請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95332
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 羅弘岳 | zh_TW |
dc.contributor.advisor | Hong-Yueh Lo | en |
dc.contributor.author | 邱信瀚 | zh_TW |
dc.contributor.author | Hsin-Han Chiu | en |
dc.date.accessioned | 2024-09-05T16:12:51Z | - |
dc.date.available | 2024-09-06 | - |
dc.date.copyright | 2024-09-05 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-12 | - |
dc.identifier.citation | 林立剛 (2021). N 型波傳遞之數值模擬與實驗驗證. 國立臺灣大學工程科學及海洋工程研究所碩士論文,台北.
陳玟諭 (2023). 前導下沉 N 型海嘯波於不同傳遞距離之溯升. 國立臺灣大學工程科學及海洋工程研究所碩士論文初稿,台北. 黄俊瑞 (2022). 前導下沉 N 型海嘯波之傳遞與溯升. 國立臺灣大學工程科學及海洋工程研究所碩士論文,台北. Behera, H. and Ng, C. O. (2018). Interaction between oblique waves and multiple bottom-standing flexible porous barriers near a rigid wall. Meccanica, 53, 871–885. doi:10.1007/s11012-017-0789-8. Bird, E. C. (2008). Coastal geomorphology: an introduction. John Wiley & Sons. Boussinesq, J. (1871). Théorie de l'intumesence liquide appelée onde solitaire ou de translation, se propageant dans un canal rectangulaire. Comptes Rendus Acad. Sci., Paris, 72, 755–759. Cho, I. H. and Kim, M. H. (2008). Wave absorbing system using inclined perforated plates. Journal of Fluid Mechanics, 608, 1–20. Dean, R. G. and Dalrymple, R. A. (1991). Water Wave Mechanics for Engineers and Scientists, volume 2. World Scientific Publishing Company. Fenton, J. D. (1999). The cnoidal theory of water waves. In Developments in offshore engineering, pages 55–100. Gulf Professional Publishing.doi:10.1016/B978-088415380- 1/50021-2. Goda, Y. and Suzuki, Y. (1976). Estimation of incident and reflected waves in random wave experiments. In Coastal Engineering 1976, pages 828–845. doi:10.9753/ icce.vl5.47. Han, M. M. and Wang, C. M. (2022). Potential flow theory-based analytical and numerical modelling of porous and perforated breakwaters: A review. Ocean Engineering, 249, 110897. doi:10.1016/j.oceaneng.2022.110897. Huang, Z., Li, Y., and Liu, Y. (2011). Hydraulic performance and wave loadings of per forated/slotted coastal structures: A review. Ocean Engineering, 38(10), 1031–1053. doi:10.1016/j.oceaneng.2011.03.002. Hughes, S. A. (1991). Physical Models and Laboratory Techniques in Coastal Engineering. World Scientific, Singapore. Jarlan, G. E. (1961). A perforated vertical wall breakwater. Dock and Harbour Authority, XII(486), 394–398. Korteweg, D. J. and De Vries, G. (1895). On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 39(240), 422–443. Krishnakumar, C., Sundar, V., and Sannasiraj, S. A. (2010). Hydrodynamic performance of single-and double-wave screens. Journal of Waterway, Port, Coastal, and Ocean Engineering, 136(1), 59–65. doi:10.1061/(ASCE)WW.1943-5460.0000025. Le Méhauté, B. (1976). An Introduction to Hydrodynamics and Water Waves. Springer Science + Business Media, New York. Li, Y. C., Jiang, J. J., Ma, B. L., Sun, D. P., and Liu, Y. (2005). Calculation of irregular wave forces acting on perforated caisson. China Offshore Platform, 20(2), 12–19. in Chinese with English abstract. Liu, Y. and Li, Y. C. (2011). Wave interaction with a wave absorbing double curtain-wall breakwater. Ocean Engineering, 38(10), 1237–1245. doi:10.1016/ j.oceaneng.2011.05.009. Liu, Y., Xie, L., and Zhang, Z. (2014). The wave motion over a submerged jarlan-type perforated breakwater. Acta Oceanologica Sinica, 33, 96–102. doi:10.1007/S13131- 014-0471-0. Mackay, E. and Johanning, L. (2020). Comparison of analytical and numerical solutions for wave interaction with a vertical porous barrier. Ocean Engineering, 199, 107032. doi:10.1016/j.oceaneng.2020.107032. Madsen, O. S. (1971). On the generation of long waves. Journal of Geophysical Research, 76(36), 8672–8683. doi:10.1029/JC076i036p08672. Mei, C. (1983). The Applied Dynamics of Ocean Surface Waves. Wiley, New York. Mori, N., Takahashi, T., Yasuda, T., and Yanagisawa, H. (2011). Survey of 2011 Tohoku earthquake tsunami inundation and run-up. Geophysical Research Letters, 38(7), L00G14. doi:10.1029/2011GL049210. Neelamani, S. and Al-Anjari, N. (2021). Experimental investigations on wave induced dynamic pressures over slotted vertical barriers in random wave fields. Ocean Engi neering, 220, 108482. doi:10.1016/j.oceaneng.2020.108482. Oumeraci, H. (2010). Nonconventional wave damping structures. Handbook of Coastal and Ocean Engineering, pages 287–315. Oumeraci, H. and Koether, G. (2009). Hydraulic performance of a submerged wave absorber for coastal protection. Nonlinear Wave Dynamics: Selected Papers of the Symposium Held in Honor of Philip LF Liu’s 60th Birthday, pages 31–65. Park, W. S., Chun, I. S., and Lee, D. S. (1993). Hydraulic experiments for the reflection characteristics of perforated breakwaters. Journal of Korean Society of Coastal and Ocean Engineers, 5(3), 198–203. in Korean with English abstract. Rayleigh, L. (1876). On waves. Phil. Mag., 1, 257–259. Sreebhadra, M. N., Krishna, K. A., and Karmakar, D. (2023). Wave trapping due to composite pile-rock structure coupled with vertical barrier. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 237(1), 54–73. doi:10.1177/14750902221112712. Stokes, G. G. (1847). On the theory of oscillatory waves. Transactions of the Cambridge Philosophical Society, 8, 441–455. Svendsen, J. (1985). Physical modelling of water waves. In Dalrymple, R. A., editor, Physical Modelling in Coastal Engineering, pages 13–47. A. A. Balkema, Rotterdam, The Netherlands. doi:10.1201/9780203743379. Swaminathan, K. R., Sundar, V., and Sannasiraj, S. A. (2022). Hydrodynamic characteristics of concave front pile-supported breakwaters with a tubular wave screen. Journal of Waterway, Port, Coastal, and Ocean Engineering, 148(1), 04021041. Twu, S. W. and Lin, D. T. (1991). On a highly effective wave absorber. Coastal Engineering, 15(4), 389–405. doi:10.1016/0378-3839(91)90018-C. Vijay, K. G., Neelamani, S., and Sahoo, T. (2019). Wave interaction with multiple slotted barriers inside harbour: Physical and numerical modelling. Ocean Engineering, 193, 106623. doi:10.1016/j.oceaneng.2019.106623. Wang, T. Y., Xu, T. J., Wang, S., Dong, G. H., and Yan, L. H. (2023). Hydrodynamic analysis of the combined structure of offshore monopile wind turbine foundation and aqua culture cage. Ocean Engineering, 287, 115796. doi:10.1016/j.oceaneng.2023.115796. Wiegel, R. (1960). Transmission of waves past a rigid vertical thin barrier. Journal of Waterway, Harbor, Division—ASCE, 86(1), 1–12. Zhao, K. and Liu, P. L. F. (2022). On Stokes wave solutions. Proceedings of the Royal Society A, 478(2258), 20210732. doi:10.1098/rspa.2021.0732. Zhao, K., Wang, Y., and Liu, P. L. F. (2024). A guide for selecting periodic water wave theories-Le Méhauté (1976)'s graph revisited. Coastal Engineering, 188, 104432. doi:10.1016/j.coastaleng.2023.104432. Zhao, Y., Liu, Y., Li, H. J., and Chang, A. T. (2020). Iterative dual BEM solution for water wave scattering by breakwaters having perforated thin plates. Engineering Analysis with Boundary Elements, 120, 95–106. doi:10.1016/j.enganabound.2020.08.008. 張金機 (1996). 花蓮港港灣設施改善計畫之研究: 綜合改善方案, 專刊 131 號. 交通 處港灣技術研究所. 經濟部水利署 (2020). 彰化縣一級海岸防護計畫. 經濟部水利署, 台灣. (核定本). 羅弘岳 (2021). N 型海嘯波的傳播與溯升. 科技部專題研究計畫 110 年. 臧效義 (1997). 東北部海域海岸結構物之賀伯颱風破壞原因探討. 第十九屆海洋工 程研討會論文集, pages 322–329. 花蓮港港灣設施改善計畫之研究 (2020). 第一子計畫現場海氣象調查. https: //dmap.ncdr.nat.gov.tw/. 陈光齐, 武艳强, 夏明垚, and 李志远 (2024). 2024 年 1 月 1 日日本能登半岛 7.6 级地 震: 震源特征, 灾害概况与应急响应. 地震, 44(1), 141–152. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95332 | - |
dc.description.abstract | 潛沒式穿孔消波裝置為在水平面下安裝可控且均勻分佈的穿孔結構物。該裝置允許水中生物自由穿梭與棲息,以維持自然環境原始樣貌為目標,實現生態友善的理念,同時保持水面航行的便利性。
本研究在二維斷面實驗平推式造波水槽中,採用二階週期波造波理論生成史托克斯波(Stokes wave)和三階橢圓餘弦波(Cnoidal waves)作為入射波,探討潛沒式穿孔消波裝置的消波效率、消波機制及流場變化。研究中,在消波裝置前後各安裝兩支超音波感測器,使用Goda 兩點法測量入射振幅(aI)、反射振幅(aR)和透射振幅(aT),計算出反射係數(Cr)和透射係數(Ct),再基於能量守恆原理得出消散係數(Cd),以尋找最佳的消波裝置組合。研究中調整了20 組入射波週期(T)、4 組入射波波高(H)、7 組孔隙率(ε)、5 組不同的潛沒深度(d/h),其中3 組位於水平面下、1 組與水平面齊平、1 組突出水面;此外,還有5 組兩道垂直穿孔牆間距(B)及3 組穿孔牆孔洞形狀等六項變因。結果顯示,在不同入射波高下,各項係數的趨勢相似,且較大的入射波高呈現出更高的Cd。研究還發現,垂直牆壁的穿孔形狀對最終消波效率無顯著影響。最終,我們定義的高消波效率為最高的Cd 與最低的Cr 和Ct 的組合。經過分析,最高消波效率的裝置組合為:ε = 0.1,d/h = 0.2,B/L = 0.2 - 0.3。 | zh_TW |
dc.description.abstract | The submerged perforated wave absorber is a device that consists of controlled, uniformly distributed perforated structures installed below the water surface. This device aims to maintain the natural environment by allowing aquatic organisms to freely move and inhabit the area, embodying the concept of ecological friendliness, while simultaneously preserving the convenience of surface navigation.
In this study, a two-dimensional wave flume was used to investigate the wave absorption efficiency, mechanisms, and flow field variations of the submerged perforated wave absorber. Second-order Stokes waves and third-order cnoidal waves are generated as incident waves based on second-order wave theory. To assess the performance of the wave absorber, two ultrasonic sensors were installed both upstream and downstream of the absorber.The Goda two-point method was employed to measure the incident amplitude (aI ), reflected amplitude (aR), and transmitted amplitude (aT), from which the reflection coefficient (Cr) and transmission coefficient (Ct) were calculated. Subsequently, the energy conservation principle was applied to determine the dissipation coefficient (Cd), aiming to identify the optimal configuration of the wave absorber. The study adjusted 20 sets of incident wave periods (T), 4 sets of incident wave heights (H), 7 sets of porosities (ε), and 5 sets of different submersion depths (d/h), where 3 sets were below the water surface, 1 set was flush with the water surface, and 1 set protruded above the water surface. Additionally, 5 sets of distances (B) between two vertical perforated walls and 3 different hole shapes in the perforated walls were tested as variables. The results indicated that, across different incident wave heights, the trends of each coefficient were similar, and higher incident wave heights resulted in higher Cd. It was also found that the shape of the perforations in the vertical walls did not significantly impact the final wave attenuation efficiency. Ultimately, high wave attenuation efficiency was defined as the combination of the highest Cd and the lowest Cr and Ct. Through analysis, the optimal configuration for maximum wave attenuation efficiency was found to be: ε = 0.1, d/h = 0.2, B/L = 0.2 - 0.3. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-05T16:12:51Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-09-05T16:12:51Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員審定書i
謝誌iii 摘要v Abstract vii 目次ix 圖次xiii 表次xix 第一章緒論 1 1.1 研究背景與意義 1 1.2 相關文獻回顧 3 1.3 研究動機與目標 6 1.4 研究方法與主要內容 7 1.5 本研究架構 7 第二章週期波理論 9 2.1 週期波控制參數 9 2.2 Stokes wave 定義 12 2.3 Cnoidal wave 定義 14 2.4 線性週期波造波理論 16 2.5 二階週期波造波理論 18 第三章實驗設備介紹 21 3.1 二維斷面實驗平推式造波水槽 21 3.1.1 平推式造波系統 23 3.1.2 潛沒式穿孔消波裝置 29 3.1.3 消波斜板 32 3.1.4 資料擷取系統 35 3.1.5 影像擷取系統 38 3.2 實驗操作流程 41 3.2.1 實驗流程 41 3.2.2 數據處理方法 45 第四章實驗驗證 47 4.1 空水槽實驗 47 4.1.1 週期波波形驗證 48 4.1.2 Goda 兩點法驗證 52 4.1.3 消波斜板驗證 58 4.2 試探性實驗 59 4.2.1 消波物理機制 60 4.2.2 消波效率測試 62 第五章消波裝置之水動力表現 65 5.1 消波效率實驗 65 5.1.1 試探性數據驗證 75 5.1.2 擴展性實驗 76 5.1.3 穿孔形狀變化之影響 81 5.1.4 孔隙率變化之影響 84 5.1.5 潛沒深度變化之影響 88 5.1.6 垂直穿孔牆間距變化之影響 90 5.2 消波物理現象 93 第六章結論與未來展望 99 6.1 結論 99 6.2 未來展望 101 參考文獻 103 附錄A — 驗證用之實驗數據 109 A.1 週期波之造波參數 109 附錄B — 空水槽實驗之數據 113 B.1 空水槽理想波高對應之真實實驗波高 113 B.2 空水槽之消波斜板反射率測試結果 114 B.3 空水槽之實驗與解析解比較 116 附錄C — 結構參數 127 C.1 調整結構參數列表 127 | - |
dc.language.iso | zh_TW | - |
dc.title | 以水槽實驗探討潛沒式穿孔消波裝置之消波效率 | zh_TW |
dc.title | Experimental Study on the Wave Energy Dissipation Efficiency of Submerged Perforated Wave Absorber in a Wave Tank | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 戴璽恆;吳昀達 | zh_TW |
dc.contributor.oralexamcommittee | Hsi-Heng Dai;Yun-Ta Wu | en |
dc.subject.keyword | 穿孔結構物,Goda 兩點法,史托克斯波,橢圓餘弦波,消散係數,反射係數,透射係數, | zh_TW |
dc.subject.keyword | Perforated structure,Goda formula,Stokes wave,Cnoidal waves,Dissipation coefficient,Reflection coefficient,Transmission coefficient, | en |
dc.relation.page | 128 | - |
dc.identifier.doi | 10.6342/NTU202404009 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-08-13 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
顯示於系所單位: | 工程科學及海洋工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf | 42.68 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。