請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95199完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔣明晃 | zh_TW |
| dc.contributor.advisor | Ming-Huang Chiang | en |
| dc.contributor.author | 洪振倫 | zh_TW |
| dc.contributor.author | Zhen-Lun Hong | en |
| dc.date.accessioned | 2024-08-30T16:08:42Z | - |
| dc.date.available | 2024-08-31 | - |
| dc.date.copyright | 2024-08-30 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-05 | - |
| dc.identifier.citation | [1] Aburto, L., & Weber, R. (2007). Improved supply chain management based on hybrid demand forecasts. Appl. Soft Comput., 7, 136–144.
[2] Alon, I., Qi, M., & Sadowski, R. J. (2001). Forecasting aggregate retail sales: A comparison of artificial neural networks and traditional methods. Journal of Retailing and Consumer Services, 8(3), 147–156. https://doi.org/10.1016/S0969-6989(00)00011-4 [3] Arrow, K. J., Harris, T. E., & Marschak, J. (1951). Optimal inventory policy. Econometrica, 19, 133. [4] Benneyan, J. C., Lloyd, R. C., Plsek, P. E., Plsek, M. P. E., & Plsek, P. E. (2003). Statistical process control as a tool for research and healthcare improvement. Quality and Safety in Health Care, 12, 458–464. [5] Berger, J. (2013). Statistical decision theory and Bayesian analysis. Springer New York. [6] Bertsekas, D. P. (2005). Dynamic programming and optimal control (3rd, Vol. 1). Athena Scientific. [7] Carbonneau, R. A., Laframboise, K., & Vahidov, R. M. (2008). Application of machine learning techniques for supply chain demand forecasting. Eur. J. Oper. Res., 184, 1140–1154. [8] Cheng, J.-C., & Chou, C.-Y. (2008). A real-time inventory decision system using western electric run rules and ARMA control chart. Expert Syst. Appl., 35, 755–761. [9] Clark, A. J., & Scarf, H. E. (1960). Optimal policies for a multi-echelon inventory problem. Manag. Sci., 50, 1791–1793. [10] Costantino, F., Gravio, G. D., Shaban, A., & Tronci, M. (2014a). Inventory control system based on control charts to improve supply chain performances. International Journal of Simulation Modelling, 13, 263–275. https://doi.org/10.2507/ijsimm13(3)1.263 [11] Costantino, F., Gravio, G. D., Shaban, A., & Tronci, M. (2014b). SPC-based inventory control policy to improve supply chain dynamics. International Journal of Engineering and Technology, 6, 418–426. [12] Costantino, F., Gravio, G. D., Shaban, A., & Tronci, M. (2015a). A real-time SPC inventory replenishment system to improve supply chain performances. Expert Systems with Applications, 42(3), 1665–1683. https://doi.org/10.1016/j.eswa.2014.09.028 [13] Costantino, F., Gravio, G. D., Shaban, A., & Tronci, M. (2015b). SPC forecasting system to mitigate the bullwhip effect and inventory variance in supply chains. Expert Syst. Appl., 42, 1773–1787. [14] Crowder, S., Hawkins, D., Reynolds, M., & Yashchin, E. (1997). Process control and statistical inference. Journal of Quality Technology, 29(2), 134–139. https://doi.org/10.1080/00224065.1997.11979742 [15] DeGroot, M. (2004). Sequential sampling. In Optimal statistical decisions (pp. 265–323). John Wiley & Sons, Ltd. https://doi.org/https://doi.org/10.1002/0471729000.ch12 [16] Efendigil, T., Önüt, S., & Kahraman, C. (2009). A decision support system for demand forecasting with artificial neural networks and neuro-fuzzy models: A comparative analysis. Expert Systems with Applications, 36, 6697–6707. https://doi.org/10.1016/j.eswa.2008.08.058 [17] Eppen, G. (1981). Centralized ordering policies in a multi-warehouse system with lead times and random demand. Multi-Level Production/Inventory Control Systems, 51–67. [18] Federgruen, A., & Zipkin, P. (1984). Approximations of dynamic, multilocation production and inventory problems. Management Science, 30(1), 69–84. http://www.jstor.org/stable/2631108 [19] Hotelling, H. (1947). Multivariate quality control-illustrated by the air testing of sample bombsights. Techniques of statistical analysis. [20] Iglehart, D. L. (1963). Optimality of (s, S) policies in the infinite horizon dynamic inventory problem. Management Science, 9, 259–267. [21] Kao, H.-Y. (2023). 應用貝氏管制於永續盤存存貨系統之研究 [Master’s thesis, 國立臺灣大學]. http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88780 [22] Lowry, C. A., Woodall, W. H., Champ, C. W., & Rigdon, S. E. (1992). A multivariate exponentially weighted moving average control chart. Technometrics, 34(1), 46–53. https://doi.org/10.2307/126955 [23] MacCarthy, B. L., & Wasusri, T. (2002). A review of non‐standard applications of statistical process control (SPC) charts. International Journal of Quality & Reliability Management, 19, 295–320. [24] Mcculloh, I., & Carley, K. M. (2011). Detecting change in longitudinal social networks. Journal of Social Structure, 12, 1–37. [25] Mustafid, Ispriyanti, D., Sugito, & Safitri, D. (2019). Inventory control model using exponential smoothing control chart. Journal of Physics: Conference Series, 1217(1), 012095. https://doi.org/10.1088/1742-6596/1217/1/012095 [26] Page, E. S. (1961). Cumulative sum charts. Technometrics, 3(1), 1–9. https://doi.org/10.2307/1266472 [27] Pan, K.-C. (2019). 運用貝氏管制圖於定期訂購存貨系統之研究 [Master’s thesis, 國立臺灣大學]. http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21529 [28] Pfohl, H.-C., Cullmann, O., & Stolzle, W. (1999). Inventory management with statistical process control: Simulation and evaluation. Journal of Business Logistics, 20(1), 101–120. [29] Press, S. (1989). Bayesian statistics: Principles, models, and applications. Wiley. [30] Redha, Z. M., Bu-Ali, Q., Ebrahim, F. A., Jaafar, B. H., & Khattak, S. R. (2022). The application of statistical process control techniques for quality improvement of the municipal wastewater-treated process. Arabian Journal for Science and Engineering, 48, 8613–8628. [31] Roberts, S. W. (2000). Control chart tests based on geometric moving averages. Technometrics, 42, 101–97. [32] Rosling, K. (1989). Optimal inventory policies for assembly systems under random demands. Oper. Res., 37, 565–579. [33] Scarf, H. E. (1959). The optimality of (s, S) policies in the dynamic inventory problem. In K. J. Arrow, S. Karlin, & P. Suppes (Eds.). Stanford University Press. [34] Shewhart, W. A. (1932). The economic control of quality of manufactured product. Journal of the Royal Statistical Society, 95, 546. [35] Veinott, A. F., & Wagner, H. M. (1965). Computing optimal (s, S) inventory policies. Management Science, 11, 525–552. [36] Vermaat, M. B. T., & Does, R. J. M. M. (2006). A semi-bayesian method for shewhart individual control charts. Quality Technology & Quantitative Management, 3(1), 111–125. https://doi.org/10.1080/16843703.2006.11673104 [37] Wald, A. (1945). Sequential tests of statistical hypotheses. The Annals of Mathematical Statistics, 16(2), 117–186. [38] Watts, C. A., Hahn, C. K., & Sohn, B.-K. (1994). Monitoring the performance of a reorder point system: A control chart approach. International Journal of Operations & Production Management, 14, 51–61. [39] Woodall, W. H., & Ncube, M. M. (1985). Multivariate CUSUM quality-control procedures. Technometrics, 27(3), 285–292. https://doi.org/10.2307/1269710 [40] Woodward, P. W., & Naylor, J. C. (1993). An application of Bayesian methods in SPC. The Statistician, 42, 461–469. [41] Wu, C.-H. (2017). 應用貝氏管制圖與追蹤訊號於需求監控存貨管理系統之探討 [Master’s thesis, 國立臺灣大學]. http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2503 [42] Wu, X., Miao, R., Zhang, X., Jiang, Z., & Chu, X. (2015). A conjugate Bayesian approach to control chart for multi-batch and low volume production. International Journal of Production Research, 53, 2179–2185. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95199 | - |
| dc.description.abstract | 全球性的新冠疫情,揭櫫了現代供應鏈背後的複雜和脆弱。這些斷鏈事件促使企業重新思考其存貨控制的策略。傳統的存貨控制方法,如 Shewhart 管制圖及其貝氏的變形,在動態、成本敏感的環境下往往不敷使用。因此,本論文探討了一種創新的存貨控制方法,即利用貝氏逐樣法,將成本結構嵌入存貨管制圖中。
傳統的存貨管制圖通常假設了靜態的環境,且未能充分考慮存貨相關成本。例如 Shewhart 管制圖依賴預設的管制上下限來確定需求是否落在可接受範圍內,但並未考慮缺貨或庫存過剩的成本影響。同樣地,現有的貝氏管制圖雖然改進了 Shewhart 模型,透過後驗分佈來捕捉需求變化,但仍缺乏對成本的整合。為了解決這些限制,基於貝氏逐樣法,考慮與成本相關的參數,我們提出了一種新型的管制圖。我們首先用動態規劃重述問題,然後利用成本函數的分段線性近似來求解問題。 透過在各種需求情景和成本結構下的數值模擬,我們全面地評估我們所提出的成本貝氏管制圖。在市場需求穩定的情況下,我們的管制圖維持了略高的存貨水準。至於在市場需求增長的情境下,無論需求成長的幅度大小,我們提出的方法都能達到最低的總成本。研究的結果顯示,將成本結構整合到控制圖中特別有益於存貨管理。成本貝氏管制圖在缺貨成本超過存貨過剩成本的情況下呈現顯著的成本優勢。 我們的研究結果表明,將成本結構納入存貨管制圖中,能大幅提高存貨管制圖的效能。我們所提出的貝氏逐樣方法為存貨管理提供了一個既靈活且具有成本效益的解決方案。企業若透過根據特定成本結構制定公司的存貨管制圖,可以最大化存貨管理的效率,更好地管理現代供應鏈的複雜性。 | zh_TW |
| dc.description.abstract | Recent global events, such as the COVID-19 pandemic, have highlighted the complexities and vulnerabilities of modern supply chains. These disruptions have prompted companies to rethink their inventory control strategies. Traditional control methods, such as Shewhart control charts and various Bayesian approaches, have their merits but often fall short in dynamic and cost-sensitive environments. This thesis explores an innovative approach to inventory control by embedding cost structures into control charts using Bayesian sequential analysis.
Traditional inventory control charts, while helpful, often assume a static environment and do not adequately consider the costs. The Shewhart control chart, for instance, relies on preset control limits to determine whether demands are within acceptable ranges. However, it does not account for the cost implications of stockouts or overstocking. Similarly, existing Bayesian control charts improve on the Shewhart model by using posterior distributions to capture demand changes, but they still lack comprehensive cost integration. To address these limitations, we propose a novel control chart that integrates cost-related parameters. Our methodology is grounded in the Bayesian sequential analysis. We first express the problem in dynamic programming. Then, we utilize a piecewise linear approximation to solve the formulation. We evaluated our Cost-Bayesian control chart through numerical simulations under various demand scenarios and cost structures. Under stable market demand conditions, the proposed control chart maintains slightly higher stock levels. In scenarios with increasing market demand, the proposed method achieves the lowest total cost, regardless of the growth magnitude. The results show that integrating cost structures into the control chart is particularly beneficial. The Cost-Bayesian control chart shows significant cost advantages in the case where stockout costs exceed overstock costs. The findings of our study suggest that incorporating cost structures into inventory control charts greatly enhances their performance. The proposed Bayesian sequential approach offers a flexible and cost-effective solution for inventory management. By tailoring inventory control charts to specific cost structures, companies can achieve optimal performance and better manage the complexities of modern supply chains. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-30T16:08:42Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-30T16:08:42Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
謝辭 iii 摘要 v Abstract vii Contents ix List of Figures xi List of Tables xiii Symbols xv Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Research Objective 3 1.3 Organization of the Paper 3 Chapter 2 Literature Review 5 2.1 Statistical Process Control Charts 5 2.2 Bayesian Methods in Statistical Process Control 6 2.3 Control Charts in Inventory Management 6 2.4 Brief Summary and Relation to the Literature 7 Chapter 3 Methodology 9 3.1 Single-period Stochastic Inventory Problem 9 3.2 Decision-theoretic Inventory Control 10 3.2.1 Bayesian Sequential Decision Problem 10 3.2.2 Dynamic Programming and Control Chart 12 3.3 Solution to Finite Horizon Problem 17 3.3.1 Backward Induction 17 3.3.2 Piecewise Linear Cost Function Approximation 19 3.4 Cost-Bayesian Control Chart 21 3.4.1 How to form hypotheses? 21 3.4.2 How to determine the prior p0? 22 3.4.3 Workflow 23 Chapter 4 Experiments 27 4.1 Scenarios 27 4.2 Benchmarks 28 4.3 Evaluation Metrics 29 4.4 Results 30 4.4.1 IID Demand 30 4.4.2 Stepwise Increasing Demand 30 Chapter 5 Conclusion 35 5.1 Summary of Findings 35 5.2 Contributions to the Field 35 5.3 Research Limitations 36 5.4 Directions for Future Research 37 References 39 | - |
| dc.language.iso | en | - |
| dc.subject | 成本貝氏管制圖 | zh_TW |
| dc.subject | 存貨管制圖 | zh_TW |
| dc.subject | 貝氏逐樣法 | zh_TW |
| dc.subject | 動態規劃 | zh_TW |
| dc.subject | Inventory Control Chart | en |
| dc.subject | Bayesian Sequential Analysis | en |
| dc.subject | Cost-Bayesian Control Chart | en |
| dc.subject | Dynamic Programming | en |
| dc.title | 考量成本結構下運用貝式逐樣法於存貨監控機制之研究 | zh_TW |
| dc.title | A Cost-Structure Embedded Monitor Scheme for Inventory Control Chart: An Bayesian Sequential Approach | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林我聰;王孔政 | zh_TW |
| dc.contributor.oralexamcommittee | Woo-Tsong Lin;Kung-Jeng Wang | en |
| dc.subject.keyword | 成本貝氏管制圖,存貨管制圖,貝氏逐樣法,動態規劃, | zh_TW |
| dc.subject.keyword | Cost-Bayesian Control Chart,Inventory Control Chart,Bayesian Sequential Analysis,Dynamic Programming, | en |
| dc.relation.page | 41 | - |
| dc.identifier.doi | 10.6342/NTU202401766 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-08 | - |
| dc.contributor.author-college | 管理學院 | - |
| dc.contributor.author-dept | 商學研究所 | - |
| 顯示於系所單位: | 商學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 897.8 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
