請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95202完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 丁健芳 | zh_TW |
| dc.contributor.advisor | Chien-Fang Ding | en |
| dc.contributor.author | 黃評堅 | zh_TW |
| dc.contributor.author | Ping-Jian Huang | en |
| dc.date.accessioned | 2024-08-30T16:09:49Z | - |
| dc.date.available | 2024-08-31 | - |
| dc.date.copyright | 2024-08-30 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-14 | - |
| dc.identifier.citation | 參考文獻
[1] Optech Consulting. 2022. Industrial Laser and System Markets Trend Sideways in 2022. Available at: https://optech-consulting.com/2022-laser-market-data/. Accessed 10 December 2023. [2] 財團法人工具機發展基金會。2022。2021年12月台灣工具機產業現況。臺灣機械工業同業公會。Available at: https://www.tami.org.tw/market/taiwan_mt_2021_12.html. Accessed 02 January 2024. [3] Hohnholz, A., Rettschlag, K., Desens, M., Taschner, P.A., Overmeyer, L. 2020. Optics and Apparatus for CO2 and CO Laser Micro-processing. In: Sugioka, K. (eds) Handbook of Laser Micro- and Nano-Engineering. Springer, Cham. [4] Mengjia Cui, Libin Lu, Zhen Zhang, Yingchun Guan. 2021. A Laser Scanner–Stage Synchronized System Supporting the Large-Area Precision Polishing of Additive-Manufactured Metallic Surfaces, Engineering, Volume 7, Issue 12, Pages 1732-1740, ISSN 2095-8099. [5] Bo Gu. 2006. Review: 40 years of laser-marking industrial applications. Proc. SPIE 6106, Photon Processing in Microelectronics and Photonics V, 610601. [6] 蕭文澤。2011。雷射技術與應用-振鏡掃描系統介紹。儀科中心簡訊(107): 12-13。 [7] Rüdiger Paschotta. article on 'scanning lenses' in the RP Photonics Encyclopedia. Available at: https://doi.org/10.61835/2kq. Accessed 03 July 2024. [8] Peng, Liu-Yong et al. 2013. Polynomial fitting correction of galvanometer geometric distortion error in laser marking. Jiguang Jishu / Laser Technology 37.5 (2013): 601–604. [9] Yan Hengfeng, Chen Jimin, Shao Jun. 2013. Study on Laser Dots Marking Based on Dynamic Focusing Galvanometer System. Chinese Journal of Lasers, 2013, 40(9): 0903006. [10] Ming Jiang, Yi Jiang, Xiaoyan Zeng. 2007. Study of laser flying marking system. Opt. Eng. 46(9) 094302 (1 September 2007). [11] Ming Jiang, Yi Jiang, Xiaoyan Zeng. 2008. Scanning path planning for graphics objects in laser flying marking system. Opt. Eng. 47(9) 094302 (1 September 2008). [12] Kyung-Han Kim, Kwang-Ho Yoon, Jeong Suh, Jae-Hoon Le. 2011. Laser Scanner Stage On-The-Fly Method for ultrafast and wide Area Fabrication. Physics Procedia 12 (2011) 452–458. [13] Kwang-Ho Yoon, Kyung-Han Kim, Jae-Hoon Lee.2014. One-axis on-the-fly laser system development for wide-area fabrication using cell decomposition. International journal of advanced manufacturing technology, 2014, Vol.75 (9-12), p.1681-1690 [14] 雷射(LASER)。國立陽明交通大學光電工程學系Department of Photonics, National Yang Ming Chiao Tung University。Available at: https://dop.nycu.edu.tw/ch/field_ii.html?aID=12. Accessed 11 June 2024. [15] 黃錦賢。2001。認識雷射種類。勞動力發展數位服務平台: PMT-LSP0104, 2001. [16] 陈志斌, 范磊, 肖文健, 秦梦泽, 肖程, 张冬晓。2018。二维振镜扫描系统调向误差分析。应用光学, 2018, 39(2): 180-186. DOI: 10.5768/JAO201839.0201004. [17] Thorlabs. F-Theta Lenses Tutorial. Available at: https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=10766. Accessed 23 June 2024. [18] Georgehelser. 2016. Use a Zoom beam expander for evaluating an F-Theta lens. PRECISION LASER SCANNING, BEAM EXPANDERS, F-THETA LENSES, Uncategorized. Available at: https://precisionlaserscanning.com/2016/09/use-a-zoom-beam-expander-for-evaluating-an-f-theta-lens/. Accessed 25 July 2024. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95202 | - |
| dc.description.abstract | 雷射振鏡掃描系統已被廣泛應用於多樣化的雷射加工製程,例如打標、鑽孔、表面紋理化、雷射誘發材料轉移等技術。然而振鏡掃描系統的工作視野受限於物鏡焦距的限制,提高物鏡焦距可擴大工作視野範圍,但會導致雷射分辨率下降,降低加工精密度,不足以支持大範圍的高速加工需求。當前工業製造通常結合多軸運動平台機構與掃描系統實現大面積的雷射加工,然而該方法需要精確的校準程序,應用於工業需求之高速單一重複製程效率較差。
雷射飛行加工技術(Laser on-the-fly)為廣範圍、高速、高精密度的晶圓加工製程提供了可行性。根據加工系統設計可實現自動化的工件送料與機械校準,結合振鏡掃描系統即可達成高速、高精度的飛行加工。本研究旨在開發一結合等速運動平台與雷射振鏡掃描系統之動態雷射飛行加工系統,引入雷射加工監測技術,並應用於同步多軸運動控制系統以實現加工檢測與參數優化,並通過自主開發加工軟體建立便於操作與監控之使用者介面。本研究建構並整合開發一套動態雷射飛行加工系統,使用波長355奈米之紫外光脈衝雷射,並透過實驗以驗證其工作性能。所開發之系統具有良好之性能,在掃描尺寸為直徑10 μm之正圓時可達誤差在 ±0.5 μm以內之精度,並且在掃描速度3000 mm/s以下皆可維持該工作性能,並且足可適用於單軸或雙軸平面之大面積雷射加工製程,在覆蓋式掃描製程中可在全區域維持穩定之雷射注量,所開發之系統在保證加工品質之標準下可充分提高雷射加工效率,可期為未來產業發展之參考。 | zh_TW |
| dc.description.abstract | Laser galvanometer scanners have been widely used in a variety of laser processing processes, such as marking, drilling, surface texturing, laser-induced forward transfer, and other technologies. However, the working field of the laser galvo scanner is limited by the limitation of the focal length of the objective lens, and increasing the focal length of the objective lens can expand the working field of view, but it will lead to the decrease of laser resolution and reduce the processing precision, which is not enough to support a wide range of high-speed processing needs. At present, industrial manufacturing usually combines a multi-axis motion platform mechanism and a laser galvo scanner to achieve large-area laser processing, but this method requires accurate calibration procedures. The efficiency of the method applied to high-speed single reproduction process is relatively poor.
Laser on-the-fly technology provides feasibility for a wide range, high-speed, high-precision wafer processing process. According to the design of the processing system, automatic workpiece feeding and mechanical calibration can be realized, and high-speed and high-precision on-the-fly processing can be achieved in combination with laser galvo scanners. The purpose of this research is to develop a dynamic laser on-the-fly processing system that combines a constant speed motion platform and a laser galvo scanner, introduce laser processing monitoring technology, and apply it to a synchronous multi-axis motion control system to achieve processing detection and parameter optimization. This research establishes a user interface for easy operation and monitoring through self-developed processing software. In this study, a dynamic laser on-the-fly processing system was constructed and integrated to use an ultraviolet pulse laser with a wavelength of 355 nm, and its working performance was verified through experiments. The developed system has a good performance in scanning the size of 10 μm diameter circle can reach the accuracy within ±0.5 μm, and the scanning speed of 3000 mm/s or less can maintain the performance, and is sufficient for single-axis or dual-axis planar large-area laser processing process, in the cover scanning process can be maintained in the whole area of the laser injection amount is stable, the developed system can fully improve the efficiency of laser processing under the standard of quality assurance, and is expected to be a reference for the future development of the industry. The developed system can fully improve the laser processing efficiency under the standard of guaranteeing the processing quality, which is expected to be a reference for the future development of the industry. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-30T16:09:49Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-30T16:09:49Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
中文摘要 ii 英文摘要 iv 目次 vi 圖次 vii 表次 ix 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 1.3 論文架構 5 第二章 文獻回顧 6 2.1 雷射振鏡掃描系統 6 2.2 動態飛行加工方法 9 2.3 小結 12 第三章 原理 13 3.1 雷射振鏡掃描系統原理 13 3.2 飛行加工原理 22 第四章 實驗設備與方法 28 4.1 系統架構 28 4.2 實驗方法 34 第五章 結果與討論 43 5.1 加工精度 43 5.2 掃描速度 50 5.3 訊號時間延遲 53 5.4 飛行加工 56 第六章 結論與未來展望 68 參考文獻 69 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 同步控制 | zh_TW |
| dc.subject | 飛行加工 | zh_TW |
| dc.subject | 雷射加工 | zh_TW |
| dc.subject | 振鏡掃描系統 | zh_TW |
| dc.subject | Laser manufacturing | en |
| dc.subject | Galvo scanner system | en |
| dc.subject | On-the-fly processing | en |
| dc.subject | Synchronization control | en |
| dc.title | 雷射振鏡系統與運動平台同步控制與誤差分析 | zh_TW |
| dc.title | Synchronization Control and Positioning Error Analysis of Laser Galvanometer System and Motion Stage | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 顏炳郎;蔡曜陽;梁奕智 | zh_TW |
| dc.contributor.oralexamcommittee | Ping-Lang Yen;Yao-Yang Tsai;Eih-Zhe Liang | en |
| dc.subject.keyword | 雷射加工,振鏡掃描系統,飛行加工,同步控制, | zh_TW |
| dc.subject.keyword | Laser manufacturing,Galvo scanner system,On-the-fly processing,Synchronization control, | en |
| dc.relation.page | 70 | - |
| dc.identifier.doi | 10.6342/NTU202403989 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-14 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 生物機電工程學系 | - |
| dc.date.embargo-lift | 2029-08-13 | - |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 4.66 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
