Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95115
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 杜裕康 | zh_TW |
dc.contributor.advisor | Yu-Kang Tu | en |
dc.contributor.author | 劉昀真 | zh_TW |
dc.contributor.author | Yun-Chen Liu | en |
dc.date.accessioned | 2024-08-29T16:08:11Z | - |
dc.date.available | 2024-08-30 | - |
dc.date.copyright | 2024-08-29 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-07 | - |
dc.identifier.citation | Dersimonian, R. and N. Laird, Meta-analysis in clinical trials revisited. Contemporary Clinical Trials, 2015. 45: p. 139-145.
Caldwell, D.M., A.E. Ades, and J.P.T. Higgins, Simultaneous comparison of multiple treatments: combining direct and indirect evidence. BMJ, 2005. 331(7521): p. 897-900. Gurevitch, J., et al., Meta-analysis and the science of research synthesis. Nature, 2018. 555(7695): p. 175-182. Efthimiou O, D.T., van Valkenhoef G, Trelle S, Panayidou K, Moons KG, Reitsma JB, Shang A, Salanti G; GetReal Methods Review Group. , GetReal in network meta-analysis: a review of the methodology. Res Synth Methods. 2016 Sep;7(3):236-63. doi: 10.1002/jrsm.1195. Epub 2016 Jan 11. PMID: 26754852. Rouse, B., A. Chaimani, and T. Li, Network meta-analysis: an introduction for clinicians. Internal and Emergency Medicine, 2017. 12(1): p. 103-111. Mills, E., et al., Multiple treatment comparison meta-analyses: a step forward into complexity. Clinical Epidemiology, 2011: p. 193. Bucher HC, G.G., Griffith LE, Walter SD. The results of direct and indirect treatment comparisons in meta-analysis of randomized controlled trials. J Clin Epidemiol. 1997 Jun;50(6):683-91. doi: 10.1016/s0895-4356(97)00049-8. PMID: 9250266. Lu, G. and A.E. Ades, Assessing Evidence Inconsistency in Mixed Treatment Comparisons. Journal of the American Statistical Association, 2006. 101(474): p. 447-459. Rücker, G., M. Petropoulou, and G. Schwarzer, Network meta‐analysis of multicomponent interventions. Biometrical Journal, 2020. 62(3): p. 808-821. Rücker, G., S. Schmitz, and G. Schwarzer, Component network meta‐analysis compared to a matching method in a disconnected network: A case study. Biometrical Journal, 2021. 63(2): p. 447-461. Cipriani, A., et al., What is a multiple treatments meta-analysis? Epidemiology and Psychiatric Sciences, 2012. 21(2): p. 151-153. Riley, R.D., et al., Multivariate and network meta-analysis of multiple outcomes and multiple treatments: rationale, concepts, and examples. BMJ, 2017: p. j3932. Cooper, N.J., et al., Mixed Comparison of Stroke Prevention Treatments in Individuals With Nonrheumatic Atrial Fibrillation. Archives of Internal Medicine, 2006. 166(12): p. 1269. Shim S, Y.B., Shin IS, Bae JM. Network meta-analysis: application and practice using Stata. Epidemiol Health. 2017 Oct 27;39:e2017047. doi: 10.4178/epih.e2017047. PMID: 29092392; PMCID: PMC5733388. Lu, G. and A.E. Ades, Combination of direct and indirect evidence in mixed treatment comparisons. Statistics in Medicine, 2004. 23(20): p. 3105-3124. Welton, N.J., et al., Mixed Treatment Comparison Meta-Analysis of Complex Interventions: Psychological Interventions in Coronary Heart Disease. American Journal of Epidemiology, 2009. 169(9): p. 1158-1165. Danon, L., et al., Networks and the Epidemiology of Infectious Disease. Interdisciplinary Perspectives on Infectious Diseases, 2011. 2011: p. 1-28. Van Dam, S., et al., Gene co-expression analysis for functional classification and gene–disease predictions. Briefings in Bioinformatics, 2017: p. bbw139. Seitidis, G., et al., Graphical tools for visualizing the results of network meta‐analysis of multicomponent interventions. Research Synthesis Methods, 2023. 14(3): p. 382-395. Tromp, J.O., Wouter; van Veldhuisen, Dirk J; Hillege, Hans L; Richards, A Mark; van der Meer, Peter; Anand, Inder S; Lam, Carolyn SP; Voors, Adriaan A, A Systematic Review and Network Meta-Analysis of Pharmacological Treatment of Heart Failure With Reduced Ejection Fraction. JACC., 2022. 10(2): p. 73-84. Li, H., M.-C. Shih, and Y.-K. Tu, Graphical evaluation of evidence structure within a component network meta-analysis. Research Synthesis Methods, 2023. 14(4): p. 596-607. Li H, S.M., Song CJ, Tu YK. Bias propagation in network meta-analysis models. Res Synth Methods. 2023 Mar;14(2):247-265. doi: 10.1002/jrsm.1614. Epub 2022 Dec 23. PMID: 36507611. Friedberg, S.H., A.J. Insel, and L.E. Spence, Linear Algebra. 2014: Pearson Education. Desantis, S.M. and H. Zhu, A Bayesian Mixed-Treatment Comparison Meta-analysis of Treatments for Alcohol Dependence and Implications for Planning Future Trials. Medical Decision Making, 2014. 34(7): p. 899-910. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95115 | - |
dc.description.abstract | 在比較多種治療時,可以使用網絡統合分析 (Network Meta-Analysis, NMA) 來估計不同治療之間的相對效果,一般來說,Lu & Ades模型較廣為使用,雖然能結合直接證據與間接證據來比較多種治療,但當治療間缺乏直接或間接比較時,此時,就無法直接使用NMA來處理斷裂的網絡。
元件網絡統合分析 (Component Network Meta-Analysis, CNMA) 中,透過相加性 (additivity) 的假設將治療視為由多個元件組成,並假設治療效果是各元件效果相加來解決斷裂網絡的問題。然而,元件間可能存在交互作用,協同與拮抗作用使得治療效果可能較好或較差,若在使用CNMA模型時,忽略元件間的交互作用,則可能導致治療效果估計的偏誤。本研究是基於CNMA模型,探討在已知元件間存在交互作用的前提下,但在使用CNMA模型時忽略了元件間交互作用後,對各元件治療效應估計的偏誤影響。 研究先設計了不同情境,探討在元件間存在交互作用時,CNMA模型中各元件效果的估計偏誤。通過數學推導和矩陣運算,確定了元件效果偏誤的估計式,並發現在特定情況下,元件偏誤估計值會與網絡結構無關,而主要受到納入到元件網絡統合分析的是哪些治療種類的影響,亦即不管網絡結構如何改變,只要網絡圖是由相同種類的治療所構成,那麼各元件的偏誤估計值在不同網絡結構下仍然相同。 最後,為了更直觀地展示元件偏誤,研究使用了視覺化方法,將元件視為節點,連線代表元件組合的治療,並於圖中呈現各元件的偏誤大小。未來研究應繼續探討多個交互作用的影響,並改進視覺化方法,提供更直觀的圖形呈現各元件的偏誤。 | zh_TW |
dc.description.abstract | When comparing multiple treatments, a network meta-analysis (NMA) model can be used to estimate the relative effects between different treatments. Generally, the Lu & Ades model is widely used. It can combine direct and indirect evidence to compare multiple treatments. However, when there is a lack of direct or indirect comparisons between treatments, NMA cannot be used directly to address disconnected networks .
Component Network Meta-Analysis (CNMA) addresses the issue of disconnected networks by assuming additivity, viewing treatments as composed of multiple components, and assuming that the treatment effect is the sum of the effects of each component. However, interactions between components, such as synergistic or antagonistic effects, can make the treatment effect better or worse. Ignoring these interactions when using the CNMA model can lead to biased estimates of treatment effects. Hence, this study investigates the impact of such bias on the estimation of each component's treatment effect under the CNMA model when known interactions between components are ignored. The study first designed several scenarios to explore the bias of each component effect in the CNMA model when an interaction between components are present. Through mathematical derivation, it is determined that the estimation bias of the component effects is actually independent of the network structure and is mainly influenced by the types of treatments included in the CNMA under specific conditions. Hence, the bias of each component effect in the CNMA model would affected by the network structure as well as the treatments included in the analysis. Finally, to more intuitively display the component biases, the study uses visualization methods, treating components as nodes with the label of each component's bias shown in the plot. Future research should continue to explore the effects of multiple interactions and improve visualization methods to provide a more intuitive graphical presentation of each component's bias. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-29T16:08:10Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-29T16:08:11Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 摘要 iv Abstract v 第一章 介紹 1 1.1研究背景 1 1.2研究目的 2 第二章 文獻回顧 3 2.1 網絡統合分析 (network meta-analysis, NMA) 3 2.2 元件網絡統合分析 (component network meta-analysis, CNMA) 4 2.3 元件間的交互作用 6 2.4 視覺化 7 第三章 研究方法 11 3.1 元件與交互作用效果 11 3.2網絡圖與方程組解 13 3.3 估計元件偏差 18 3.3.1 矩陣相乘的秩 18 3.3.2 元件偏差之估計 23 3.4 情境 25 3.5 視覺化元件偏差 28 3.5.1 檢查矩陣M 28 3.5.2 建立偏差矩陣 29 3.5.3 視覺化呈現 29 第四章 結果 30 4.1 元件效果無唯一解 30 4.2 元件效果有唯一解 32 4.2.1 Type 4.1: 網絡圖中共四種治療 (包含三個元件與一個組合治療) 32 4.2.2 Type 4.2: 網絡圖中共四種治療 (包含二個元件與二個組合治療) 33 4.2.3 Type 4.3: 網絡圖中共四種治療 (包含一個元件與三個組合治療) 35 4.2.4 Type 4.4: 網絡圖中共四種治療 (四個組合治療) 37 4.2.5 Type 5: 治療組數增加為五種治療 (一個組合治療與四個單一元件治療) 38 4.2.6 Type 5: 治療組數增加為五種治療 (大於二個以上的組合治療) 39 第五章 討論與結論 41 5.1 CNMA模型與交互作用 41 5.2 元件偏誤與視覺化 43 5.3 元件偏誤與應用 44 5.4 實際範例 47 5.5 結論 49 參考資料 50 附錄 52 | - |
dc.language.iso | zh_TW | - |
dc.title | 忽略元件交互作用對元件網絡統合分析中治療效應之估計偏誤 | zh_TW |
dc.title | Bias in the treatment effect estimates due to ignoring the interaction between components in a component network meta-analysis | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 盧子彬;陳錦華;施銘杰 | zh_TW |
dc.contributor.oralexamcommittee | Tzu-Pin Lu;Jin-Hua Chen;Ming-Chieh Shih | en |
dc.subject.keyword | 元件網絡統合分析,元件間交互作用,元件估計,視覺化, | zh_TW |
dc.subject.keyword | component network meta-analysis,interaction between components,component estimates,visualization, | en |
dc.relation.page | 54 | - |
dc.identifier.doi | 10.6342/NTU202403794 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-08-07 | - |
dc.contributor.author-college | 公共衛生學院 | - |
dc.contributor.author-dept | 健康數據拓析統計研究所 | - |
Appears in Collections: | 健康數據拓析統計研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-112-2.pdf Restricted Access | 1.4 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.