (2014). "Drinking water quality and formation of biofilms in an office building during its first year of operation, a full scale study." Water research, 49, 83-91. Karl, D. M. (1980). "Cellular nucleotide measurements and applications in microbial ecology." Microbiological reviews, 44(4), 739-796. Knowles, J. R. (1980). "Enzyme-catalyzed phosphoryl transfer reactions." Annual review of biochemistry, 49(1), 877-919. Koch, R. (1881). Zur untersuchung von pathogenen organismen, Norddeutschen Buchdruckerei und Verlagsanstalt. Kooij, D. v. d. (1992). "Assimilable organic carbon as an indicator of bacterial regrowth." Journal‐American Water Works Association, 84(2), 57-65. Lautenschlager, K., Boon, N., Wang, Y., Egli, T., and Hammes, F. (2010). "Overnight stagnation of drinking water in household taps induces microbial growth and changes in community composition." Water research, 44(17), 4868-4877. Lautenschlager, K., Hwang, C., Liu, W.-T., Boon, N., Köster, O., Vrouwenvelder, H., Egli, T., and Hammes, F. (2013). "A microbiology-based multi-parametric approach towards assessing biological stability in drinking water distribution networks." water research, 47(9), 3015-3025. LeChevallier, M. W., Babcock, T. M., and Lee, R. G. (1987). "Examination and characterization of distribution system biofilms." Applied and environmental microbiology, 53(12), 2714-2724. LeChevallier, M. W., Shaw, N. E., Kaplan, L. A., and Bott, T. L. (1993). "Development of a rapid assimilable organic carbon method for water." Applied and Environmental Microbiology, 59(5), 1526-1531. LeChevallier, M. W., Welch, N. J., and Smith, D. B. (1996). "Full-scale studies of factors related to coliform regrowth in drinking water." Applied and environmental microbiology, 62(7), 2201-2211. Lehtola, M. J., Juhna, T., Miettinen, I. T., Vartiainen, T., and Martikainen, P. J. (2004). "Formation of biofilms in drinking water distribution networks, a case study in two cities in Finland and Latvia." Journal of Industrial Microbiology and Biotechnology, 31(11), 489-494. Lehtola, M. J., Miettinen, I. T., and Martikainen, P. J. (2002). "Biofilm formation in drinking water affected by low concentrations of phosphorus." Canadian journal of microbiology, 48(6), 494-499. Lehtola, M. J., Torvinen, E., Kusnetsov, J., Pitkänen, T., Maunula, L., von Bonsdorff, C.-H., Martikainen, P. J., Wilks, S. A., Keevil, C. W., and Miettinen, I. T. (2007). "Survival of Mycobacterium avium, Legionella pneumophila, Escherichia coli, and caliciviruses in drinking water-associated biofilms grown under high-shear turbulent flow." Applied and Environmental Microbiology, 73(9), 2854-2859. Leitão, J. M., and da Silva, J. C. E. (2010). "Firefly luciferase inhibition." Journal of Photochemistry and Photobiology B: Biology, 101(1), 1-8. Ling, F., Whitaker, R., LeChevallier, M. W., and Liu, W.-T. (2018). "Drinking water microbiome assembly induced by water stagnation." The ISME journal, 12(6), 1520-1531. Liu, G., Ling, F., Magic-Knezev, A., Liu, W., Verberk, J., and Van Dijk, J. (2013a). "Quantification and identification of particle-associated bacteria in unchlorinated drinking water from three treatment plants by cultivation-independent methods." Water Research, 47(10), 3523-3533. Liu, G., Van der Mark, E., Verberk, J., and Van Dijk, J. (2013b). "Flow cytometry total cell counts: a field study assessing microbiological water quality and growth in unchlorinated drinking water distribution systems." BioMed research international, 2013. Liu, G., Verberk, J., and Van Dijk, J. (2013c). "Bacteriology of drinking water distribution systems: an integral and multidimensional review." Applied microbiology and biotechnology, 97, 9265-9276. Liu, J.-L., and Li, X.-Y. (2015). "Removal of soluble microbial products as the precursors of disinfection by-products in drinking water supplies." Environmental technology, 36(6), 722-731. Liu, J., Yin, P., Chen, B., Gao, F., Song, H., and Li, M. (2016a). "Distribution and contamination assessment of heavy metals in surface sediments of the Luanhe River Estuary, northwest of the Bohai Sea." Marine pollution bulletin, 109(1), 633-639. Liu, L., Hu, Q., Le, Y., Chen, G., Tong, Z., Xu, Q., and Wang, G. (2017). "Chlorination-mediated EPS excretion shapes early-stage biofilm formation in drinking water systems." Process Biochemistry, 55, 41-48. Liu, S., Gunawan, C., Barraud, N., Rice, S. A., Harry, E. J., and Amal, R. (2016b). "Understanding, monitoring, and controlling biofilm growth in drinking water distribution systems." Environmental science & technology, 50(17), 8954-8976. Liu, W., Wu, H., Wang, Z., Ong, S., Hu, J., and Ng, W. (2002). "Investigation of assimilable organic carbon (AOC) and bacterial regrowth in drinking water distribution system." Water research, 36(4), 891-898. Means, E. G., Hanami, L., Ridgway, H. F., and Olson, B. H. (1981). "Evaluating mediums and plating techniques for enumerating bacteria in water distribution systems." Journal‐American Water Works Association, 73(11), 585-590. Nawrocki, J., Raczyk-Stanisławiak, U., Świetlik, J., Olejnik, A., and Sroka, M. J. (2010). "Corrosion in a distribution system: Steady water and its composition." Water research, 44(6), 1863-1872. Nescerecka, A., Rubulis, J., Vital, M., Juhna, T., and Hammes, F. (2014). "Biological instability in a chlorinated drinking water distribution network." PloS one, 9(5), e96354. Organization, W. H. (2002). Guidelines for drinking-water quality, World Health Organization. Organization, W. H., and WHO. (2004). Guidelines for drinking-water quality, World Health Organization. Park, S., Rana, A., Sung, W., and Munir, M. (2021). "Competitiveness of quantitative polymerase chain reaction (qPCR) and droplet digital polymerase chain reaction (ddPCR) technologies, with a particular focus on detection of antibiotic resistance genes (ARGs)." Applied Microbiology, 1(3), 426-444. Peng, C.-Y., Korshin, G. V., Valentine, R. L., Hill, A. S., Friedman, M. J., and Reiber, S. H. (2010). "Characterization of elemental and structural composition of corrosion scales and deposits formed in drinking water distribution systems." Water research, 44(15), 4570-4580. Polanska, M., Huysman, K., and Van Keer, C. (2005). "Investigation of assimilable organic carbon (AOC) in flemish drinking water." Water Research, 39(11), 2259-2266. Prest, E., Weissbrodt, D., Hammes, F., Van Loosdrecht, M., and Vrouwenvelder, J. S. (2016a). "Long-term bacterial dynamics in a full-scale drinking water distribution system." PLoS One, 11(10), e0164445. Prest, E. I., Hammes, F., Van Loosdrecht, M. C., and Vrouwenvelder, J. S. (2016b). "Biological stability of drinking water: controlling factors, methods, and challenges." Frontiers in microbiology, 7, 45. Reasoner, D., and Geldreich, E. (1985a). "A new medium for the enumeration and subculture of bacteria from potable water." Applied and environmental microbiology, 49(1), 1-7. Reasoner, D. J. (1990). "Monitoring heterotrophic bacteria in potable water." Drinking Water Microbiology: Progress and Recent Developments, Springer, 452-477. Reasoner, D. J. (2004). "Heterotrophic plate count methodology in the United States." International journal of food microbiology, 92(3), 307-315. Reasoner, D. J., and Geldreich, E. (1985b). "A new medium for the enumeration and subculture of bacteria from potable water." Applied and environmental microbiology, 49(1), 1-7. Risebro, H. L., Doria, M. F., Andersson, Y., Medema, G., Osborn, K., Schlosser, O., and Hunter, P. R. (2007). "Fault tree analysis of the causes of waterborne outbreaks." Journal of Water and Health, 5(S1), 1-18. Sarin, P., Snoeyink, V., Bebee, J., Kriven, W., and Clement, J. (2001). "Physico-chemical characteristics of corrosion scales in old iron pipes." Water Research, 35(12), 2961-2969. Sartory, D. P. (2004). "Heterotrophic plate count monitoring of treated drinking water in the UK: a useful operational tool." International journal of food microbiology, 92(3), 297-306. Schwartz, T., Kohnen, W., Jansen, B., and Obst, U. (2003). "Detection of antibiotic-resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms." FEMS microbiology ecology, 43(3), 325-335. Servais, P., Laurent, P., and Randon, G. (1995). "Comparison of the bacterial dynamics in various French distribution systems." AQUA-LONDON THEN OXFORD-JOURNAL OF THE INTERNATIONAL WATER SUPPLY ASSOCIATION-, 44, 10-10. Shrestha, R. G., Tanaka, Y., Malla, B., Bhandari, D., Tandukar, S., Inoue, D., Sei, K., Sherchand, J. B., and Haramoto, E. (2017). "Next-generation sequencing identification of pathogenic bacterial genes and their relationship with fecal indicator bacteria in different water sources in the Kathmandu Valley, Nepal." Science of the Total Environment, 601, 278-284. Siebel, E., Wang, Y., Egli, T., and Hammes, F. (2008). "Correlations between total cell concentration, total adenosine tri-phosphate concentration and heterotrophic plate counts during microbial monitoring of drinking water." Drinking Water Engineering and Science, 1(1), 1-6. Sousi, M., Salinas-Rodriguez, S. G., Liu, G., Dusseldorp, J., Kemperman, A. J., Schippers, J. C., Van der Meer, W. G., and Kennedy, M. D. (2021). "Comparing the bacterial growth potential of ultra-low nutrient drinking water assessed by growth tests based on flow cytometric intact cell count versus adenosine triphosphate." Water research, 203, 117506. Stanley, P. E. (1989). "A review of bioluminescent ATP techniques in rapid microbiology." Journal of Bioluminescence and Chemiluminescence, 4(1), 375-380. Thomas, J. M., and Ashbolt, N. J. (2011). "Do free-living amoebae in treated drinking water systems present an emerging health risk?" Environmental science & technology, 45(3), 860-869. Van Der Kooij, D. (2000). "Biological stability: a multidimensional quality aspect of treated water." Environmental Challenges, 25-34. van der Kooij, D., Veenendaal, H. R., van der Mark, E. J., and Dignum, M. (2017). "Assessment of the microbial growth potential of slow sand filtrate with the biomass production potential test in comparison with the assimilable organic carbon method." Water research, 125, 270-279. Van Der Kooij, D., Visser, A., and Hijnen, W. (1982). "Determining the concentration of easily assimilable organic carbon in drinking water." Journal‐American Water Works Association, 74(10), 540-545. Van der Wielen, P. W., and van der Kooij, D. (2010). "Effect of water composition, distance and season on the adenosine triphosphate concentration in unchlorinated drinking water in the Netherlands." Water research, 44(17), 4860-4867. Van Nevel, S., Koetzsch, S., Proctor, C. R., Besmer, M. D., Prest, E. I., Vrouwenvelder, J. S., Knezev, A., Boon, N., and Hammes, F. (2017). "Flow cytometric bacterial cell counts challenge conventional heterotrophic plate counts for routine microbiological drinking water monitoring." Water Research, 113, 191-206. Velten, S., Hammes, F., Boller, M., and Egli, T. (2007). "Rapid and direct estimation of active biomass on granular activated carbon through adenosine tri-phosphate (ATP) determination." Water Research, 41(9), 1973-1983. Vital, M., Dignum, M., Magic-Knezev, A., Ross, P., Rietveld, L., and Hammes, F. (2012). "Flow cytometry and adenosine tri-phosphate analysis: alternative possibilities to evaluate major bacteriological changes in drinking water treatment and distribution systems." Water Research, 46(15), 4665-4676. Wang, F. W. F., Chen, Y.-h. C. Y.-h., Huang, T. H. T., Chen, P.-h. C. P.-h., and Mikhailova, R. "Comparison of the current sanitation situation and quality standards of drinking water between China and Russia." Методологические проблемы изучения, оценки и регламентирования химического загрязнения окружающей среды и его влияние на здоровье населения, 79-81. Wang, H., Bedard, E., Prévost, M., Camper, A. K., Hill, V. R., and Pruden, A. (2017). "Methodological approaches for monitoring opportunistic pathogens in premise plumbing: A review." Water research, 117, 68-86. Wang, Q., Tao, T., Xin, K., Li, S., and Zhang, W. (2014). "A review research of assimilable organic carbon bioassay." Desalination and Water Treatment, 52(13-15), 2734-2740. Webster, J. J., Hampton, G. J., Wilson, J. T., Ghiorse, W. C., and Leach, F. R. (1985). "Determination of microbial cell numbers in subsurface samples." Groundwater, 23(1), 17-25. Wen, X., Chen, F., Lin, Y., Zhu, H., Yuan, F., Kuang, D., Jia, Z., and Yuan, Z. (2020). "Microbial indicators and their use for monitoring drinking water quality—A review." Sustainability, 12(6), 2249. Wingender, J., and Flemming, H.-C. (2011). "Biofilms in drinking water and their role as reservoir for pathogens." International journal of hygiene and environmental health, 214(6), 417-423. Yu, W.-Z., Gregory, J., Liu, T., Yang, Y.-l., Sun, M., and Li, G.-b. (2011). "Effect of enhanced coagulation by KMnO4 on the fouling of ultrafiltration membranes." Water Science and Technology, 64(7), 1497-1502. Zhang, H., Xu, L., Huang, T., Yan, M., Liu, K., Miao, Y., He, H., Li, S., and Sekar, R. (2021). "Combined effects of seasonality and stagnation on tap water quality: Changes in chemical parameters, metabolic activity and co-existence in bacterial community." Journal of Hazardous Materials, 403, 124018. Zhang, K., Pan, R., Zhang, T., Xu, J., Zhou, X., and Yang, Y. (2019). "A novel method: using an adenosine triphosphate (ATP) luminescence–based assay to rapidly assess the biological stability of drinking water." Applied microbiology and biotechnology, 103, 4269-4277. Zhang, W., and DiGiano, F. A. (2002). "Comparison of bacterial regrowth in distribution systems using free chlorine and chloramine: a statistical study of causative factors." Water Research, 36(6), 1469-1482. Zlatanović, L., van der Hoek, J. P., and Vreeburg, J. (2017). "An experimental study on the influence of water stagnation and temperature change on water quality in a full-scale domestic drinking water system." Water research, 123, 761-772. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95335 | - |
| dc.description.abstract | 供水系統中的生物穩定性是重要的生物安全指標,培養基培養法檢測自來水中的總菌數無法精確反應加氯的自來水系統生物穩定性。隨著技術進步,三磷酸腺苷(adenosine triphosphate , ATP)檢測逐漸成熟,相較於傳統塗盤法更靈敏方便且能在短時間內獲得結果。本研究旨在開發一種液態培養方法,並利用三磷酸腺苷(ATP)進行微生物活性檢測取代塗盤法,以提高傳統自來水總菌數檢測方法的檢出率。首先,針對台灣自來水,使用國內外常用的總異營菌數培養基塗盤法進行比較,以瞭解不同培養基檢出量的差異。結果顯示R2A培養基所獲得的菌落數較高;後續研究則採用R2A培養液加入自來水樣品中進行液態培養之實驗。利用液態培養方法結合ATP檢測,評估液態培養替代塗盤法之可行性。利用液態培養進行最大生長速率及最大生長量之實驗檢測,所獲之ATP濃度與初始菌落數進行線性回歸,結果分別是(R^2=0.37)、(R^2=0.71),顯示利用最大生長量的培養方法可以有效的提高ATP濃度與R2A菌落數間的關係。但利用T-TEST、Wilcoxon檢定結果顯示最大生長量所獲得之公式並無法有效的利用ATP濃度來推估初始菌落數,但在加氯後的自來水中經過液態培養方法後,可以有效的提高ATP濃度與菌落數間的關係。因此,若要以ATP做為消毒後的自來水之生物活性檢測,仍需要有更多的研究來進行補強。 | zh_TW |
| dc.description.abstract | Biostability in water supply systems is an important microbiological safety indicator. Traditional culture-based methods that measure total bacterial counts in tap water cannot accurately reflect the biostability of chlorinated water systems. With technological advancements, adenosine triphosphate (ATP) testing offering a more sensitive and convenient alternative to the traditional plate count method and provides results in a shorter time. This study aims to develop a different type of liquid culture method and use ATP to measure microbial activity, replacing the plate count method to improve the detection rate of traditional total microbial count methods in tap water. Initially, the study compared the plate count methods for heterotrophic bacteria with Taiwan's tap water to determine the differences between R2A and PCA media. The results indicated that the R2A medium yielded higher colony counts; subsequent experiments involved adding tap water samples to R2A broth for liquid culturing. This liquid culturing method, combined with ATP testing, was evaluated for its feasibility to replace the plate culture method. Experiments measuring maximum growth rates and biomass using liquid culture showed that ATP concentrations correlated with initial colony counts with linear regression results of R^2=0.37 and R^2=0.71, respectively. The results demonstrated that using maximum biomass culture methods could effectively enhance the relationship between ATP concentration and R2A colony counts. However, T-TEST and Wilcoxon test indicated that the formulas obtained from maximum biomass could not effectively use ATP concentration to estimate initial colony counts. However, in chlorinated tap water, the liquid culture method still effectively improved the relationship between ATP concentration and colony counts. Therefore, further research is needed to strengthen the use of ATP as a measure of biological activity in disinfected tap water. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-05T16:13:51Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-05T16:13:51Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 目次 v 圖次 vii 表次 viii 第一章 前言 1 1-1研究背景 1 1-2研究假說與目的 3 第二章 文獻回顧 4 2-1 自來水供水系統微生物與水質 4 2-1.1 自來水供水系統生物穩定性 4 2-1.2導致供水系統中水質變化的因素 5 2-1.3 自來水微生物造成的健康及衛生風險 5 2-2 飲用水微生物監測 7 2-2.1國際與國內的自來水微生物監測指標差異 7 2-2.2自來水微生物傳統檢測方法與新興方法的差異 11 第三章 材料與方法 15 3-1 實驗架構 15 3-2 水樣採集位置 16 3-3 水樣採集運送及處理 20 3-3.1 水樣採集、運輸及保存 20 3-4 水質及微生物分析方法 20 3-4.1 pH、溫度、濁度、總氯及自由餘氯檢測方法 20 3-4.2 水中總異營菌數 (Heterotrophic Plate Count, HPC)、水中總菌落數 (Total Count) 21 3-4.3 16s rRNA基因檢測方法 22 3-4.4生物可利用有機碳(Assimilable Organic Carbon , AOC)的檢測 22 3-4.5自來水微生物三磷酸腺苷檢測 23 3-4.6 新型液態培養方法 24 3-5數據處理及統計分析 25 第四章 結果 26 4-1供水系統生物穩定性結果 26 4-1.1 供水系統水質結果之差異 26 4-1.2 我國現行檢測方法的總菌落數與APHA9215C方法的總異營數結果差異 26 4-1.3 供水系統菌落數與AOC濃度之關係 30 4-2 ATP分析方法與菌落數之實驗結果 31 4-2.1 ATP檢測方法與培養法的檢出率差異 31 4-2.2 自由餘氯濃度與生物穩定性檢測結果的相關性分析 33 4-2.3供水系統中ATP濃度與培養結果之關係 35 4-3 液態培養方法生長曲線實驗結果 37 4-3.1最佳生長速率之生長曲線結果 37 4-3.2最大生長量之生長曲線結果 39 4-4 最佳生長速率與最大生長量之培養結果 41 4-4.1最佳生長速率之HPC/Total Count菌落數與ATP濃度之相關性 41 4-4.2 液態培養數據結果 43 4-4.3液態培養實驗最大生長量實驗結果 45 4-5 最大生長量ATP與初始菌落之回歸結果 47 4-5 ATP濃度與R2A初始菌落數之回歸 47 第五章:討論 49 5-1自來水水體中微生物檢測方法 49 5-2結合ATP分析方法的液態培養 51 6-1結論 53 6-2建議 54 參考文獻 55 附錄 71 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 總菌落數 | zh_TW |
| dc.subject | 生物穩定性 | zh_TW |
| dc.subject | 餘氯 | zh_TW |
| dc.subject | 三磷酸腺苷 | zh_TW |
| dc.subject | 總異營數 | zh_TW |
| dc.subject | 自來水供水系統 | zh_TW |
| dc.subject | free chlorine | en |
| dc.subject | heterotrophic plate count | en |
| dc.subject | adenosine triphosphate | en |
| dc.subject | total count | en |
| dc.subject | biostability | en |
| dc.subject | Drinking water distribution system | en |
| dc.title | 液態培養結合ATP檢測用於評估自來水生物穩定性 | zh_TW |
| dc.title | Evaluation of biostability in tap water by liquid culture and ATP measurement | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 謝季吟;陳冠中;吳佳真 | zh_TW |
| dc.contributor.oralexamcommittee | Chi-Ying Hsieh;Kuan-chung Chen;Chia-Chen Wu | en |
| dc.subject.keyword | 自來水供水系統,總菌落數,總異營數,三磷酸腺苷,餘氯,生物穩定性, | zh_TW |
| dc.subject.keyword | Drinking water distribution system,total count,heterotrophic plate count,adenosine triphosphate,free chlorine,biostability, | en |
| dc.relation.page | 93 | - |
| dc.identifier.doi | 10.6342/NTU202403603 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-13 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 環境工程學研究所 | - |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 3.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
