請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95109完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃冠穎 | zh_TW |
| dc.contributor.advisor | Kuan-Ying Huang | en |
| dc.contributor.author | 吳愷容 | zh_TW |
| dc.contributor.author | Kai-Jung Wu | en |
| dc.date.accessioned | 2024-08-28T16:18:38Z | - |
| dc.date.available | 2024-08-29 | - |
| dc.date.copyright | 2024-08-28 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-08 | - |
| dc.identifier.citation | Barr, I. G., Russell, C., Besselaar, T. G., Cox, N. J., Daniels, R. S., Donis, R.,
Engelhardt, O. G., Grohmann, G., Itamura, S., Kelso, A., McCauley, J., Odagiri, T., Schultz-Cherry, S., Shu, Y., Smith, D., Tashiro, M., Wang, D., Webby, R., Xu, X., Ye, Z., ... Writing Committee of the World Health Organization Consultation on Northern Hemisphere Influenza Vaccine Composition for 2013–2014 (2014). WHO recommendations for the viruses used in the 2013-2014 Northern Hemisphere influenza vaccine: Epidemiology, antigenic and genetic characteristics of influenza A(H1N1)pdm09, A(H3N2) and B influenza viruses collected from October 2012 to January 2013. Vaccine, 32(37), 4713–4725. Cadorna-Carlos, J. B., Nolan, T., Borja-Tabora, C. F., Santos, J., Montalban, M. C., de Looze, F. J., Eizenberg, P., Hall, S., Dupuy, M., Hutagalung, Y., Pépin, S., & Saville, M. (2015). Safety, immunogenicity, and lot-to-lot consistency of a quadrivalent inactivated influenza vaccine in children, adolescents, and adults: A randomized, controlled, phase III trial. Vaccine, 33(21), 2485–2492. Camilloni, B., Neri, M., Lepri, E., & Iorio, A. M. (2009). Cross-reactive antibodies in middle-aged and elderly volunteers after MF59-adjuvanted subunit trivalent influenza vaccine against B viruses of the B/Victoria or B/Yamagata lineages. Vaccine, 27(31), 4099–4103. Chen, H. J., Su, C. P., Liu, M. T., & Tsou, T. P. (2019). Comparative epidemiology of influenza B by lineage in intensive care unit-admitted patients with complications: A nationwide study in Taiwan, 2013-2017. International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases, 87, 67–74. Davies, J. R., & Grilli, E. A. (1989). Natural or vaccine-induced antibody as a predictor of immunity in the face of natural challenge with influenza viruses. Epidemiology and infection, 102(2), 325–333. Dowdle, W. R., Coleman, M. T., Mostow, S. R., Kaye, H. S., & Schoenbaum, S. C. (1973). Inactivated influenza vaccines. 2. Laboratory indices of protection. Postgraduate medical journal, 49(569), 159–163. European Centre for Disease Prevention and Control. Influenza virus characterisation, summary Europe, December 2019. Francis T., Jr (1940). A NEW TYPE OF VIRUS FROM EPIDEMIC INFLUENZA. Science (New York, N.Y.), 92(2392), 405–408. Frölich, D., Giesecke, C., Mei, H. E., Reiter, K., Daridon, C., Lipsky, P. E., & Dörner, T. (2010). Secondary immunization generates clonally related antigen-specific plasma cells and memory B cells. Journal of immunology (Baltimore, Md. : 1950), 185(5), 3103–3110. Gerhard, W., Mozdzanowska, K., Furchner, M., Washko, G., & Maiese, K. (1997). Role of the B-cell response in recovery of mice from primary influenza virus infection. Immunological reviews, 159, 95–103. Guthmiller, J. J., Utset, H. A., & Wilson, P. C. (2021). B Cell Responses against Influenza Viruses: Short-Lived Humoral Immunity against a Life-Long Threat. Viruses, 13(6), 965. https://doi.org/10.3390/v13060965 Hovanec, D. L., & Air, G. M. (1984). Antigenic structure of the hemagglutinin of influenza virus B/Hong Kong/8/73 as determined from gene sequence analysis of variants selected with monoclonal antibodies. Virology, 139(2), 384–392. Hobson, D., Curry, R. L., Beare, A. S., & Ward-Gardner, A. (1972). The role of serum haemagglutination-inhibiting antibody in protection against challenge infection with influenza A2 and B viruses. The Journal of hygiene, 70(4), 767–777. Huang, K. Y., Li, C. K., Clutterbuck, E., Chui, C., Wilkinson, T., Gilbert, A., Oxford, J., Lambkin-Williams, R., Lin, T. Y., McMichael, A. J., & Xu, X. N. (2014). Virus-specific antibody secreting cell, memory B-cell, and sero-antibody responses in the human influenza challenge model. The Journal of infectious diseases, 209(9), 1354–1361. Huang, K. Y., Rijal, P., Schimanski, L., Powell, T. J., Lin, T. Y., McCauley, J. W., Daniels, R. S., & Townsend, A. R. (2015). Focused antibody response to influenza linked to antigenic drift. The Journal of clinical investigation, 125(7), 2631–2645. Huang, K. A., Rijal, P., Jiang, H., Wang, B., Schimanski, L., Dong, T., Liu, Y. M., Chang, P., Iqbal, M., Wang, M. C., Chen, Z., Song, R., Huang, C. C., Yang, J. H., Qi, J., Lin, T. Y., Li, A., Powell, T. J., Jan, J. T., Ma, C., ... Townsend, A. R. (2019). Structure-function analysis of neutralizing antibodies to H7N9 influenza from naturally infected humans. Nature microbiology, 4(2), 306–315. Iuliano, A. D., Roguski, K. M., Chang, H. H., Muscatello, D. J., Palekar, R., Tempia, S., Cohen, C., Gran, J. M., Schanzer, D., Cowling, B. J., Wu, P., Kyncl, J., Ang, L. W., Park, M., Redlberger-Fritz, M., Yu, H., Espenhain, L., Krishnan, A., Emukule, G., van Asten, L., ... Global Seasonal Influenza-associated Mortality Collaborator Network (2018). Estimates of global seasonal influenza-associated respiratory mortality: a modelling study. Lancet (London, England), 391(10127), 1285–1300. Knossow, M., Gaudier, M., Douglas, A., Barrère, B., Bizebard, T., Barbey, C., Gigant, B., & Skehel, J. J. (2002). Mechanism of neutralization of influenza virus infectivity by antibodies. Virology, 302(2), 294–298. Langat, P., Raghwani, J., Dudas, G., Bowden, T. A., Edwards, S., Gall, A., Bedford, T., Rambaut, A., Daniels, R. S., Russell, C. A., Pybus, O. G., McCauley, J., Kellam, P., & Watson, S. J. (2017). Genome-wide evolutionary dynamics of influenza B viruses on a global scale. PLoS pathogens, 13(12), e1006749. Lee, J., Boutz, D. R., Chromikova, V., Joyce, M. G., Vollmers, C., Leung, K., Horton, A. P., DeKosky, B. J., Lee, C. H., Lavinder, J. J., Murrin, E. M., Chrysostomou, C., Hoi, K. H., Tsybovsky, Y., Thomas, P. V., Druz, A., Zhang, B., Zhang, Y., Wang, L., Kong, W. P., ... Georgiou, G. (2016). Molecular-level analysis of the serum antibody repertoire in young adults before and after seasonal influenza vaccination. Nature medicine, 22(12), 1456–1464. Liu, Y., Tan, H. X., Koutsakos, M., Jegaskanda, S., Esterbauer, R., Tilmanis, D., Aban, M., Kedzierska, K., Hurt, A. C., Kent, S. J., & Wheatley, A. K. (2019). Cross-lineage protection by human antibodies binding the influenza B hemagglutinin. Nature communications, 10(1), 324. Luo, W., & Yin, Q. (2021). B Cell Response to Vaccination.Immunological investigations, 50(7), 780–801. Lo, Y. C., Chuang, J. H., Kuo, H. W., Huang, W. T., Hsu, Y. F., Liu, M. T., Chen, C. H., Huang, H. H., Chang, C. H., Chou, J. H., Chang, F. Y., Lin, T. Y., & Chiu, W. T. (2013). Surveillance and vaccine effectiveness of an influenza epidemic predominated by vaccine-mismatched influenza B/Yamagata-lineage viruses in Taiwan, 2011-12 season. PloS one, 8(3), e58222. Moody, M. A., Zhang, R., Walter, E. B., Woods, C. W., Ginsburg, G. S., McClain, M. T., Denny, T. N., Chen, X., Munshaw, S., Marshall, D. J., Whitesides, J. F., Drinker, M. S., Amos, J. D., Gurley, T. C., Eudailey, J. A., Foulger, A., DeRosa, K. R., Parks, R., Meyerhoff, R. R., Yu, J. S., ... Haynes, B. F. (2011). H3N2 influenza infection elicits more cross-reactive and less clonally expanded anti-hemagglutinin antibodies than influenza vaccination. PloS one, 6(10), e25797. Paul Glezen, W., Schmier, J. K., Kuehn, C. M., Ryan, K. J., & Oxford, J. (2013). The burden of influenza B: a structured literature review. American journal of public health, 103(3), e43–e51. Potter, C. W., & Oxford, J. S. (1979). Determinants of immunity to influenza infection in man. British medical bulletin, 35(1), 69–75. Recommended composition of influenza virus vaccines for use in the 2020-2021 northern hemisphere influenza season" . World Health Organization (WHO). Archived from the original on 12 March 2020. Retrieved 28 February 2020. Rota, P. A., Wallis, T. R., Harmon, M. W., Rota, J. S., Kendal, A. P., & Nerome, K. (1990). Cocirculation of two distinct evolutionary lineages of influenza type B virus since 1983. Virology, 175(1), 59–68. Sriwilaijaroen, N., & Suzuki, Y. (2012). Molecular basis of the structure and function of H1 hemagglutinin of influenza virus. Proceedings of the Japan Academy. Series B, Physical and biological sciences, 88(6), 226–249. Skowronski, D. M., Hottes, T. S., De Serres, G., Ward, B. J., Janjua, N. Z., Sabaiduc, S., Chan, T., & Petric, M. (2011). Influenza Β/Victoria antigen induces strong recall of Β/Yamagata but lower Β/Victoria response in children primed with two doses of Β/Yamagata. The Pediatric infectious disease journal, 30(10), 833–839. Skowronski, D. M., Hamelin, M. E., Janjua, N. Z., De Serres, G., Gardy, J. L., Rhéaume, C., Bouhy, X., & Boivin, G. (2012). Cross-lineage influenza B and heterologous influenza A antibody responses in vaccinated mice: immunologic interactions and B/Yamagata dominance. PloS one, 7(6), e38929. Tisa, V., Barberis, I., Faccio, V., Paganino, C., Trucchi, C., Martini, M., & Ansaldi, F. (2016). Quadrivalent influenza vaccine: a new opportunity to reduce the influenza burden. Journal of preventive medicine and hygiene, 57(1), E28–E33. Varghese, J. N., McKimm-Breschkin, J. L., Caldwell, J. B., Kortt, A. A., & Colman, P. M. (1992). The structure of the complex between influenza virus neuraminidase and sialic acid, the viral receptor. Proteins, 14(3), 327–332. Virk, R. K., Jayakumar, J., Mendenhall, I. H., Moorthy, M., Lam, P., Linster, M., Lim, J., Lin, C., Oon, L. L. E., Lee, H. K., Koay, E. S. C., Vijaykrishna, D., Smith, G. J. D., & Su, Y. C. F. (2020). Divergent evolutionary trajectories of influenza B viruses underlie their contemporaneous epidemic activity.Proceedings of the National Academy of Sciences of the United States of America, 117(1), 619–628. Wang, Q., Cheng, F., Lu, M., Tian, X., & Ma, J. (2008). Crystal structure of unliganded influenza B virus hemagglutinin. Journal of virology, 82(6), 3011–3020. Wasilewski, S., Calder, L. J., Grant, T., & Rosenthal, P. B. (2012). Distribution of surface glycoproteins on influenza A virus determined by electron cryotomography. Vaccine, 30(51), 7368–7373. Wiley, D. C., & Skehel, J. J. (1987). The structure and function of the hemagglutinin membrane glycoprotein of influenza virus.Annual review of biochemistry,56, 365–394. Weiss, C. D., Wang, W., Lu, Y., Billings, M., Eick-Cost, A., Couzens, L., Sanchez, J. L., Hawksworth, A. W., Seguin, P., Myers, C. A., Forshee, R., Eichelberger, M. C., & Cooper, M. J. (2020). Neutralizing and Neuraminidase Antibodies Correlate With Protection Against Influenza During a Late Season A/H3N2 Outbreak Among Unvaccinated Military Recruits.Clinical infectious diseases: an official publication of the Infectious Diseases Society of America, 71(12), 3096–3102. World Health Organization. Influenza (Seasonal): Fact Sheet N°211. (2014). http://www.who.int/mediacentre/factsheets/fs211/en/ Wrammert, J., Smith, K., Miller, J., Langley, W. A., Kokko, K., Larsen, C., Zheng, N. Y., Mays, I., Garman, L., Helms, C., James, J., Air, G. M., Capra, J. D., Ahmed, R., & Wilson, P. C. (2008). Rapid cloning of high-affinity human monoclonal antibodies against influenza virus. Nature, 453(7195), 667–671. Wu, J., Zhong, X., Li, C. K., Zhou, J. F., Lu, M., Huang, K. Y., Dong, M., Liu, Y., Luo, F. J., Du, N., Chui, C., Liu, L. Q., Smith, N. M., Li, B., Shi, N. M., Song, L. F., Gao, Y., Wang, D. Y., Wang, X., Zhu, W. F., ... Shu, Y. (2011). Optimal vaccination strategies for 2009 pandemic H1N1 and seasonal influenza vaccines in humans. Vaccine, 29(5), 1009–1016. Wu, N. C., & Wilson, I. A. (2020). Structural Biology of Influenza Hemagglutinin: An Amaranthine Adventure. Viruses, 12(9), 1053 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95109 | - |
| dc.description.abstract | B 型流感病毒與 A 型流感病毒共同傳播導致全球季節性流感爆發。流感病毒有兩 種主要的表面蛋白,血凝素 hemagglutinin (HA) 和神經氨酸酶 neuraminidase。根 據 HA 的抗原差異,B 型流感病毒被分為兩個抗原性不同的譜系,Victoria 譜系和 Yamagata 譜系。季節性流感疫苗被廣泛認為是一種有效引起針對流感病毒的保護 性免疫反應的方法,而其保護作用主要由抗 HA 的抗體介導。然而,目前對於人 類接種疫苗後的抗 B 型流感病毒 HA 的 B 細胞和抗體反應細節仍不清楚。在這項 研究中,我們從兩名接種 2022-2023 年北半球四價流感疫苗後的成年人身上建構出 B 細胞衍生之抗 B 型流感病毒 HA 的單株抗體庫,我們檢測到的抗 B 型流感病毒 HA 抗體反應,其中包括了 Victoria 譜系病毒特異性抗體、Yamagata 譜系病毒特異 性抗體和交叉反應性抗體。我們也檢測到可以結合在近期流行的 Victoria 譜系或是 Yamagata 譜系病毒 HA 頭部結構的特異性中和抗體,這個結果表明接種季節性流 感疫苗可以誘導產生保護性的 B 細胞與抗體免疫反應。其中,個案 2023A 主要產 生譜系特異性中和抗體,而個案 2023B 主要產生交叉反應性中和抗體。此外,我 們將具有代表性的功能性抗體進行純化,進一步分析這些抗體對於近期和早期流行的 Victoria 譜系或是 Yamagata 譜系 B 型流感病毒的抗原辨識廣度和效度。我們 的研究結果表明大多數功能性抗體具有相當的抗原辨識廣度,能有效中和近期和 早期流行的病毒株。值得注意的是,交叉反應性中和抗體對 Yamagata 譜系病毒的 中和效力強。總言之,我們的研究深入剖析了成人接種季節性流感疫苗後所誘發 生成 B 細胞衍生之抗 B 型流感病毒 HA 抗體株譜,發現除了譜系病毒特異性中和 抗體反應外,尚有相當程度之跨譜系中和抗體反應生成。這些研究成果協助我們 進一步了解季節性流感疫苗觸發的免疫反應在對抗 B 型流感病毒所可能扮演的角 色,也有助於未來對於 B 型流感病毒 HA 抗原性的評估。 | zh_TW |
| dc.description.abstract | Influenza B viruses co-circulate with influenza A viruses and cause seasonal outbreaks around the world. Influenza virus contain two major surface proteins, hemagglutinin (HA) and neuraminidase. Based on antigenic difference of HA, influenza B virus is classified into two antigenically distinct lineages, Victoria and Yamagata lineages. Seasonal influenza vaccination is widely regarded as one effective method to elicit protective immune response against influenza and protection is mainly mediated by HA-reactive antibodies. However, human anti-influenza B HA B-cell and antibody responses after vaccination remain largely unclear. In the study, we constructed B cell-derived anti-influenza B HA antibody repertoires from two adult individuals upon immunization with 2022-2023 Northern Hemisphere quadrivalent influenza vaccine. We detected a broad range of anti-influenza B HA antibody response which is composed of Victoria lineage virus-specific, Yamagata lineage virus-specific and cross-reactive antibodies. Neutralizing antibodies that are specific to HA head domain of recent circulating Victoria or Yamagata lineage virus were identified, indicative of the elicitation of protective humoral immunity upon seasonal vaccination. Donor 2023A predominantly produced lineage-specific neutralizing antibodies, while donor 2023B primarily generated cross-reactive neutralizing antibodies. Furthermore, we used purified antibodies to delineate the antigenic breadth and potency of representative functional antibodies against recent and earlier circulating Victoria and Yamagata lineage influenza B viruses. Our results revealed that most functional antibodies exhibited broad antigenic breadth that effective neutralizing earlier circulating virus strains. Notably, cross-reactive neutralizing antibodies demonstrated a strong potency against Yamagata lineage viruses. In summary, out study delve into the details of B cell-derived anti-influenza B HA antibody repertoires elicited upon seasonal influenza vaccination in adults, not only observing lineage-specific neutralizing antibody responses, but also a significant degree of generating cross-reactive neutralizing antibodies. These results assist in our understanding of the role of vaccine immunogenicity in combating influenza B virus and contribute to future assessments of the antigenicity of influenza B virus HA. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-28T16:18:38Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-28T16:18:38Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝辭 i
中文摘要 ii Abstract iii Contents v Contents of Tables ix Contents of Figures x Chapter 1. Introduction 1 1.1 Seasonal influenza 1 1.2 Influenza virus 1 1.2.1 Hemagglutination and neuraminidase 1 1.2.2 Influenza B virus 2 1.2.3 Antigenic shift and antigenic drift 3 1.3 Seasonal influenza vaccination 4 1.3.1 The mismatch of circulating strains and vaccine strains lead to the administration of quadrivalent vaccine 4 1.4 Antibody responses against influenza virus 5 1.4.1 Vaccine-induced antibody response 6 1.4.2 Vaccine-induced antigen-specific B cell antibody response 6 1.5 Study aims 7 Chapter 2. Materials and methods 9 2.1 Materials 9 2.2 Methods 11 2.2.1 Ethical statement 11 2.2.2 Donors 11 2.2.3 Production of B cell-derived human monoclonal antibodies 11 2.2.3.1 Single B cells isolation and PCR reactions 11 2.2.3.2 Gel extraction 12 2.2.3.3 Cloning 12 2.2.3.4 Transfection 13 2.2.4 Virus 13 2.2.4.1 Virus propagation 13 2.2.4.2 Hemagglutination assay 14 2.2.5 Flow cytometry-based binding assay 14 2.2.6 Enzyme-linked immunosorbent assay (ELISA) 15 2.2.7 Antibody purification 17 2.2.8 Hemagglutination inhibition assay (HAI) 18 2.2.9 Data processing and analysis 19 Chapter 3. Results 20 3.1 Establishment of human B cell-derived antibody repertoires 20 3.2 Characterization of influenza B virus HA-reactive human antibodies 20 3.2.1 To identify influenza B virus HA-reactive antibodies from donor 2023A 21 3.2.2 To identify influenza B virus HA-reactive antibodies from donor 2023B 24 3.2.3 Summary 25 3.3 Characterize the functional properties of influenza B HA-reactive antibodies 27 3.3.1 Characterize the functional properties of influenza B virus HA-reactive antibodies from donor 2023A 28 3.3.1.1 The functional property of antibody 2023A-2 29 3.3.1.2 The functional property of antibody 2023A-5 and 2023A-6 29 3.3.1.3 The functional property of antibody 2023A-8 29 3.3.1.4 The functional property of antibody 2023A-1, 2023A-3, 2023A-4 and 2023A-7 30 3.3.2 Characterize the functional properties of influenza B virus HA-reactive antibodies from donor 2023B 30 3.3.2.1 The functional property of antibodies 2023B-1, 2023B-2, 2023B-3, 2023B-4 and 2023B-5 31 3.3.2.2 The functional property of antibodies 2023B-6 and 2023B-7 32 3.3.2.3 The functional property of antibody 2023B-8 32 3.3.3 Summary 32 3.4 Genetic features of influenza B virus HA-reactive human antibodies 33 3.4.1 The phenomenon of B cell expansion 34 3.4.2 The average number of nucleotide and amino acid somatic mutations 34 3.5 To delineate the antigenic breadth and the potency of representative functional antibodies 36 3.5.1 The antigenic breadth and the potency of representative functional antibodies isolated from donor 2023A 37 3.5.1.1 The antigenic breadth and the potency of antibody 2023A-2 37 3.5.1.2 The antigenic breadth and the potency of antibody 2023A-5 38 3.5.1.3 The antigenic breadth and the potency of antibody 2023A-8 38 3.5.2 The antigenic breadth and the potency of representative functional antibodies isolated from donor 2023B 39 3.5.2.1 The antigenic breadth and the potency of antibodies 2023B-1, 2023B-2 and 2023B-3 40 3.5.2.2 The antigenic breadth and the potency of antibody 2023B-5 40 3.5.2.3 The antigenic breadth and the potency of antibody 2023B-6 41 3.5.2.4 The antigenic breadth and the potency of antibody 2023B-7 41 3.5.2.5 The antigenic breadth and the potency of antibody 2023B-8 42 3.5.3 Summary 42 Chapter 4. Figures 43 Chapter 5. Discussion 76 5.1 Influenza B HA antibody repertoire elicited by seasonal influenza vaccine are compatible with serological studies 76 5.2 Influenza vaccine elicit cross-reactive antibody responses to influenza B virus 76 5.3 Genetic features of vaccine-induced B cell-derived antibody repertoires 78 5.4 Antigenic evolution and neutralizing antibody responses to influenza B virus 78 References 81 Appendix 87 | - |
| dc.language.iso | en | - |
| dc.subject | B型流感病毒 | zh_TW |
| dc.subject | 季節性流感疫苗 | zh_TW |
| dc.subject | 人類B細胞反應 | zh_TW |
| dc.subject | 人類單株抗體 | zh_TW |
| dc.subject | 病毒中和能力 | zh_TW |
| dc.subject | Human B cell response | en |
| dc.subject | Virus neutralization ability | en |
| dc.subject | Human monoclonal antibody | en |
| dc.subject | Influenza B virus | en |
| dc.subject | Seasonal influenza vaccine | en |
| dc.title | 探討成年人施打季節性流感疫苗後之抗B型流感病毒血凝素病毒血凝素B細胞與抗體反應 | zh_TW |
| dc.title | The exploration of anti-influenza B HA B cell-derived antibody response to seasonal vaccination in adults | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 柯俊榮;邱志勇 | zh_TW |
| dc.contributor.oralexamcommittee | Chun-Jung Ko;Chih-Yung Chiu | en |
| dc.subject.keyword | B型流感病毒,季節性流感疫苗,人類B細胞反應,人類單株抗體,病毒中和能力, | zh_TW |
| dc.subject.keyword | Influenza B virus,Seasonal influenza vaccine,Human B cell response,Human monoclonal antibody,Virus neutralization ability, | en |
| dc.relation.page | 87 | - |
| dc.identifier.doi | 10.6342/NTU202403628 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-08 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 免疫學研究所 | - |
| 顯示於系所單位: | 免疫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 12.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
