請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95103完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周文堅 | zh_TW |
| dc.contributor.advisor | Wen-Chien Chou | en |
| dc.contributor.author | 楊鎰聰 | zh_TW |
| dc.contributor.author | Yi-Tsung Yang | en |
| dc.date.accessioned | 2024-08-28T16:16:53Z | - |
| dc.date.available | 2024-08-29 | - |
| dc.date.copyright | 2024-08-28 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-29 | - |
| dc.identifier.citation | 1.Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet. 2008;40(12):1413-1415.
2.Blencowe BJ. Alternative splicing: new insights from global analyses. Cell. 2006;126(1):37-47. 3.Srebrow A, Kornblihtt AR. The connection between splicing and cancer. J Cell Sci. 2006;119(Pt 13):2635-2641. 4.Malcovati L, Hellstrom-Lindberg E, Bowen D, et al. Diagnosis and treatment of primary myelodysplastic syndromes in adults: recommendations from the European LeukemiaNet. Blood. 2013;122(17):2943-2964. 5.Papaemmanuil E, Gerstung M, Bullinger L, et al. Genomic Classification and Prognosis in Acute Myeloid Leukemia. N Engl J Med. 2016;374(23):2209-2221. 6.Hou HA, Tien HF. Genomic landscape in acute myeloid leukemia and its implications in risk classification and targeted therapies. J Biomed Sci. 2020;27(1):81. 7.Tsai CH, Yao CY, Tien FM, et al. Incorporation of long non-coding RNA expression profile in the 2017 ELN risk classification can improve prognostic prediction of acute myeloid leukemia patients. EBioMedicine. 2019;40:240-250. 8.Huang HH, Chen FY, Chou WC, et al. Long non-coding RNA HOXB-AS3 promotes myeloid cell proliferation and its higher expression is an adverse prognostic marker in patients with acute myeloid leukemia and myelodysplastic syndrome. BMC Cancer. 2019;19(1):617. 9.Li G, Gao Y, Li K, Lin A, Jiang Z. Genomic analysis of biomarkers related to the prognosis of acute myeloid leukemia. Oncol Lett. 2020;20(2):1824-1834. 10.Haferlach T, Schmidts I. The power and potential of integrated diagnostics in acute myeloid leukaemia. Br J Haematol. 2020;188(1):36-48. 11.Osterroos A, Bjorklund M, Eriksson A, et al. Integrated transcriptomic and genomic analysis improves prediction of complete remission and survival in elderly patients with acute myeloid leukemia. Blood Cancer J. 2020;10(6):67. 12.Buhagiar A, Borg J, Ayers D. Overview of current microRNA biomarker signatures as potential diagnostic tools for leukaemic conditions. Noncoding RNA Res. 2020;5(1):22-26. 13.Wang YH, Lin CC, Hsu CL, et al. Distinct clinical and biological characteristics of acute myeloid leukemia with higher expression of long noncoding RNA KIAA0125. Ann Hematol. 2021;100(2):487-498. 14.Chen Z, Song J, Wang W, et al. A novel 4-mRNA signature predicts the overall survival in acute myeloid leukemia. Am J Hematol. 2021;96(11):1385-1395. 15.Oltean S, Bates DO. Hallmarks of alternative splicing in cancer. Oncogene. 2014;33(46):5311-5318. 16.Adamia S, Haibe-Kains B, Pilarski PM, et al. A genome-wide aberrant RNA splicing in patients with acute myeloid leukemia identifies novel potential disease markers and therapeutic targets. Clin Cancer Res. 2014;20(5):1135-1145. 17.Zhou J, Chng WJ. Aberrant RNA splicing and mutations in spliceosome complex in acute myeloid leukemia. Stem Cell Investig. 2017;4:6. 18.Jin P, Tan Y, Zhang W, Li J, Wang K. Prognostic alternative mRNA splicing signatures and associated splicing factors in acute myeloid leukemia. Neoplasia. 2020;22(9):447-457. 19.Xie ZC, Gao L, Chen G, et al. Prognostic alternative splicing regulatory network of splicing events in acute myeloid leukemia patients based on SpliceSeq data from 136 cases. Neoplasma. 2020;67(3):623-635. 20.Chen XX, Zhu JH, Li ZP, Xiao HT, Zhou H. Comprehensive Characterization of the Prognosis Value of Alternative Splicing Events in Acute Myeloid Leukemia. DNA Cell Biol. 2020;39(7):1243-1255. 21.Anande G, Deshpande NP, Mareschal S, et al. RNA Splicing Alterations Induce a Cellular Stress Response Associated with Poor Prognosis in Acute Myeloid Leukemia. Clin Cancer Res. 2020;26(14):3597-3607. 22.Zhang B, Yang L, Wang X, Fu D. Identification of survival-related alternative splicing signatures in acute myeloid leukemia. Biosci Rep. 2021;41(7). 23.Hershberger CE, Moyer DC, Adema V, et al. Complex landscape of alternative splicing in myeloid neoplasms. Leukemia. 2021;35(4):1108-1120. 24.El Marabti E, Abdel-Wahab O. Therapeutic Modulation of RNA Splicing in Malignant and Non-Malignant Disease. Trends Mol Med. 2021;27(7):643-659. 25.Adams MD, Kelley JM, Gocayne JD, et al. Complementary DNA sequencing: expressed sequence tags and human genome project. Science. 1991;252(5013):1651-1656. 26.Lee FCY, Ule J. Advances in CLIP Technologies for Studies of Protein-RNA Interactions. Mol Cell. 2018;69(3):354-369. 27.Thorsen K, Sorensen KD, Brems-Eskildsen AS, et al. Alternative splicing in colon, bladder, and prostate cancer identified by exon array analysis. Mol Cell Proteomics. 2008;7(7):1214-1224. 28.Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10(1):57-63. 29.Nazarov PV, Muller A, Kaoma T, et al. RNA sequencing and transcriptome arrays analyses show opposing results for alternative splicing in patient derived samples. BMC Genomics. 2017;18(1):443. 30.Romero JP, Ortiz-Estevez M, Muniategui A, et al. Comparison of RNA-seq and microarray platforms for splice event detection using a cross-platform algorithm. BMC Genomics. 2018;19(1):703. 31.Collins CA, Guthrie C. The question remains: is the spliceosome a ribozyme? Nat Struct Biol. 2000;7(10):850-854. 32.Kim HK, Pham MHC, Ko KS, Rhee BD, Han J. Alternative splicing isoforms in health and disease. Pflugers Arch. 2018;470(7):995-1016. 33.Nikom D, Zheng S. Alternative splicing in neurodegenerative disease and the promise of RNA therapies. Nat Rev Neurosci. 2023;24(8):457-473. 34.Sveen A, Kilpinen S, Ruusulehto A, Lothe RA, Skotheim RI. Aberrant RNA splicing in cancer; expression changes and driver mutations of splicing factor genes. Oncogene. 2016;35(19):2413-2427. 35.Zhang Y, Qian J, Gu C, Yang Y. Alternative splicing and cancer: a systematic review. Signal Transduct Target Ther. 2021;6(1):78. 36.Saez B, Walter MJ, Graubert TA. Splicing factor gene mutations in hematologic malignancies. Blood. 2017;129(10):1260-1269. 37.Hou HA, Liu CY, Kuo YY, et al. Splicing factor mutations predict poor prognosis in patients with de novo acute myeloid leukemia. Oncotarget. 2016;7(8):9084-9101. 38.Kelly LM, Gilliland DG. Genetics of myeloid leukemias. Annu Rev Genomics Hum Genet. 2002;3:179-198. 39.Shih AH, Abdel-Wahab O, Patel JP, Levine RL. The role of mutations in epigenetic regulators in myeloid malignancies. Nat Rev Cancer. 2012;12(9):599-612. 40.Yoshimi A, Lin KT, Wiseman DH, et al. Coordinated alterations in RNA splicing and epigenetic regulation drive leukaemogenesis. Nature. 2019;574(7777):273-277. 41.Berta D, Girma M, Melku M, Adane T, Birke B, Yalew A. Role of RNA Splicing Mutations in Diffuse Large B Cell Lymphoma. Int J Gen Med. 2023;16:2469-2480. 42.Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D. Methods of integrating data to uncover genotype-phenotype interactions. Nat Rev Genet. 2015;16(2):85-97. 43.Bejar R, Steensma DP. Recent developments in myelodysplastic syndromes. Blood. 2014;124(18):2793-2803. 44.Sveen A, Agesen TH, Nesbakken A, Rognum TO, Lothe RA, Skotheim RI. Transcriptome instability in colorectal cancer identified by exon microarray analyses: Associations with splicing factor expression levels and patient survival. Genome Med. 2011;3(5):32. 45.Wang K, Wu D, Zhang H, et al. Comprehensive map of age-associated splicing changes across human tissues and their contributions to age-associated diseases. Sci Rep. 2018;8(1):10929. 46.Wang C, Chen L, Chen Y, et al. Abnormal global alternative RNA splicing in COVID-19 patients. PLoS Genet. 2022;18(4):e1010137. 47.Sun Y, Xiao H. Identification of alternative splicing events by RNA sequencing in early growth tomato fruits. BMC Genomics. 2015;16:948. 48.Clark TA, Sugnet CW, Ares M, Jr. Genomewide analysis of mRNA processing in yeast using splicing-specific microarrays. Science. 2002;296(5569):907-910. 49.Srinivasan K, Shiue L, Hayes JD, et al. Detection and measurement of alternative splicing using splicing-sensitive microarrays. Methods. 2005;37(4):345-359. 50.Ryan MC, Cleland J, Kim R, Wong WC, Weinstein JN. SpliceSeq: a resource for analysis and visualization of RNA-Seq data on alternative splicing and its functional impacts. Bioinformatics. 2012;28(18):2385-2387. 51.Ryan M, Wong WC, Brown R, et al. TCGASpliceSeq a compendium of alternative mRNA splicing in cancer. Nucleic Acids Res. 2016;44(D1):D1018-1022. 52.Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545-15550. 53.Farge T, Saland E, de Toni F, et al. Chemotherapy-Resistant Human Acute Myeloid Leukemia Cells Are Not Enriched for Leukemic Stem Cells but Require Oxidative Metabolism. Cancer Discov. 2017;7(7):716-735. 54.Yang YT, Chiu YC, Kao CJ, et al. The prognostic significance of global aberrant alternative splicing in patients with myelodysplastic syndrome. Blood Cancer J. 2018;8(8):78. 55.Yang YT, Yao CY, Chiu PJ, et al. Evaluation of the clinical significance of global mRNA alternative splicing in patients with acute myeloid leukemia. Am J Hematol. 2023;98(5):784-793. 56.Shiozawa Y, Malcovati L, Galli A, et al. Gene expression and risk of leukemic transformation in myelodysplasia. Blood. 2017;130(24):2642-2653. 57.Harries LW, Hernandez D, Henley W, et al. Human aging is characterized by focused changes in gene expression and deregulation of alternative splicing. Aging Cell. 2011;10(5):868-878. 58.Ly LL, Yoshida H, Yamaguchi M. Nuclear transcription factor Y and its roles in cellular processes related to human disease. Am J Cancer Res. 2013;3(4):339-346. 59.Li G, Zhao H, Wang L, Wang Y, Guo X, Xu B. The animal nuclear factor Y: an enigmatic and important heterotrimeric transcription factor. Am J Cancer Res. 2018;8(7):1106-1125. 60.Maity SN. NF-Y (CBF) regulation in specific cell types and mouse models. Biochim Biophys Acta Gene Regul Mech. 2017;1860(5):598-603. 61.Ly LL, Suyari O, Yoshioka Y, Tue NT, Yoshida H, Yamaguchi M. dNF-YB plays dual roles in cell death and cell differentiation during Drosophila eye development. Gene. 2013;520(2):106-118. 62.Gurtner A, Manni I, Piaggio G. NF-Y in cancer: Impact on cell transformation of a gene essential for proliferation. Biochim Biophys Acta Gene Regul Mech. 2017;1860(5):604-616. 63.Bezzecchi E, Ronzio M, Dolfini D, Mantovani R. NF-YA Overexpression in Lung Cancer: LUSC. Genes (Basel). 2019;10(11). 64.Cappabianca L, Farina AR, Di Marcotullio L, et al. Discovery, characterization and potential roles of a novel NF-YAx splice variant in human neuroblastoma. J Exp Clin Cancer Res. 2019;38(1):482. 65.Dolfini D, Andrioletti V, Mantovani R. Overexpression and alternative splicing of NF-YA in breast cancer. Sci Rep. 2019;9(1):12955. 66.Bezzecchi E, Ronzio M, Semeghini V, Andrioletti V, Mantovani R, Dolfini D. NF-YA Overexpression in Lung Cancer: LUAD. Genes (Basel). 2020;11(2). 67.Li Y, Xiao X, Chen H, Chen Z, Hu K, Yin D. Transcription factor NFYA promotes G1/S cell cycle transition and cell proliferation by transactivating cyclin D1 and CDK4 in clear cell renal cell carcinoma. Am J Cancer Res. 2020;10(8):2446-2463. 68.Yang WT, Feng Q, Ma HM, Lei D, Zheng PS. NF-YA promotes the cell proliferation and tumorigenic properties by transcriptional activation of SOX2 in cervical cancer. J Cell Mol Med. 2020;24(21):12464-12475. 69.Bezzecchi E, Ronzio M, Mantovani R, Dolfini D. NF-Y Overexpression in Liver Hepatocellular Carcinoma (HCC). Int J Mol Sci. 2020;21(23). 70.Dolfini D, Minuzzo M, Pavesi G, Mantovani R. The short isoform of NF-YA belongs to the embryonic stem cell transcription factor circuitry. Stem Cells. 2012;30(11):2450-2459. 71.Zhu J, Zhang Y, Joe GJ, Pompetti R, Emerson SG. NF-Ya activates multiple hematopoietic stem cell (HSC) regulatory genes and promotes HSC self-renewal. Proc Natl Acad Sci U S A. 2005;102(33):11728-11733. 72.Bungartz G, Land H, Scadden DT, Emerson SG. NF-Y is necessary for hematopoietic stem cell proliferation and survival. Blood. 2012;119(6):1380-1389. 73.Dolfini D, Gatta R, Mantovani R. NF-Y and the transcriptional activation of CCAAT promoters. Crit Rev Biochem Mol Biol. 2012;47(1):29-49. 74.Basile V, Baruffaldi F, Dolfini D, et al. NF-YA splice variants have different roles on muscle differentiation. Biochim Biophys Acta. 2016;1859(4):627-638. 75.Libetti D, Bernardini A, Sertic S, Messina G, Dolfini D, Mantovani R. The Switch from NF-YAl to NF-YAs Isoform Impairs Myotubes Formation. Cells. 2020;9(3). 76.O'Reilly E, Zeinabad HA, Szegezdi E. Hematopoietic versus leukemic stem cell quiescence: Challenges and therapeutic opportunities. Blood Rev. 2021;50:100850. 77.Esposito MT, Hagstrom-Andersson A, Stam RW, Bortoluzzi S. Editorial: Harnessing chemotherapy resistance and development of novel therapeutic strategies for acute leukemia with KMT2A (MLL)-gene rearrangements. Front Pharmacol. 2022;13:977741. 78.Uckun FM, Qazi S. Tyrosine kinases in KMT2A/MLL-rearranged acute leukemias as potential therapeutic targets to overcome cancer drug resistance. Cancer Drug Resist. 2022;5(4):902-916. 79.Fajardo-Orduna GR, Ledesma-Martinez E, Aguiniga-Sanchez I, Mora-Garcia ML, Weiss-Steider B, Santiago-Osorio E. Inhibitors of Chemoresistance Pathways in Combination with Ara-C to Overcome Multidrug Resistance in AML. A Mini Review. Int J Mol Sci. 2021;22(9). 80.Steensma DP, Wermke M, Klimek VM, et al. Phase I First-in-Human Dose Escalation Study of the oral SF3B1 modulator H3B-8800 in myeloid neoplasms. Leukemia. 2021;35(12):3542-3550. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95103 | - |
| dc.description.abstract | 幾乎所有人類的基因都會有選擇性剪接(alternative splicing),一旦這些原本自然現象的選擇性剪接產生變異(aberrant alternative splicing),就有可能改變生物體原本正常的生理功能,甚至癌化。根據近幾年的研究,選擇性剪接產生變異可能是致癌的一個重要機轉。
本研究計畫首先利用基因轉錄體微陣列(transcriptome array)的方式,分析了176個骨髓造血不良症候群(myelodysplastic syndrome; MDS)病患的骨髓細胞,以20個正常捐髓者的骨髓造血細胞檢體當對照組,發現MDS患者相對於正常人,在骨髓細胞整個基因體平均約有25-30%的基因發生了變異選擇性剪接,若整個轉錄體變異選擇性剪接的程度越厲害,疾病的預後就越差。接著,利用RNA定序的方式(RNA sequencing)分析了341個急性骨髓性白血病(acute myeloid leukemia; AML)患者的骨髓檢體,進一步發現這些血癌細胞整個轉錄體整體選擇性剪接程度的改變會影響化療的療效與病患預後。因此,變異選擇性剪接可能在血癌致病機制中具有重要作用。 更進一步分析這些血癌患者發生變異選擇性剪接的基因,發現了一個候選基因Nuclear Transcription Factor Y Subunit Alpha (NFYA)可能與血癌的致病機制及預後有關聯。NFYA為NFY轉錄因子的最重要成分,它與基因上游的啟動子(promoter)結合後啟動其標的基因的表達。另外,NFYA基因主要有兩個因選擇性剪接產生的轉錄異構物(isoforms):NFYA-L[長形式,包含所有10個外顯子(exons)]和NFYA-S[短形式,略過外顯子3 (skipping exon 3)]。研究結果顯示,從臍帶血樣本(cord blood sample)中獲取的CD34+正常造血幹細胞主要表達NFYA-S,而AML癌細胞中可能同時表達NFYA-S和NFYA-L。且較高的NFYA-L和較低的NFYA-S表達(NFYA-L高表達模式)會與不好的臨床特徵與較差的存活率有關。相反,有較高的NFYA-S和較低的NFYA-L表達(NFYA-S高表達模式)與化療後更高的緩解率和較好的存活率相關。這些血癌病患的轉錄體資料分析顯示,NFYA-S的高表達模式與細胞週期相關基因的高度表達相關,而NFYA-L的高表達模式會與KMT2基因重組的血癌細胞表現類似。這一發現與細胞實驗結果相符合,即OCI-AML3細胞中NFYA-S過度表達會增強細胞增殖能力,並增加對化療藥物Ara-C敏感性,但NFYA-L的過度表達卻會造成血癌細胞對化療藥物的抗藥性。這些研究結果突顯了NFYA基因選擇性剪接對AML的臨床與生物學重要性。 | zh_TW |
| dc.description.abstract | Almost all human genes undergo alternative splicing (AS). When this natural phenomenon results in aberrant AS, it can alter an organism's normal physiological functions and even lead to cancer. Recent research indicates that aberrant AS might be a crucial mechanism in carcinogenesis.
In this research project, we first employed Affymetrix Human Transcriptome Array (HTA) 2.0 to identify global AS differences in 176 myelodysplastic syndrome (MDS) patients and 20 normal marrow donors. We found that, compared to normal individuals, MDS patients had approximately 25-30% of their genes undergoing aberrant AS in their bone marrow cells. The extent of global aberrant AS in MDS patients correlated with shorter leukemia-free survival, highlighting its involvement in the progression to acute leukemia. Subsequently, a comprehensive analysis of global AS in 341 de novo non-M3 acute myeloid leukemia (AML) patients using the RNA-seq platform demonstrated that the degree of global splicing pattern in AML patients could predict treatment outcomes independently of other well-established prognostic factors. These findings suggest that global AS aberrations may play a role in leukemogenesis, reflecting transcriptome complexity and instability, with potential implications for distinct clinical outcomes—a possible link between AS in specific genes and the pathogenesis of myeloid malignancies. Further investigation into the Nuclear Transcription Factor Y Subunit Alpha (NFYA) gene in AML, which has two major isoforms: NFYA-L (long form, with all 10 exons) and NFYA-S (short form, skipping exon 3), revealed that the NFYA-L/NFYA-S ratios were higher in AML cells compared to CD34+ normal hematopoietic stem cells (HSCs) from cord blood samples. Patients with NFYA-L predominance (higher NFYA-L and lower NFYA-S expression) had worse prognostic features and clinical outcomes after standard intensive chemotherapy compared to those with NFYA-S predominance (higher NFYA-S and lower NFYA-L expression). This prognostic effect was consistent regardless of age and the 2022 European LeukemiaNet (ELN) risk classification, as validated by The Cancer Genome Atlas (TCGA) cohort. Transcriptome analysis showed that NFYA-S predominance was associated with upregulated cell cycle-related genes, similar to those in active HSCs, indicating chemosensitivity. Conversely, NFYA-L predominance, as seen in KMT2A-rearranged leukemia, was linked to chemoresistance. This finding was supported by experiments showing enhanced cell proliferation and increased vulnerability to cytarabine in OCI-AML3 cells with NFYA-S overexpression. This study highlights the clinical significance of NFYA gene AS in AML, suggesting its potential as a prognostic biomarker with distinctive biological pathways in AML cells. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-28T16:16:53Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-28T16:16:53Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii 英文摘要 v 第一章 緒論(Introduction) 1 1.1 前言 1 1.2 文獻回顧 3 1.2.1 基因選擇性剪接與疾病的關係 3 1.2.2 基因選擇性剪接與癌症的關係 3 1.2.3 基因選擇性剪接與血液惡性疾病的關係 4 1.3 研究的問題及其重要性 8 1.3.1 過去研究仍未解決的問題 8 1.3.2 研究問題的重要性 10 1.4 研究的假說與特定目的 10 1.4.1 假說 1:整個轉錄體整體mRNA選擇性剪接模式 10 1.4.2 假說 2:整個轉錄體整體mRNA選擇性剪接模式的程度與血癌治療的關係 11 1.4.3 假說 3:整個轉錄體整體mRNA變異選擇性剪接模式的程度與血癌的發生 12 1.4.4 研究假說目的 12 第二章 材料與方法(Materials and methods) 13 2.1 研究的材料 13 2.1.1 研究樣本族群(study sample cohorts) 13 2.1.2 血癌細胞株(leukemia cell line) 14 2.2 研究平台(study platform)與研究方法 15 2.2.1 microarray platform 15 2.2.2 RNA sequencing platform 17 2.2.3 細胞實驗 18 2.3 統計分析 23 第三章 結果(Results) 24 3.1 基因選擇性剪接在骨髓造血不良症候群(MDS)病患上的角色 24 3.1.1 MDS患者族群的臨床基本資料 24 3.1.2 整個轉錄體上的變異選擇性剪接 24 3.1.3 變異選擇性剪接與臨床表徵的相關性 24 3.1.4 變異選擇性剪接對臨床預後的影響 26 3.1.5 變異選擇性剪接對細胞生理路徑的影響 26 3.1.6 驗證在microarray平台上所預測的變異選擇性剪接 27 3.2 基因選擇性剪接在急性骨髓性白血病(AML)病患上的角色 27 3.2.1 AML患者族群的臨床基本資料 28 3.2.2 整個轉錄體上的基因選擇性剪接 28 3.2.3 轉錄體整體選擇性剪接模式與臨床表徵的相關性 29 3.2.4 轉錄體整體選擇性剪接模式對臨床預後的影響 30 3.2.5 基因選擇性剪接對細胞生理路徑的影響 31 3.3 NFYA基因選擇性剪接對急性骨髓性白血病(AML)病患臨床預後的影響 31 3.3.1 NFYA基因的表現量和選擇性剪接與AML病患臨床表徵的關係及對預後的影響 31 3.3.2 NFYA基因選擇性剪接對AML病患血癌細胞潛在的生物學效應 33 3.3.3 NFYA基因選擇性剪接在白血病細胞株中的生物效應 33 第四章 討論(Discussion) 36 4.1 基因選擇性剪接在MDS與AML病患上的臨床效應 36 4.2 NFYA基因選擇性剪接對急性骨髓性白血病(AML)的臨床與生物學效應 38 第五章 展望(Perspectives) 43 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | NFYA 基因 | zh_TW |
| dc.subject | 基因轉錄體微陣列 | zh_TW |
| dc.subject | RNA 定序 | zh_TW |
| dc.subject | 骨髓造血不良症候群 | zh_TW |
| dc.subject | 變異選擇性剪接 | zh_TW |
| dc.subject | 選擇性剪接 | zh_TW |
| dc.subject | 急性骨髓性白血病 | zh_TW |
| dc.subject | transcriptome microarray | en |
| dc.subject | alternative splicing | en |
| dc.subject | aberrant alternative splicing | en |
| dc.subject | myelodysplastic syndrome | en |
| dc.subject | acute myeloid leukemia | en |
| dc.subject | RNA sequencing | en |
| dc.subject | NFYA gene | en |
| dc.title | 探討基因選擇性剪接對骨髓性血癌的臨床與生物學效應 | zh_TW |
| dc.title | Exploring the clinical and biological effects of alternative splicing on myeloid malignancies | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.coadvisor | 陳培哲 | zh_TW |
| dc.contributor.coadvisor | Pei-Jer Chen | en |
| dc.contributor.oralexamcommittee | 譚婉玉;涂玉青;王弘毅;楊宏志;侯信安 | zh_TW |
| dc.contributor.oralexamcommittee | Woan-Yuh Tarn;Yuh-Ching Twu;Hurng-Yi Wang;Hung-Chih Yang;Hsin-An Hou | en |
| dc.subject.keyword | 選擇性剪接,變異選擇性剪接,骨髓造血不良症候群,急性骨髓性白血病,基因轉錄體微陣列,RNA 定序,NFYA 基因, | zh_TW |
| dc.subject.keyword | alternative splicing,aberrant alternative splicing,myelodysplastic syndrome,acute myeloid leukemia,transcriptome microarray,RNA sequencing,NFYA gene, | en |
| dc.relation.page | 103 | - |
| dc.identifier.doi | 10.6342/NTU202401953 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-07-29 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 臨床醫學研究所 | - |
| dc.date.embargo-lift | 2025-08-01 | - |
| 顯示於系所單位: | 臨床醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 7.69 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
