請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95205完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 繆維中 | zh_TW |
| dc.contributor.advisor | Wei-Chung Miao | en |
| dc.contributor.author | 葉寬旭 | zh_TW |
| dc.contributor.author | Kuan-Hsu Yeh | en |
| dc.date.accessioned | 2024-08-30T16:10:44Z | - |
| dc.date.available | 2024-08-31 | - |
| dc.date.copyright | 2024-08-30 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-08 | - |
| dc.identifier.citation | [1] L. W. C. Axel Erik Sars Oom. Delta hedging with stochastic volatility: An empirical comparison of the heston (1993) and black-scholes (1973) models during the covid-19 crash. Master’s thesis, MSc. in Finance and Investments Copenhagen Business School, Copenhagen, May 2022.
[2] C. C. Bakshi, G. and Z. Chen. Empirical performance of alternative option pricing models. The Journal of Finance, 52:2003–2049, 1997. [3] D. S. Bates. Jumps and stochastic volatility: Exchange rate processes implicit in deutsche mark options. The Review of Financial Studies, 9:69–107, 1996. [4] D. S. Bates. Post-87 crash fears in the sp 500 futures option market. Journal of Econometrics, 94:181–238, 2000. [5] C. M. Broadie, M. and M. Johannes. Model specification and risk premia: Evidence from futures options. The Journal of Finance, 62:1453–1490, 2007. [6] P. Christoffersen and K. Jacobs. The importance of the loss function in option pricing. EFA 2003 Annual Conference Paper, 604, 2002. [7] R. Crisóstomo. An analysis of the heston stochastic volatility model: Implementation and calibration using matlab. CNMV Working Paper, 58, 2014. [8] E. Derman and M. Miller. The Volatility Smile. WILEY, United States of America, 2016. [9] K. Detlefsen. Hedging exotic options in stochastic volatility and jump diffusion models. Master’s thesis, Humboldt-Universit ̈at zu Berlin, Copenhagen, February 2005. [10] K. S. Duffie, D. and J. Pan. Transform analysis and asset pricing for affine jump diffusions. Econometrica, 68:1343–1376, 2000. [11] B. Eraker. Do stock prices and volatility jump? reconciling evidence from spot and option prices. The Journal of Finance, 59:1367–1403, 2004. [12] J. M. Eraker, B. and N. Polson. The impact of jumps in volatility and returns. The Journal of Finance, 58:1269–1300, 2003. [13] J. Gatheral. The Volatility Surface. WILEY, United States of America, 2006. [14] S. L. Heston. A closed-form solution for options with stochastic volatility with applications to bond and currency options. The Review of Financial Studies, 6:327–343, 1993. [15] J. Hull. Options, Futures, and Other Derivatives. WILEY, United States of America, 11th edition. [16] Y. Kovachev. Calibration of stochastic volatility models. Master’s thesis, Department of Mathematics, Uppsala University, Copenhagen, June 2014. [17] J. P. Milan Mrázek. Calibration and simulation of heston model. Open Mathematics, 15:679–704, 2017. [18] W. Poklewski-Koziell. Stochastic volatility models: Calibration, pricing and hedging. Master’s thesis, School of Computational and Applied Mathematics, University of the Witwatersrand”, South Africa, May 2012. [19] F. D. Rouah. The Heston Model and Its Extensions in Matlab and C. WILEY, United States of America, 2013. [20] Y. L. C. S. Galluccio. Implied calibration of stochastic volatility jump diffusion models. Master’s thesis, University Library of Munich, Germany, September 2005. [21] J. Z. . Y. Xiang. The implied volatility smirk. Taylor Francis Journals, 8:263–284, 2008. [22] G. G. Yiran Cui, Sebastian del Ban ̃o Rollinb. Full and fast calibration of the heston stochastic volatility model. CNMV Working Paper, 263:625–638, 2017. [23] 夏漢權. 以 heston model 隨機波動度模型評價結構型商品與目標可贖回遠期契 約. Master’s thesis, 國立中央大學財務金融學系, June 2017. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95205 | - |
| dc.description.abstract | 本論文以具跳躍的隨機波動模型之各種變形進行探討,以台指選擇權市場作 為研究對象。我們檢驗 Heston 模型在短天期下是否無法良好捕捉市場的隱含波動 度,並分析在價格具跳躍的 Bates 模型以及價格和波動度同時具跳躍的 SVJJ 模型 可以對短天期提升多少的校準精準度。此外,我們討論了模型校正,比較不同演 算法及校正方式下之的校準誤差,從而提出適用台指選擇權市場的校正方法。研 究顯示 Bates 模型可以大幅改善 Heston 短天期的校準誤差,且即使在波動劇烈時 也有理想的校準能力,然而,SVJJ 模型在校正時間大幅提高下卻無法帶來顯著的 精準度提升。同時,我們建構交易策略,檢驗了三個模型在樣本外的獲利表現, 結果與樣本內一致。 | zh_TW |
| dc.description.abstract | Our study investigates various modifications of stochastic volatility models with jumps, using the Taiwan Index Options market as the research subject. We examine whether the Heston model fails to capture the market’s implied volatility well for short maturities and analyze how much the Bates model and the SVJJ model with contempo- raneous price and volatility jumps can improve calibration accuracy for short maturities. Additionally, we discuss model calibration, comparing calibration errors under different algorithms and calibration methods, and propose a calibration method suitable for the Taiwan Index Options market. The research shows that the Bates model significantly im- proves the calibration errors of the Heston model for short maturities and maintains ideal calibration performance during periods of high volatility. However, the SVJJ model does not provide significant accuracy improvement despite a substantial increase in calibra- tion time. Meanwhile, we constructed trading strategies and examined the out-of-sample profitability of the three models, with results consistent with in-sample performance. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-30T16:10:44Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-30T16:10:44Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements i
摘要 ii Abstract iii Contents v List of Figures vii List of Tables ix Denotation x Chapter 1 Introduction 1 Chapter 2 Stochastic Volatility Models 4 2.1 The Heston Model 4 2.2 The Bates Model 7 2.3 The SVJJ Model 9 2.4 Characteristic Functions of the Models 11 Chapter 3 Model Calibration 15 3.1 Data 15 3.2 Calibration Method 19 3.3 Optimization Algorithm 21 3.3.1 Genetic Algorithm 22 3.3.2 Grid Search 23 3.3.3 Comparison 24 3.4 Surface or Curve 27 3.5 Other Calibration Techniques 29 Chapter 4 Calibration Results 31 4.1 Calibration Results in a Day 31 4.2 Calibration Results in the Sample Periods 32 4.3 Calibration Error in the Plummet 35 Chapter 5 Trading Strategy 38 5.1 Strategy Design 38 5.2 Strategy Performance 40 5.3 Drawdown Analysis 41 5.4 Strategy Summary 42 Chapter 6 Conclusion 44 References 46 | - |
| dc.language.iso | en | - |
| dc.subject | Heston模型 | zh_TW |
| dc.subject | Bates模型 | zh_TW |
| dc.subject | SVJJ模型 | zh_TW |
| dc.subject | 模型校正 | zh_TW |
| dc.subject | 隱含波動度 | zh_TW |
| dc.subject | 套利 | zh_TW |
| dc.subject | Model Calibration | en |
| dc.subject | The Heston Model | en |
| dc.subject | The Bates Model | en |
| dc.subject | The SVJJ Model | en |
| dc.subject | Arbitrage | en |
| dc.subject | Implied Volatility | en |
| dc.title | 具跳躍的隨機波動模型之台指選擇權市場實證 | zh_TW |
| dc.title | Stochastic Volatility Models with Jumps in Taiwan Index Options Market | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 管中閔 | zh_TW |
| dc.contributor.coadvisor | Chung-Ming Kuan | en |
| dc.contributor.oralexamcommittee | 王之彥;張森林 | zh_TW |
| dc.contributor.oralexamcommittee | Jr-Yan Wang;San-Lin Chung | en |
| dc.subject.keyword | Heston模型,Bates模型,SVJJ模型,模型校正,隱含波動度,套利, | zh_TW |
| dc.subject.keyword | The Heston Model,The Bates Model,The SVJJ Model,Model Calibration,Implied Volatility,Arbitrage, | en |
| dc.relation.page | 48 | - |
| dc.identifier.doi | 10.6342/NTU202403225 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-10 | - |
| dc.contributor.author-college | 管理學院 | - |
| dc.contributor.author-dept | 財務金融學系 | - |
| 顯示於系所單位: | 財務金融學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 5.32 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
