請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95217
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李昆達 | zh_TW |
dc.contributor.advisor | Kung-Ta Lee | en |
dc.contributor.author | 蘇永瀚 | zh_TW |
dc.contributor.author | Young Han So | en |
dc.date.accessioned | 2024-09-03T16:10:07Z | - |
dc.date.available | 2024-09-04 | - |
dc.date.copyright | 2024-09-03 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-13 | - |
dc.identifier.citation | 1 Christine K. Luscombe, Uday Maitra ORCID, Michael Walter, Susanne K. Wiedmer. Theoretical background on semiconducting polymers and their applications to OSCs and OLEDs. Chemistry Teacher International 3, 169-183 (2021). https://doi.org/10.1515/cti-2020-0020
2 Wolfgang Griehl, Djavid Ruestem. Nylon-12-Preparation, Properties, and Applications. Industrial & Engineering Chemistry 62, 2-83 (1970). https://doi.org/10.1021/ie50723a005 3 Baoxin Zhang, Dilver Peña Fuentes, Armin Börne. Hydroformylation. ChemTexts 8, 2, 2 (2022). https://doi.org/10.1007/s40828-021-00154-x 4 Rohit Kumar, Samir H. Chikkali. Hydroformylation of olefins by metals other than rhodium. Journal of Organometallic Chemistry 960, 122231 (2022). https://doi.org/10.1016/j.jorganchem.2021.122231 5 Sung-Yeon Joo, Hee-Wang Yoo, Sharad Sarak, Byung-Gee Kim, Hyungdon Yun Enzymatic Synthesis of ω-Hydroxydodecanoic Acid By Employing a Cytochrome P450 from Limnobacter sp. 105 MED. Catalysts 9, 54 (2019). https://doi.org/10.3390/catal9010054 6 Daniel Scheps, Sumire Honda Malca, Sven M. Richter, Karoline Marisch, Bettina M. Nestl, Bernhard Hauer. Synthesis of ω-hydroxy dodecanoic acid based on an engineered CYP153A fusion construct. Microbial Biotechnology 6, 694–707 (2013). https://doi.org/10.1111%2F1751-7915.12073 7 Tadashi FUJII, Tatsuya NARIKAWA, Futoshi SUMISA, Akira ARISAWA, Koji TAKEDA, Junichi KATO. Production of ,!-Alkanediols Using Escherichia coli Expressing a Cytochrome P450 from Acinetobacter sp. OC4. Bioscience, Biotechnology & Biochemistry 70, 1379-1385 (2006). https://doi.org/10.1271/bbb.50656 8 Daniel Scheps, Sumire Honda Malca, Helen Hoffmann, Bettina M. Nestl, Bernhard Hauer. Regioselective x-hydroxylation of medium-chain n-alkanes and primary alcohols by CYP153 enzymes from Mycobacterium marinum and Polaromonas sp. strain JS666. Organic & Biomolecular Chemistry 9, 6727-6733 (2011). https://doi.org/10.1039/C1OB05565H 9 Hyun A. Park, Kwon-Young Choi. α, ω-Oxyfunctionalization of C12 alkanes via whole-cell biocatalysis of CYP153A from Marinobacter aquaeolei and a new CYP from Nocardia farcinica IFM10152. Biochemical Engineering Journal 156, 107524 (2020). https://doi.org/10.1016/j.bej.2020.107524 10 Hyuna Park, Doyeong Bak, Wooyoung Jeon, Minjung Jang, Jung-Oh Ahn, Kwon-Young Choi. Engineering of CYP153A33 With Enhanced Ratio of Hydroxylation to Overoxidation Activity in Whole-Cell Biotransformation of Medium-Chain 1-Alkanols. Frontiers in Bioengineering and Biotechnology 9, 817455 (2022). https://doi.org/10.3389%2Ffbioe.2021.817455 11 Shan-Chi Hsieh, Jung-Hao Wang, Yu-Chen Lai, Ching-Yeuh Su, Kung-Ta Lee. Production of 1-Dodecanol, 1-Tetradecanol, and 1,12-Dodecanediol through Whole-Cell Biotransformation in Escherichia coli. Applied and Environmental Microbiology 84, e01806-17 (2018). https://doi.org/10.1128/AEM.01806-17 12 Mattijs K. Julsing, Manfred Schrewe, Sjef Cornelissen, Inna Hermann, Andreas Schmid, and Bruno Bühler. Outer Membrane Protein AlkL Boosts Biocatalytic Oxyfunctionalization of Hydrophobic Substrates in Escherichia coli. Applied and Environmental Microbiology 78, 5724-5733 (2012). https://doi.org/10.1128%2FAEM.00949-12 13 ПЕТТЕР Маркус, ШМИД Андреас, БЮЛЕР Бруно, ХЕННЕМАНН Ханс-Георг, ЮЛСИНГ Маттийс Камиел, ШАФФЕР Штеффен, ХААС Томас, ШРЕВЕ Манфред, КОРНЕЛИССЕН Сьеф, РООС Мартин, ХЕГЕР Харальд. СПОСОБ БИОКАТАЛИТИЧЕСКОГО ОКИСЛЕНИЯ С ПРИМЕНЕНИЕМ ПРОДУКТА ГЕНА alkL. Russia patent (2016). 14 Berg, Bert van den. The FadL family: unusual transporters for unusual substrates. Current Opinion in Structural Biology 15, 401-407 (2005). https://doi.org/10.1016/j.sbi.2005.06.003 15 Bert van den Berg, Paul N Black, William M Clemons Jr, Tom A Rapoport. Crystal Structure of the Long-Chain Fatty Acid Transporter FadL. Science 304, 1506-1509 (2004). https://doi.org/10.1126/science.1097524 16 Toby P. Call, M. Kalim Akhtar, Frank Baganz, Chris Grant. Modulating the import of medium-chain alkanes in E. coli through tuned expression of FadL. Journal of Biological Engineering 10 (2016). https://doi.org/10.1186/s13036-016-0026-3 17 Hee-Wang Yoo, Joonwon Kim, Mahesh D. Patil, Beom Gi Park, Sung-yeon Joo, Hyungdon Yun, Byung-Gee Kim. Production of 12-hydroxy dodecanoic acid methyl ester using a signal peptide sequence-optimized transporter AlkL and a novel monooxygenase. Bioresource Technology 291, 121812 (2019). https://doi.org/10.1016/j.biortech.2019.121812 18 Mehdi Hassanshahian, Simone Cappello. Biodegradation - Engineering and Technology. 10.5772/55554 (Intech, 2013). 19 Ana Kolin, Visnja Jevtic, Liskin Swint-Kruse, Susan M. Egan. Linker Regions of the RhaS and RhaR Proteins. Journal of Bacteriology 189, 269–271 (2007). https://doi.org/10.1128/jb.01456-06 20 Dayi Zhang, Yi He, Yun Wang, Hui Wang, Lin Wu, Eric Aries, Wei E. Huang. Whole-cell bacterial bioreporter for actively searching and sensing of alkanes and oil spills. Microbial Biotechnology 5, 87-97 (2012). https://doi.org/10.1111/j.1751-7915.2011.00301.x 21 ANDREAS RATAJCZAK, WALTER GEIßDO¨RFER, WOLFGANG HILLEN. Expression of Alkane Hydroxylase from Acinetobacter sp. Strain ADP1 Is Induced by a Broad Range of n-Alkanes and Requires the Transcriptional Activator AlkR. Journal of Bacteriology 180, 5822-5827 (1998). https://doi.org/10.1128%2Fjb.180.22.5822-5827.1998 22 Xiaoyuan Wang, Peter J. Quinn. Lipopolysaccharide: Biosynthetic pathway and structure modification. Progress in Lipid Research 49, 97-107 (2010). https://doi.org/10.1016/j.plipres.2009.06.002 23 Yujin Cao , Hui Mu, Jing Guo, Hui Liu, Rubing Zhang, Wei Liu, Mo Xian, Huizhou Liu. Metabolic engineering of Escherichia coli for the utilization of ethanol. Journal of Biological Research-Thessaloniki 27, 1 (2020). https://doi.org/10.1186/s40709-020-0111-0 24 William H. Eschenfeldt, Yeyan Zhang, Hend Samaha, Lucy Stols, L. Dudley Eirich, C. Ronald Wilson, Mark I. Donnelly. Transformation of Fatty Acids Catalyzed by Cytochrome P450 Monooxygenase Enzymes of Candida tropicalis. Applied and Environmental Microbiology 69, 10 (2003). https://doi.org/10.1128/AEM.69.10.5992-5999.2003 25 Md Murshidul Ahsan, Sihyong Sung, Hyunwoo Jeon, Mahesh D. Patil, Taeowan Chung, Hyungdon Yun. Biosynthesis of Medium- to Long-Chain α,ω-Diols from Free Fatty Acids Using CYP153A Monooxygenase, Carboxylic Acid Reductase, and E. coli Endogenous Aldehyde Reductases. Catalysts 8, 4 (2018). https://doi.org/10.3390/catal8010004 26 Martin Holm Rau, Patricia Calero, Rebecca M Lennen, Katherine S Long, Alex T Nielsen. Genome-wide Escherichia coli stress response and improved tolerance towards industrially relevant chemicals. Microbial Cell Factories 15, 176 (2016). https://doi.org/10.1186/s12934-016-0577-5 27 Ilham H. Said-Salman, Fatima A. Jebaii, Hoda H. Yusef, Mohamed E. Moustafa. Global gene expression analysis of Escherichia coli K-12 DH5α after exposure to 2.4 GHz wireless fidelity radiation. Scientific Reports 9, 14425 (2019). https://doi.org/10.1038/s41598-019-51046-7 28 West, Robert M. Best practice in statistics: Use the Welch t-test when testing the difference between two groups. Annals of Clinical Biochemistry 58, 267-269 (2021). https://doi.org/10.1177/0004563221992088 29 Daniel M Stoebel, Antony M Dean, Daniel E Dykhuizen. The Cost of Expression of Escherichia coli lac Operon Proteins Is in the Process, Not in the Products. Genetics 178, 1653-1660 (2008). https://doi.org/10.1534/genetics.107.085399 30 Eva Maria Novoa, Lluís Ribas de Pouplana. Speeding with control: codon usage, tRNAs, and ribosomes. Trends in Genetics 28, 574-581 (2012). https://doi.org/10.1016/j.tig.2012.07.006 31 Fuglsang, Anders. Codon optimizer: a freeware tool for codon optimization. Protein Expression and Purification 31, 247-249 (2003). https://doi.org/10.1016/S1046-5928(03)00213-4 32 Komar, Anton A. A pause for thought along the co-translational folding pathway. Trends in Biochemical Sciences 34, 16-24 (2009). https://doi.org/10.1016/j.tibs.2008.10.002 33 Nik Ida Mardiana Nik-Pa, Mohamad Farhan Mohamad Sobri, Suraini Abd-Aziz, Mohamad Faizal Ibrahim, Ezyana Kamal Bahrin, Noorjahan Banu Mohammed Alitheen, Norhayati Ramli. Combined Optimization of Codon Usage and Glycine Supplementation Enhances the Extracellular Production of a β-Cyclodextrin Glycosyltransferase from Bacillus sp. NR5 UPM in Escherichia coli. International Journal of Molecular Sciences 21, 3919 (2020). https://doi.org/10.3390/ijms21113919 34 Whitney N. Wood, Kyle D. Smith, Jennifer A. Ream, L. Kevin Lewis. Enhancing yields of low and single copy number plasmid DNAs from Escherichia coli cells. Journal of Microbiological Methods 133, 46-51 (2017). https://doi.org/10.1016/j.mimet.2016.12.016 35 Bonnefont-Rousselot, Dominique. Glucose and reactive oxygen species. Current Opinion in Clinical Nutrition and Metabolic Care 5, 561-568 (2002). https://doi.org/10.1097/00075197-200209000-00016 36 Imlay, James A. Pathways of Oxidative Damage. ANNUAL REVIEW OF MICROBIOLOGY 57, 395-418 (2003). https://doi.org/10.1146/annurev.micro.57.030502.090938 37 Karen J. Miller, Janet M. Wood. Osmoadaptation by rhizosphere bacteria. ANNUAL REVIEW OF MICROBIOLOGY 50, 101-136 (1996). https://doi.org/10.1146/annurev.micro.50.1.101 38 Yandi Dharmadi, Abhishek Murarka, Ramon Gonzalez. Anaerobic fermentation of glycerol by Escherichia coli: A new platform for metabolic engineering. Biotechnology and Bioengineering 94, 821-829 (2006). https://doi.org/10.1002/bit.21025 39 Chris Grant, Dawid Deszcz, Yu-Chia Wei, Rubéns Julio Martínez-Torres, Phattaraporn Morris, Thomas Folliard, Rakesh Sreenivasan, John Ward, Paul Dalby, John M. Woodley, Frank Baganz. Identification and use of an alkane transporter plug-in for applications in biocatalysis and whole-cell biosensing of alkanes. Scientific Reports 4, 5844 (2014). https://doi.org/10.1038/srep05844 40 Elizabeth M. Hearn, Dimki R. Patel, Bryan W. Lepore, Mridhu Indic, Bert van den Berg. Transmembrane passage of hydrophobic compounds through a protein channel wall. Nature 458, 367-370 (2009). https://doi.org/10.1038/nature07678 41 Tobias Schubeis, Tanguy Le Marchand, Csaba Daday, Wojciech Kopec, Kumar Tekwani Movellan, Jan Stanek, Tom S. Schwarzer, Kathrin Castiglione, Bert L. de Groot, Guido Pintacuda, Loren B. Andreas. A β-barrel for oil transport through lipid membranes:Dynamic NMR structures of AlkL. PNAS 117, 21014-21021 (2020). https://doi.org/10.1073/pnas.2002598117 42 F. Bylund, E. Collet, S.-O. Enfors, G. Larsson Substrate gradient formation in the large-scale bioreactor lowers cell yield and increases by-product formation. Bioprocess Engineering 18, 171-180 (1998). https://doi.org/10.1007/s004490050427 43 J. Stewart-Savage, Barry D. Bavister Deterioration of stored culture media as monitored by a sperm motility bioassay. Journal of in Vitro Fertilization and Embryo Transfer 5, 76-80 (1988). https://doi.org/10.1007/BF01130662 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95217 | - |
dc.description.abstract | 中長鏈 α, ω-烷二醇在工業上已被應用為聚氨酯或聚酯之前驅物。但是,此化合物並不存在於自然界,所以人工合成為唯一獲得之方法。至今,最主要合成α, ω-烷二醇之化學催化方法為氫醛化反應,但是此方法具有區域選擇性與立體選擇性之劣勢,影響合成產物的純度。在過去研究中發現,細胞色素P450單氧化酶之 CYP153A具有ω-羥基化之專一性,經由全細胞催化法,可解決化學催化法的缺點。另外,在 α, ω-烷二醇合成中使用的基質為疏水性化合物,不利於穿入細胞膜內中。為了加速基質穿膜率,親疏水性化合物之轉運體 (Transporter) 必要導入此系統。本研究使用長鏈自由脂肪酸轉運體 FadL, 以及可能為轉運體 Maqu0434。接著,以上述系統與 AraC/XylS 家族轉錄調節因子之鼠李糖誘導系統建構於重組大腸桿菌 K12 MG1655。本研究使用1.5 L之饋料批式發酵生物反應器培養過表現上述 FadL運轉體之菌株,以 1.5 g/L/h 之甘油與 0.3 g/L/h 之酵母萃取物的饋料速率可達到 17.69 g/L之1, 12-十二烷二醇的產量。並以動態檢測各基因之表現來分析菌體生理狀況。 | zh_TW |
dc.description.abstract | Medium to long-chain length α, ω-alkanediols are applied as precursors of polyurethanes and polyesters. However, the absence of these compounds in nature made it ineluctable to synthesis artificially. Hydroformylation, one of a major chemical α, ω-alkanediols synthetic methods, is adverse for its regio-selectivity and stereo-selectivity caused by chemical catalysts. Previously, a cytochrome P450 monooxygenase, CYP153A, was unveiled its capability of ω-hydroxylation, in order that whole-cell bioproduction of α, ω-alkanediols was suggested. However, there was still a bottleneck about substrates uptake rate, since the substrates utilized was hydrophobic. To boost the uptake rate of substrate, long-chain fatty acid transporter FadL and a novel potential transporter Maqu0434 were applied, respectively. The transporters were expressed by rhamnose inducible system with AraC/XylS family of transcriptional regulators. By transfecting Escherichia coli K12 MG1655 with plasmids containing genes of FadL, we recorded 17.69 g/L of 1, 12-dodecanediol in fed-batch bioreactor with 1.5 g/L/h of glycerol and 0.3 g/L/h of yeast extract as feeding strategy. Further, the gene expression level was monitored dynamically to improve the fermentation condition. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-03T16:10:06Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-09-03T16:10:07Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 i
Abstract ii 中文摘要 iii Abbreviation iv Contents vii List of Tables x List of figures xi 1. Introduction 1 1.1. α, ω-alkanediols and bio-oxyfunctionalization 1 1.2. Growing body of research exploring α, ω-alkanediols bioproduction 2 1.3. Transporters 4 1.3.1. Alkane transporter, AlkL 4 1.3.2. Long-chain fatty acid transporter, FadL 5 1.3.3. A novel protein, Maqu0434 5 1.4. Induction systems 6 1.4.1. rhaB promoter 6 1.4.2. AlkR regulator 7 1.5. Recombinant target strain, Escherichia coli K12 MG1655 7 1.6. Biodegradation of 1-alkanol 8 1.7. Gene expression level assay 8 Aim of study 9 2. Material and Methods 10 2.1. Materials & reagents 10 2.2. Genomic DNA extraction 10 2.3. Plasmid construction 11 2.4. Plasmid amplification, extraction method and purification 12 2.5. Construction of recombinant Escherichia coli K12 MG1655 14 2.6. mRFP expression assay 15 2.7. Flask production test 15 2.8. Extraction of 1, 12-dodecanediol, derivatization and gas chromatography analysis 16 2.9. Bioreactor strategy 17 2.10. Detection of glycerol residue by high performance liquid chromatography 17 2.11. Extraction of RNAs 18 2.12. RT-qPCR of mRNA 18 3. Results 19 3.1. mRFP expression assay 19 3.2. Optimization of rhamnose induction concentration 20 3.3. Comparison of diverse bioreactor strategy 22 3.3.1. Fed-batch of E. coli MG1655-CYP-FadL with 100% feeding rate 22 3.3.2. Fed-batch of E. coli MG1655-CYP-FadL with 80% feeding rate 23 3.3.3. Fed-batch of E. coli MG1655-CYP-FadL with 60% feeding rate 23 3.3.4. Contrast of 60% feeding rate batch and control batch 24 3.4. mRNA expression assay by RT-qPCR 25 3.4.1. 100% FB dynamic gene expression assay 25 3.4.2. 80% FB dynamic gene expression assay 25 3.4.3. 60% FB dynamic gene expression assay 26 3.4.4. Control batch dynamic gene expression assay 27 4. Discussion 27 5. Conclusion 33 6. Tables 34 7. Figures 42 8. Reference 55 Appendix 62 | - |
dc.language.iso | en | - |
dc.title | 以大腸桿菌 K12 MG1655 菌株之誘導型轉運體表現系統生產 1, 12-十二烷二醇之研究 | zh_TW |
dc.title | Production of 1, 12-dodecanediol by Escherichia coli K12 MG1655 with Inducible Transporter System | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 吳定峰;劉啟德;王正利;林俊材 | zh_TW |
dc.contributor.oralexamcommittee | Ting-Feng Wu;Chi-Te Liu;Cheng-Li Wang;Jiun-Tsai Lin | en |
dc.subject.keyword | α, ω-烷二醇,CYP153A單氧化酶,FadL轉運體,Maqu0434潛力轉運體,鼠李糖誘導系統,饋料批式發酵生物反應器,重組大腸桿菌 K12 MG1655, | zh_TW |
dc.subject.keyword | α, ω-alkanediols,CYP153A monooxygenase,FadL transporter,Maqu0434 potential transporter,rhamnose inducible system,fed-batch bioreactor,recombinant Escherichia coli K12 MG1655, | en |
dc.relation.page | 66 | - |
dc.identifier.doi | 10.6342/NTU202403715 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-08-14 | - |
dc.contributor.author-college | 生命科學院 | - |
dc.contributor.author-dept | 生化科技學系 | - |
dc.date.embargo-lift | 2029-08-06 | - |
顯示於系所單位: | 生化科技學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 此日期後於網路公開 2029-08-06 | 13.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。