請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95086
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 湯志永 | zh_TW |
dc.contributor.advisor | Chih-Yung Tang | en |
dc.contributor.author | 陳俞璇 | zh_TW |
dc.contributor.author | Yu-Xuan Chen | en |
dc.date.accessioned | 2024-08-28T16:11:43Z | - |
dc.date.available | 2024-08-29 | - |
dc.date.copyright | 2024-08-28 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-07-31 | - |
dc.identifier.citation | Uncategorized References
Abriel, H., and J.D. Horisberger. 1999. Feedback inhibition of rat amiloride-sensitive epithelial sodium channels expressed in Xenopus laevis oocytes. J Physiol. 516 ( Pt 1):31-43. Abriel, H., J. Loffing, J.F. Rebhun, J.H. Pratt, L. Schild, J.D. Horisberger, D. Rotin, and O. Staub. 1999. Defective regulation of the epithelial Na+ channel by Nedd4 in Liddle's syndrome. J Clin Invest. 103:667-673. Accardi, A. 2015. Structure and gating of CLC channels and exchangers. J Physiol. 593:4129-4138. Accardi, A., S. Lobet, C. Williams, C. Miller, and R. Dutzler. 2006. Synergism between halide binding and proton transport in a CLC-type exchanger. J Mol Biol. 362:691-699. Accardi, A., and M. Pusch. 2000. Fast and slow gating relaxations in the muscle chloride channel CLC-1. J Gen Physiol. 116:433-444. Accardi, A., M. Walden, W. Nguitragool, H. Jayaram, C. Williams, and C. Miller. 2005. Separate ion pathways in a Cl-/H+ exchanger. J Gen Physiol. 126:563-570. Adrian, R.H., and S.H. Bryant. 1974. On the repetitive discharge in myotonic muscle fibres. J Physiol. 240:505-515. Aickin, C.C., W.J. Betz, and G.L. Harris. 1989. Intracellular chloride and the mechanism for its accumulation in rat lumbrical muscle. J Physiol. 411:437-455. Araki, T., and J. Milbrandt. 2003. ZNRF proteins constitute a family of presynaptic E3 ubiquitin ligases. J Neurosci. 23:9385-9394. Araki, T., R. Nagarajan, and J. Milbrandt. 2001. Identification of genes induced in peripheral nerve after injury. Expression profiling and novel gene discovery. J Biol Chem. 276:34131-34141. Aromataris, E.C., and G.Y. Rychkov. 2006. ClC-1 chloride channel: Matching its properties to a role in skeletal muscle. Clin Exp Pharmacol Physiol. 33:1118-1123. Arreola, J., T. Begenisich, and J.E. Melvin. 2002. Conformation-dependent regulation of inward rectifier chloride channel gating by extracellular protons. J Physiol. 541:103-112. Bachofner, M., T. Speicher, R.L. Bogorad, S. Muzumdar, C.P. Derrer, F. Hurlimann, F. Bohm, P. Nanni, T. Kockmann, E. Kachaylo, M. Meyer, S. Padrissa-Altes, R. Graf, D.G. Anderson, V. Koteliansky, U. Auf dem Keller, and S. Werner. 2017. Large-scale quantitative proteomics identifies the ubiquitin ligase Nedd4-1 as an essential regulator of liver regeneration. Dev Cell. 42:616-625 e618. Bennetts, B., and M.W. Parker. 2013. Molecular determinants of common gating of a ClC chloride channel. Nat Commun. 4:2507. Beranova-Giorgianni, S., and F. Giorgianni. 2018. Proteomics of human retinal pigment epithelium (RPE) cells. Proteomes. 6. Bi, M.M., S. Hong, H.Y. Zhou, H.W. Wang, L.N. Wang, and Y.J. Zheng. 2013. Chloride channelopathies of ClC-2. Int J Mol Sci. 15:218-249. Birnberger, K.L., R. Rudel, and A. Struppler. 1975. Clinical and electrophysiological observations in patients with myotonic muscle disease and the therapeutic effect of N-propyl-ajmalin. J Neurol. 210:99-110. Blanz, J., M. Schweizer, M. Auberson, H. Maier, A. Muenscher, C.A. Hubner, and T.J. Jentsch. 2007. Leukoencephalopathy upon disruption of the chloride channel ClC-2. J Neurosci. 27:6581-6589. Bosl, M.R., V. Stein, C. Hubner, A.A. Zdebik, S.E. Jordt, A.K. Mukhopadhyay, M.S. Davidoff, A.F. Holstein, and T.J. Jentsch. 2001. Male germ cells and photoreceptors, both dependent on close cell-cell interactions, degenerate upon ClC-2 Cl(-) channel disruption. EMBO J. 20:1289-1299. Brenes, O., M. Pusch, and F. Morales. 2023. ClC-1 Chloride Channel: Inputs on the structure-function relationship of myotonia congenita-causing mutations. Biomedicines. 11. Catalan, M., M.I. Niemeyer, L.P. Cid, and F.V. Sepulveda. 2004. Basolateral ClC-2 chloride channels in surface colon epithelium: regulation by a direct effect of intracellular chloride. Gastroenterology. 126:1104-1114. Cha-Molstad, H., Y.T. Kwon, and B.Y. Kim. 2015. Amino-terminal arginylation as a degradation signal for selective autophagy. BMB Rep. 48:487-488. Chen, T.Y. 2005. Structure and function of clc channels. Annu Rev Physiol. 67:809-839. Chen, Y.A., Y.J. Peng, M.C. Hu, J.J. Huang, Y.C. Chien, J.T. Wu, T.Y. Chen, and C.Y. Tang. 2015. The Cullin 4A/B-DDB1-Cereblon E3 Ubiquitin Ligase Complex Mediates the Degradation of CLC-1 Chloride Channels. Sci Rep. 5:10667. Colding-Jorgensen, E. 2005. Phenotypic variability in myotonia congenita. Muscle Nerve. 32:19-34. Comyn, S.A., G.T. Chan, and T. Mayor. 2014. False start: cotranslational protein ubiquitination and cytosolic protein quality control. J Proteomics. 100:92-101. Cotton, T.R., and B.C. Lechtenberg. 2020. Chain reactions: molecular mechanisms of RBR ubiquitin ligases. Biochem Soc Trans. 48:1737-1750. de Diego, C., J. Gamez, E. Plassart-Schiess, A. Lasa, E. Del Rio, C. Cervera, M. Baiget, P. Gallano, and B. Fontaine. 1999. Novel mutations in the muscle chloride channel CLCN1 gene causing myotonia congenita in Spanish families. J Neurol. 246:825-829. De Jesus-Perez, J.J., A. Castro-Chong, R.C. Shieh, C.Y. Hernandez-Carballo, J.A. De Santiago-Castillo, and J. Arreola. 2016. Gating the glutamate gate of CLC-2 chloride channel by pore occupancy. J Gen Physiol. 147:25-37. De Jesus-Perez, J.J., G.A. Mendez-Maldonado, A.E. Lopez-Romero, D. Esparza-Jasso, I.L. Gonzalez-Hernandez, V. De la Rosa, R. Gastelum-Garibaldi, J.E. Sanchez-Rodriguez, and J. Arreola. 2021. Electro-steric opening of the CLC-2 chloride channel gate. Sci Rep. 11:13127. de Santiago, J.A., K. Nehrke, and J. Arreola. 2005. Quantitative analysis of the voltage-dependent gating of mouse parotid ClC-2 chloride channel. J Gen Physiol. 126:591-603. Depienne, C., M. Bugiani, C. Dupuits, D. Galanaud, V. Touitou, N. Postma, C. van Berkel, E. Polder, E. Tollard, F. Darios, A. Brice, C.E. de Die-Smulders, J.S. Vles, A. Vanderver, G. Uziel, C. Yalcinkaya, S.G. Frints, V.M. Kalscheuer, J. Klooster, M. Kamermans, T.E. Abbink, N.I. Wolf, F. Sedel, and M.S. van der Knaap. 2013. Brain white matter oedema due to ClC-2 chloride channel deficiency: an observational analytical study. Lancet Neurol. 12:659-668. Desaphy, J.F., G. Gramegna, C. Altamura, M.M. Dinardo, P. Imbrici, A.L. George, Jr., A. Modoni, M. Lomonaco, and D. Conte Camerino. 2013. Functional characterization of ClC-1 mutations from patients affected by recessive myotonia congenita presenting with different clinical phenotypes. Exp Neurol. 248:530-540. Devuyst, O., and W.B. Guggino. 2002. Chloride channels in the kidney: lessons learned from knockout animals. Am J Physiol Renal Physiol. 283:F1176-1191. Di Bella, D., D. Pareyson, M. Savoiardo, L. Farina, C. Ciano, S. Caldarazzo, A. Sagnelli, S. Bonato, S. Nava, N. Bresolin, G. Tedeschi, F. Taroni, and E. Salsano. 2014. Subclinical leukodystrophy and infertility in a man with a novel homozygous CLCN2 mutation. Neurology. 83:1217-1218. Drummond, D.A., and C.O. Wilke. 2008. Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution. Cell. 134:341-352. Duda, D.M., D.C. Scott, M.F. Calabrese, E.S. Zimmerman, N. Zheng, and B.A. Schulman. 2011. Structural regulation of cullin-RING ubiquitin ligase complexes. Curr Opin Struct Biol. 21:257-264. Duffield, M., G. Rychkov, A. Bretag, and M. Roberts. 2003. Involvement of helices at the dimer interface in ClC-1 common gating. J Gen Physiol. 121:149-161. Duraes, F.V., J. Niven, J. Dubrot, S. Hugues, and M. Gannage. 2015. Macroautophagy in Endogenous Processing of Self- and Pathogen-Derived Antigens for MHC Class II Presentation. Front Immunol. 6:459. Dutzler, R., E.B. Campbell, M. Cadene, B.T. Chait, and R. MacKinnon. 2002. X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Nature. 415:287-294. Dutzler, R., E.B. Campbell, and R. MacKinnon. 2003. Gating the selectivity filter in ClC chloride channels. Science. 300:108-112. Fagerberg, L., B.M. Hallstrom, P. Oksvold, C. Kampf, D. Djureinovic, J. Odeberg, M. Habuka, S. Tahmasebpoor, A. Danielsson, K. Edlund, A. Asplund, E. Sjostedt, E. Lundberg, C.A. Szigyarto, M. Skogs, J.O. Takanen, H. Berling, H. Tegel, J. Mulder, P. Nilsson, J.M. Schwenk, C. Lindskog, F. Danielsson, A. Mardinoglu, A. Sivertsson, K. von Feilitzen, M. Forsberg, M. Zwahlen, I. Olsson, S. Navani, M. Huss, J. Nielsen, F. Ponten, and M. Uhlen. 2014. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics. 13:397-406. Feng, L., E.B. Campbell, Y. Hsiung, and R. MacKinnon. 2010. Structure of a eukaryotic CLC transporter defines an intermediate state in the transport cycle. Science. 330:635-641. Fernandes-Rosa, F.L., G. Daniil, I.J. Orozco, C. Goppner, R. El Zein, V. Jain, S. Boulkroun, X. Jeunemaitre, L. Amar, H. Lefebvre, T. Schwarzmayr, T.M. Strom, T.J. Jentsch, and M.C. Zennaro. 2018. A gain-of-function mutation in the CLCN2 chloride channel gene causes primary aldosteronism. Nat Genet. 50:355-361. Fialho, D., S. Schorge, U. Pucovska, N.P. Davies, R. Labrum, A. Haworth, E. Stanley, R. Sud, W. Wakeling, M.B. Davis, D.M. Kullmann, and M.G. Hanna. 2007. Chloride channel myotonia: exon 8 hot-spot for dominant-negative interactions. Brain. 130:3265-3274. Foldy, C., S.H. Lee, R.J. Morgan, and I. Soltesz. 2010. Regulation of fast-spiking basket cell synapses by the chloride channel ClC-2. Nat Neurosci. 13:1047-1049. Fu, S.J., M.C. Hu, C.T. Hsiao, A.T. Cheng, T.Y. Chen, C.J. Jeng, and C.Y. Tang. 2021. Regulation of ClC-2 chloride channel proteostasis by molecular chaperones: correction of leukodystrophy-associated defect. Int J Mol Sci. 22. Fu, S.J., M.C. Hu, Y.J. Peng, H.Y. Fang, C.T. Hsiao, T.Y. Chen, C.J. Jeng, and C.Y. Tang. 2020. CUL4-DDB1-CRBN E3 ubiquitin ligase regulates proteostasis of ClC-2 chloride channels: implication for aldosteronism and leukodystrophy. Cells. 9. Gaitan-Penas, H., P.M. Apaja, T. Arnedo, A. Castellanos, X. Elorza-Vidal, D. Soto, X. Gasull, G.L. Lukacs, and R. Estevez. 2017. Leukoencephalopathy-causing CLCN2 mutations are associated with impaired Cl(-) channel function and trafficking. J Physiol. 595:6993-7008. Gandolfi, B., R.J. Daniel, D.P. O'Brien, L.T. Guo, M.D. Youngs, S.B. Leach, B.R. Jones, G.D. Shelton, and L.A. Lyons. 2014. A novel mutation in CLCN1 associated with feline myotonia congenita. PLoS One. 9:e109926. Geiler-Samerotte, K.A., M.F. Dion, B.A. Budnik, S.M. Wang, D.L. Hartl, and D.A. Drummond. 2011. Misfolded proteins impose a dosage-dependent fitness cost and trigger a cytosolic unfolded protein response in yeast. Proc Natl Acad Sci U S A. 108:680-685. Gordon, H.B., A. Letsou, and J.L. Bonkowsky. 2014. The leukodystrophies. Semin Neurol. 34:312-320. Graves, A.R., P.K. Curran, C.L. Smith, and J.A. Mindell. 2008. The Cl-/H+ antiporter ClC-7 is the primary chloride permeation pathway in lysosomes. Nature. 453:788-792. Grunder, S., A. Thiemann, M. Pusch, and T.J. Jentsch. 1992. Regions involved in the opening of CIC-2 chloride channel by voltage and cell volume. Nature. 360:759-762. Guo, J., T. Wang, X. Li, H. Shallow, T. Yang, W. Li, J. Xu, M.D. Fridman, X. Yang, and S. Zhang. 2012. Cell surface expression of human ether-a-go-go-related gene (hERG) channels is regulated by caveolin-3 protein via the ubiquitin ligase Nedd4-2. J Biol Chem. 287:33132-33141. Gutmann, L., and L.H. Phillips, 2nd. 1991. Myotonia congenita. Semin Neurol. 11:244-248. Hartl, F.U. 1996. Molecular chaperones in cellular protein folding. Nature. 381:571-579. Higgins, J.J., J. Pucilowska, R.Q. Lombardi, and J.P. Rooney. 2004. A mutation in a novel ATP-dependent Lon protease gene in a kindred with mild mental retardation. Neurology. 63:1927-1931. Hoxhaj, G., A. Najafov, R. Toth, D.G. Campbell, A.R. Prescott, and C. MacKintosh. 2012. ZNRF2 is released from membranes by growth factors and, together with ZNRF1, regulates the Na+/K+ATPase. J Cell Sci. 125:4662-4675. Huang, C. 2010. Roles of E3 ubiquitin ligases in cell adhesion and migration. Cell Adh Migr. 4:10-18. Huang, X., J. Chen, W. Cao, L. Yang, Q. Chen, J. He, Q. Yi, H. Huang, E. Zhang, and Z. Cai. 2019. The many substrates and functions of NEDD4-1. Cell Death Dis. 10:904. Huber, S., B. Schroppel, M. Kretzler, D. Schlondorff, and M. Horster. 1998. Single cell RT-PCR analysis of ClC-2 mRNA expression in ureteric bud tip. Am J Physiol. 274:F951-957. Jeng, C.J., S.J. Fu, C.Y. You, Y.J. Peng, C.T. Hsiao, T.Y. Chen, and C.Y. Tang. 2020. Defective Gating and Proteostasis of Human ClC-1 Chloride Channel: Molecular Pathophysiology of Myotonia Congenita. Front Neurol. 11:76. Jentsch, T.J., T. Friedrich, A. Schriever, and H. Yamada. 1999. The CLC chloride channel family. Pflugers Arch. 437:783-795. Jentsch, T.J., T. Maritzen, and A.A. Zdebik. 2005a. Chloride channel diseases resulting from impaired transepithelial transport or vesicular function. J Clin Invest. 115:2039-2046. Jentsch, T.J., M. Poet, J.C. Fuhrmann, and A.A. Zdebik. 2005b. Physiological functions of CLC Cl- channels gleaned from human genetic disease and mouse models. Annu Rev Physiol. 67:779-807. Jentsch, T.J., V. Stein, F. Weinreich, and A.A. Zdebik. 2002. Molecular structure and physiological function of chloride channels. Physiol Rev. 82:503-568. Jentsch, T.J., K. Steinmeyer, and G. Schwarz. 1990. Primary structure of Torpedo marmorata chloride channel isolated by expression cloning in Xenopus oocytes. Nature. 348:510-514. Jeworutzki, E., L. Lagostena, X. Elorza-Vidal, T. Lopez-Hernandez, R. Estevez, and M. Pusch. 2014. GlialCAM, a CLC-2 Cl(-) channel subunit, activates the slow gate of CLC chloride channels. Biophys J. 107:1105-1116. Jeworutzki, E., T. Lopez-Hernandez, X. Capdevila-Nortes, S. Sirisi, L. Bengtsson, M. Montolio, G. Zifarelli, T. Arnedo, C.S. Muller, U. Schulte, V. Nunes, A. Martinez, T.J. Jentsch, X. Gasull, M. Pusch, and R. Estevez. 2012. GlialCAM, a protein defective in a leukodystrophy, serves as a ClC-2 Cl(-) channel auxiliary subunit. Neuron. 73:951-961. Jordt, S.E., and T.J. Jentsch. 1997. Molecular dissection of gating in the ClC-2 chloride channel. EMBO J. 16:1582-1592. Kang, J.A., and Y.J. Jeon. 2021. How is the fidelity of proteins ensured in terms of both quality and quantity at the endoplasmic reticulum? Mechanistic insights into E3 ubiquitin ligases. Int J Mol Sci. 22. Kleefuss-Lie, A., W. Friedl, S. Cichon, K. Haug, M. Warnstedt, A. Alekov, T. Sander, A. Ramirez, B. Poser, S. Maljevic, S. Hebeisen, C. Kubisch, J. Rebstock, S. Horvath, K. Hallmann, J.S. Dullinger, B. Rau, F. Haverkamp, S. Beyenburg, H. Schulz, D. Janz, B. Giese, G. Muller-Newen, P. Propping, C.E. Elger, C. Fahlke, and H. Lerche. 2009. CLCN2 variants in idiopathic generalized epilepsy. Nat Genet. 41:954-955. Kliza, K., and K. Husnjak. 2020. Resolving the complexity of ubiquitin networks. Front Mol Biosci. 7:21. Kocaturk, N.M., and D. Gozuacik. 2018. Crosstalk Between Mammalian Autophagy and the Ubiquitin-Proteasome System. Front Cell Dev Biol. 6:128. Koch, M.C., K. Steinmeyer, C. Lorenz, K. Ricker, F. Wolf, M. Otto, B. Zoll, F. Lehmann-Horn, K.H. Grzeschik, and T.J. Jentsch. 1992. The skeletal muscle chloride channel in dominant and recessive human myotonia. Science. 257:797-800. Komander, D. 2009. The emerging complexity of protein ubiquitination. Biochem Soc Trans. 37:937-953. Kumar, S., K.F. Harvey, M. Kinoshita, N.G. Copeland, M. Noda, and N.A. Jenkins. 1997. cDNA cloning, expression analysis, and mapping of the mouse Nedd4 gene. Genomics. 40:435-443. Kumar, S., Y. Tomooka, and M. Noda. 1992. Identification of a set of genes with developmentally down-regulated expression in the mouse brain. Biochem Biophys Res Commun. 185:1155-1161. Kyushiki, H., Y. Kuga, M. Suzuki, E. Takahashi, and M. Horie. 1997. Cloning, expression and mapping of a novel RING-finger gene (RNF5), a human homologue of a putative zinc-finger gene from Caenorhabditis elegans. Cytogenet Cell Genet. 79:114-117. Lecker, S.H., A.L. Goldberg, and W.E. Mitch. 2006. Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J Am Soc Nephrol. 17:1807-1819. Lee, T.T., X.D. Zhang, C.C. Chuang, J.J. Chen, Y.A. Chen, S.C. Chen, T.Y. Chen, and C.Y. Tang. 2013. Myotonia congenita mutation enhances the degradation of human CLC-1 chloride channels. PLoS One. 8:e55930. Lescouzeres, L., and P. Bomont. 2020. E3 ubiquitin ligases in neurological diseases: focus on gigaxonin and autophagy. Front Physiol. 11:1022. Liu, P., W. Gan, S. Su, A.V. Hauenstein, T.M. Fu, B. Brasher, C. Schwerdtfeger, A.C. Liang, M. Xu, and W. Wei. 2018. K63-linked polyubiquitin chains bind to DNA to facilitate DNA damage repair. Sci Signal. 11. Lossin, C., and A.L. George, Jr. 2008. Myotonia congenita. Adv Genet. 63:25-55. Lu, C., S. Pribanic, A. Debonneville, C. Jiang, and D. Rotin. 2007. The PY motif of ENaC, mutated in Liddle syndrome, regulates channel internalization, sorting and mobilization from subapical pool. Traffic. 8:1246-1264. Ludewig, U., M. Pusch, and T.J. Jentsch. 1996. Two physically distinct pores in the dimeric ClC-0 chloride channel. Nature. 383:340-343. Luzio, J.P., B.M. Mullock, P.R. Pryor, M.R. Lindsay, D.E. James, and R.C. Piper. 2001. Relationship between endosomes and lysosomes. Biochem Soc Trans. 29:476-480. Ma, T., L. Wang, A. Chai, C. Liu, W. Cui, S. Yuan, S. Wing Ngor Au, L. Sun, X. Zhang, Z. Zhang, J. Lu, Y. Gao, P. Wang, Z. Li, Y. Liang, H. Vogel, Y.T. Wang, D. Wang, K. Yan, and H. Zhang. 2023. Cryo-EM structures of ClC-2 chloride channel reveal the blocking mechanism of its specific inhibitor AK-42. Nat Commun. 14:3424. Madiraju, C., J.P. Novack, J.C. Reed, and S.I. Matsuzawa. 2022. K63 ubiquitination in immune signaling. Trends Immunol. 43:148-162. Manohar, S., S. Jacob, J. Wang, K.A. Wiechecki, H.W.L. Koh, V. Simoes, H. Choi, C. Vogel, and G.M. Silva. 2019. Polyubiquitin chains linked by lysine residue 48 (K48) selectively target oxidized proteins in vivo. Antioxid Redox Signal. 31:1133-1149. Mazon, M.J., F. Barros, P. De la Pena, J.F. Quesada, A. Escudero, A.M. Cobo, S.I. Pascual-Pascual, E. Gutierrez-Rivas, E. Guillen, J. Arpa, P. Eraso, F. Portillo, and J. Molano. 2012. Screening for mutations in Spanish families with myotonia. Functional analysis of novel mutations in CLCN1 gene. Neuromuscul Disord. 22:231-243. Metzger, M.B., J.N. Pruneda, R.E. Klevit, and A.M. Weissman. 2014. RING-type E3 ligases: master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitination. Biochim Biophys Acta. 1843:47-60. Miller, C., and M.M. White. 1984. Dimeric structure of single chloride channels from Torpedo electroplax. Proc Natl Acad Sci U S A. 81:2772-2775. Mindell, J.A., M. Maduke, C. Miller, and N. Grigorieff. 2001. Projection structure of a ClC-type chloride channel at 6.5 A resolution. Nature. 409:219-223. Morito, D., K. Hirao, Y. Oda, N. Hosokawa, F. Tokunaga, D.M. Cyr, K. Tanaka, K. Iwai, and K. Nagata. 2008. Gp78 cooperates with RMA1 in endoplasmic reticulum-associated degradation of CFTRDeltaF508. Mol Biol Cell. 19:1328-1336. Niemeyer, M.I., L.P. Cid, L. Zuniga, M. Catalan, and F.V. Sepulveda. 2003. A conserved pore-lining glutamate as a voltage- and chloride-dependent gate in the ClC-2 chloride channel. J Physiol. 553:873-879. Nighot, P.K., and A.T. Blikslager. 2010. ClC-2 regulates mucosal barrier function associated with structural changes to the villus and epithelial tight junction. Am J Physiol Gastrointest Liver Physiol. 299:G449-456. Nilius, B., and G. Droogmans. 2003. Amazing chloride channels: an overview. Acta Physiol Scand. 177:119-147. Novak, K.R., J. Norman, J.R. Mitchell, M.J. Pinter, and M.M. Rich. 2015. Sodium channel slow inactivation as a therapeutic target for myotonia congenita. Ann Neurol. 77:320-332. Papponen, H., M. Nissinen, T. Kaisto, V.V. Myllyla, R. Myllyla, and K. Metsikko. 2008. F413C and A531V but not R894X myotonia congenita mutations cause defective endoplasmic reticulum export of the muscle-specific chloride channel CLC-1. Muscle Nerve. 37:317-325. Persaud, A., P. Alberts, E.M. Amsen, X. Xiong, J. Wasmuth, Z. Saadon, C. Fladd, J. Parkinson, and D. Rotin. 2009. Comparison of substrate specificity of the ubiquitin ligases Nedd4 and Nedd4-2 using proteome arrays. Mol Syst Biol. 5:333. Ptacek, L.J., K.J. Johnson, and R.C. Griggs. 1993. Genetics and physiology of the myotonic muscle disorders. N Engl J Med. 328:482-489. Pusch, M. 2002. Myotonia caused by mutations in the muscle chloride channel gene CLCN1. Hum Mutat. 19:423-434. Pusch, M., K. Steinmeyer, M.C. Koch, and T.J. Jentsch. 1995. Mutations in dominant human myotonia congenita drastically alter the voltage dependence of the CIC-1 chloride channel. Neuron. 15:1455-1463. Rudel, R., and F. Lehmann-Horn. 1985. Membrane changes in cells from myotonia patients. Physiol Rev. 65:310-356. Rychkov, G.Y., M. Pusch, D.S. Astill, M.L. Roberts, T.J. Jentsch, and A.H. Bretag. 1996. Concentration and pH dependence of skeletal muscle chloride channel ClC-1. J Physiol. 497 ( Pt 2):423-435. Saibil, H.R. 2013. Biochemistry. Machinery to reverse irreversible aggregates. Science. 339:1040-1041. Saitoh, F., and T. Araki. 2010. Proteasomal degradation of glutamine synthetase regulates schwann cell differentiation. J Neurosci. 30:1204-1212. Sanchez-Rodriguez, J.E., J.A. De Santiago-Castillo, and J. Arreola. 2010. Permeant anions contribute to voltage dependence of ClC-2 chloride channel by interacting with the protopore gate. J Physiol. 588:2545-2556. Saviane, C., F. Conti, and M. Pusch. 1999. The muscle chloride channel ClC-1 has a double-barreled appearance that is differentially affected in dominant and recessive myotonia. J Gen Physiol. 113:457-468. Scheel, O., A.A. Zdebik, S. Lourdel, and T.J. Jentsch. 2005. Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins. Nature. 436:424-427. Scheffner, M., and S. Kumar. 2014. Mammalian HECT ubiquitin-protein ligases: biological and pathophysiological aspects. Biochim Biophys Acta. 1843:61-74. Seong, J.Y., K. Ha, C. Hong, J. Myeong, H.H. Lim, D. Yang, and I. So. 2017. Helix O modulates voltage dependency of CLC-1. Pflugers Arch. 469:183-193. Shen, C.H., C.C. Chou, T.Y. Lai, J.E. Hsu, Y.S. Lin, H.Y. Liu, Y.K. Chen, I.L. Ho, P.H. Hsu, T.H. Chuang, C.Y. Lee, and L.C. Hsu. 2021. ZNRF1 mediates epidermal growth factor receptor ubiquitination to control receptor lysosomal trafficking and degradation. Front Cell Dev Biol. 9:642625. Simon, D.B., R.S. Bindra, T.A. Mansfield, C. Nelson-Williams, E. Mendonca, R. Stone, S. Schurman, A. Nayir, H. Alpay, A. Bakkaloglu, J. Rodriguez-Soriano, J.M. Morales, S.A. Sanjad, C.M. Taylor, D. Pilz, A. Brem, H. Trachtman, W. Griswold, G.A. Richard, E. John, and R.P. Lifton. 1997. Mutations in the chloride channel gene, CLCNKB, cause Bartter's syndrome type III. Nat Genet. 17:171-178. Steinmeyer, K., R. Klocke, C. Ortland, M. Gronemeier, H. Jockusch, S. Grunder, and T.J. Jentsch. 1991a. Inactivation of muscle chloride channel by transposon insertion in myotonic mice. Nature. 354:304-308. Steinmeyer, K., C. Ortland, and T.J. Jentsch. 1991b. Primary structure and functional expression of a developmentally regulated skeletal muscle chloride channel. Nature. 354:301-304. Stolting, G., G. Teodorescu, B. Begemann, J. Schubert, R. Nabbout, M.R. Toliat, T. Sander, P. Nurnberg, H. Lerche, and C. Fahlke. 2013. Regulation of ClC-2 gating by intracellular ATP. Pflugers Arch. 465:1423-1437. Stowasser, M., and R.D. Gordon. 2016. Primary aldosteronism: changing definitions and new concepts of physiology and pathophysiology both inside and outside the kidney. Physiol Rev. 96:1327-1384. Struyk, A.F., K.A. Scoggan, D.E. Bulman, and S.C. Cannon. 2000. The human skeletal muscle Na channel mutation R669H associated with hypokalemic periodic paralysis enhances slow inactivation. J Neurosci. 20:8610-8617. Suetterlin, K., E. Matthews, R. Sud, S. McCall, D. Fialho, J. Burge, D. Jayaseelan, A. Haworth, M.G. Sweeney, D.M. Kullmann, S. Schorge, M.G. Hanna, and R. Mannikko. 2022. Translating genetic and functional data into clinical practice: a series of 223 families with myotonia. Brain. 145:607-620. Tang, C.Y., and T.Y. Chen. 2011. Physiology and pathophysiology of CLC-1: mechanisms of a chloride channel disease, myotonia. J Biomed Biotechnol. 2011:685328. Thiemann, A., S. Grunder, M. Pusch, and T.J. Jentsch. 1992. A chloride channel widely expressed in epithelial and non-epithelial cells. Nature. 356:57-60. Vembar, S.S., and J.L. Brodsky. 2008. One step at a time: endoplasmic reticulum-associated degradation. Nat Rev Mol Cell Biol. 9:944-957. Wakatsuki, S., A. Furuno, M. Ohshima, and T. Araki. 2015. Oxidative stress-dependent phosphorylation activates ZNRF1 to induce neuronal/axonal degeneration. J Cell Biol. 211:881-896. Wakatsuki, S., F. Saitoh, and T. Araki. 2011. ZNRF1 promotes Wallerian degeneration by degrading AKT to induce GSK3B-dependent CRMP2 phosphorylation. Nat Cell Biol. 13:1415-1423. Wang, H., M. Xu, Q. Kong, P. Sun, F. Yan, W. Tian, and X. Wang. 2017. Research and progress on ClC‑2 (Review). Mol Med Rep. 16:11-22. Wang, K., S.S. Preisler, L. Zhang, Y. Cui, J.W. Missel, C. Gronberg, K. Gotfryd, E. Lindahl, M. Andersson, K. Calloe, P.F. Egea, D.A. Klaerke, M. Pusch, P.A. Pedersen, Z.H. Zhou, and P. Gourdon. 2019. Structure of the human ClC-1 chloride channel. PLoS Biol. 17:e3000218. Watson, E.R., S. Novick, M.E. Matyskiela, P.P. Chamberlain, H.d.l.P. A, J. Zhu, E. Tran, P.R. Griffin, I.E. Wertz, and G.C. Lander. 2022. Molecular glue CELMoD compounds are regulators of cereblon conformation. Science. 378:549-553. Weber, J., S. Polo, and E. Maspero. 2019. HECT E3 ligases: A tale with multiple facets. Front Physiol. 10:370. Xin, W., N. Xiaohua, C. Peilin, C. Xin, S. Yaqiong, and W. Qihan. 2008. Primary function analysis of human mental retardation related gene CRBN. Mol Biol Rep. 35:251-256. Yan, S., R. Ripamonti, H. Kawabe, M. Ben-Yehuda Greenwald, and S. Werner. 2022. NEDD4-1 is a key regulator of epidermal homeostasis and wound repair. J Invest Dermatol. 142:1703-1713 e1711. Younger, J.M., L. Chen, H.Y. Ren, M.F. Rosser, E.L. Turnbull, C.Y. Fan, C. Patterson, and D.M. Cyr. 2006. Sequential quality-control checkpoints triage misfolded cystic fibrosis transmembrane conductance regulator. Cell. 126:571-582. Zhang, J., S. Bendahhou, M.C. Sanguinetti, and L.J. Ptacek. 2000. Functional consequences of chloride channel gene (CLCN1) mutations causing myotonia congenita. Neurology. 54:937-942. Zhang, J., A.L. George, Jr., R.C. Griggs, G.T. Fouad, J. Roberts, H. Kwiecinski, A.M. Connolly, and L.J. Ptacek. 1996. Mutations in the human skeletal muscle chloride channel gene (CLCN1) associated with dominant and recessive myotonia congenita. Neurology. 47:993-998. Zhong, B., L. Zhang, C. Lei, Y. Li, A.P. Mao, Y. Yang, Y.Y. Wang, X.L. Zhang, and H.B. Shu. 2009. The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA. Immunity. 30:397-407. Zhong, B., Y. Zhang, B. Tan, T.T. Liu, Y.Y. Wang, and H.B. Shu. 2010. The E3 ubiquitin ligase RNF5 targets virus-induced signaling adaptor for ubiquitination and degradation. J Immunol. 184:6249-6255. Zuniga, L., M.I. Niemeyer, D. Varela, M. Catalan, L.P. Cid, and F.V. Sepulveda. 2004. The voltage-dependent ClC-2 chloride channel has a dual gating mechanism. J Physiol. 555:671-682. 黃敬家(2015)分子伴護蛋白及泛素連接酶調控人類第一型氯離子通道之功能表現(未出版之碩士論文)。 方心妤(2015) E3 泛素連接酶與 NSF 蛋白對第二型氯離子通道的調節機制(未出版之碩士論文)。 鍾喬聿(2018)探討人類第一型氯離子通道 A531V 位點之功能重要性(未出版之碩士論文)。 鄭安婷(2022)探討各類型突變對人類第二型氯離子通道功能之影響(未出版之碩士論文)。 林欣叡(2024)鈣離子活化蛋白酶與 HECT 泛素連接酶對第二型氯離子通道交互作用(未出版之碩士論文)。 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95086 | - |
dc.description.abstract | 人類第一型及第二型氯離子通道(ClC-1, ClC-2)具有重要的生理功能。在正常的骨骼肌細胞中, ClC-1 主要負責維持細胞膜電位的穩定,當 ClC-1 產生突變時可能會導致先天性肌強直症(myotonia congenita)的發生;而 ClC-2 則是參與了多種不同的生理調控機制,包括腸胃道、細精管以及細胞的體積大小、酸鹼值等等,也有研究指出 ClC-2 與腦白質失養症、原發性高醛固酮症、無精症等疾病有關。細胞蛋白質的恆定會受到多種不同的內質網品質控管途徑來調控,而泛素-蛋白酶體系統能夠將專一性的泛素標定到目標蛋白上,再經由蛋白酶體使目標蛋白降解。本實驗室先前發現多種 E3 泛素連接酶與 ClC-1 及 ClC-2 具有交互作用,故本文會以電生理的角度來觀察 E3 泛素連接酶是否實際參與膜上具有功能的 ClC-1 及 ClC-2 蛋白恆定之調控,進而改變氯離子電流密度(Cl- current density)大小。根據我的實驗結果顯示,若大量表現 RING finger-like E3 ligases 或 HECT domain E3 ligases 時皆會影響其電流表現,因此我們認為這些 E3 泛素連接酶可以經由影響氯離子通道的蛋白恆定,繼而調控細胞膜上 ClC-1 及 ClC-2 之功能表現。此外,先前實驗室發現 ClC-1 及 ClC-2 的 helix O 可能參與其蛋白質穩定,其他文獻也曾報導肌強直症相關的 ClC-1 突變 A531V 及 G523D 位於 helix O 上,其中A531V 會造成蛋白表現量減少, G523D 則改變了通道的電壓依賴性;而與腦白質失養症有關的 ClC-2 突變 A500V 及 G503R 亦位於 helix O 上。因此,我們分別將 ClC-1 及 ClC-2 的 helix O 部分位點進行突變,並利用電生理技術探討 helix O 對通道之影響。我們發現 ClC-1 helix O 上的突變使得量測到的電流皆小於在其他 helix 上的肌強直症突變;此外也發現 ClC-2 上的 helix O 突變會使電流減少許多。據此我們可以推知此類型氯離子通道的 helix O 極大可能影響其蛋白能否穩定表現在細胞膜上,抑或是影響其從內質網運送至細胞膜之效率。 | zh_TW |
dc.description.abstract | Human ClC-1 and ClC-2 chloride channel play an important role in physiological functions. In normal skeletal muscle cells, ClC-1 is mainly responsible for maintaining the stability of the cell membrane potential. When ClC-1 mutated, it may lead to abnormal function of the channel protein and then cause myotonia congenita. ClC-2 is involved in a variety of different physiological regulatory mechanisms, including gastrointestinal tract, seminiferous tubules, cell’s size, cell’s pH value, etc. In addition, some studies have pointed out that ClC-2 is related to leukodystrophy, primary aldosteronism and azoospermia. Proteostasis is regulated by a variety of endoplasmic reticulum quality control pathways. The ubiquitin-proteasome system can target ubiquitin to the target protein specifically, and then degrade the target protein via the proteasome. Our laboratory has previously discovered that various of E3 ubiquitin ligases interact with ClC-1 and ClC-2. Therefore, in this study, we aim to apply electrophysiological techniques to observe whether E3 ubiquitin ligases are involved in functional ClC-1 and ClC-2 on the cell membrane. According to my experimental results, RING finger-like E3 ligases or HECT domain E3 ligases affected the current of chloride channels. Therefore, we believe that E3 ubiquitin ligase can regulate the functional expression of ClC-1 and ClC-2 on cell membrane by affecting the protein stability of the chloride channels. In addition, previous laboratories have found that helix O of ClC-1 and ClC-2 may be involved in their protein level. Other paper also reported that myotonia-related ClC-1 mutations A531V and G523D are located on helix O. A531V causes protein level reduced and G523D changes the voltage dependence of the channel. ClC-2 mutations A500V and G503R associated with leukodystrophy are also located on helix O. Therefore, we mutated some of the helix O sites in ClC-1 and ClC-2, and then used electrophysiological techniques to explore the effect of helix O on the channels. We found that the mutations on ClC-1 helix O caused the current smaller than that of myotonia mutations on other helixes. We also found that the helix O mutations on ClC-2 reduced the current. Based on this, we can infer that the helix O of ClC chloride channel may greatly affect whether its protein can be stably stored on the cell membrane or affect the efficiency of transport from the endoplasmic reticulum. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-28T16:11:43Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-28T16:11:43Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 目次
誌謝 i 中文摘要 ii 英文摘要 iii 目次 v 圖次 ix 表次 xi 第一章 導論 1 1.1 氯離子運輸 1 1.2 CLC 蛋白質家族 2 1.3 CLC 蛋白質家族結構 3 1.4 CLC 蛋白質家族門控機制 4 1.5 ClC-1 的門控機制、通道特性 5 1.5.1 ClC-1 的生理意義 7 1.5.2 ClC-1 通道病變:先天性肌強直症 (myotonia congenita) 7 1.5.3 ClC-1 A531V 9 1.6 ClC-2 的門控機制、通道特性 10 1.6.1 ClC-2 的生理意義 12 1.6.2 ClC-2 的通道病變 12 (1) 腦白質失養症(leukodystrophy) 13 (2) 原發性高醛固酮症(primary aldosteronism) 13 1.7 Helix O 對 ClC-1 及 ClC-2 的重要性 14 1.8. 蛋白質品質管控及降解機制 15 1.8.1 溶酶體降解路徑 16 1.8.2 泛素-蛋白酶體系統 16 1.8.3 E3泛素連接酶 (E3 Ubiquitin Ligase) 17 (1) RNF5 (RING finger protein 5) 18 (2) ZNRF 家族 19 (2.1) ZNRF1 (Zinc and RING finger 1) 19 (2.2) ZNRF2 (Zinc and RING finger 2) 20 (3) Cereblon (CRBN) 20 (4) NEDD4 家族 21 (4.1) NEDD4 21 (4.2) NEDD4L 22 1.9 研究目的 23 第二章 材料與方法 25 2.1 DNA construct 25 2.1.1 本篇論文使用的人類第一型氯離子通道 ClC-1 construct 25 2.1.2 本篇論文使用的人類第二型氯離子通道 ClC-2 construct 25 2.1.3 本篇論文使用的 E3 泛素連接酶 26 2.2 DNA 轉殖及放大 27 2.3 細胞培養 28 2.4 玻片製備 29 2.5 DNA transfection (轉染) 29 2.6 電生理記錄 30 2.6.1 ClC-1 cell-attached patch clamp / whole-cell patch clamp 31 2.6.2 ClC-2 whole-cell mode 32 2.7. 統計分析 33 2.7.1 電流大小 33 2.7.2 Channel open probability 33 第三章 結果 34 3.1 RNF5 E3 ligase 與 CLC 家族 34 3.1.1 RNF5 E3 ligase 減少 ClC-1 macroscopic Cl- current 35 3.1.2 RNF5 E3 ligase 減少 ClC-2 macroscopic Cl- current 36 3.2 ZNRF E3 ligase 家族與 CLC 家族 36 3.2.1 ZNRF1 減少 ClC-1 macroscopic Cl- current 37 3.2.2 ZNRF1 E3 ligase 減少 ClC-2 macroscopic Cl- current 38 3.2.3 ZNRF2 E3 ligase 減少 ClC-1 macroscopic Cl- current 38 3.2.4 ZNRF2 E3 ligase 減少 ClC-2 macroscopic Cl- current 39 3.3 Cereblon 減少 ClC-2 macroscopic current 39 3.4 NEDD4 家族對 ClC-2 macroscopic current 有不同的影響 40 3.4.1 NEDD4 不影響 ClC-2 macroscopic Cl- current 40 3.4.2 NEDD4L 增加 ClC-2 macroscopic Cl- current 41 3.5 ClC-1 mutants 41 3.5.1 ClC-1 helix O mutants 42 3.5.2 ClC-1 helix Q 突變位點 (A526) 43 3.5.3 ClC-1 helix I 突變位點 (A313) 43 3.5.4 ClC-1 helix E 突變位點 (A218) 44 3.6 ClC-2 helix O mutants 46 第四章 討論 47 4.1 3HA 對 ClC-1 及 ClC-2 的影響 47 4.2 RNF5 對 ClC-1 及 ClC-2 的影響 47 4.3 ZNRF1 對 ClC-1 及 ClC-2 的影響 48 4.4 ZNRF2 不同的 tag 對 ClC-1 及 ClC-2 的差異 49 4.5 NEDD4 及 NEDD4L 對 ClC-2 有不同的影響 49 4.6 ClC-1 alanine mutations 51 4.6.1 Helix O mutations 51 4.6.2 Helix Q mutations 52 4.6.3 Helix I mutations 52 4.6.4 Helix E mutations 53 4.6.5 比較 A531V、A313T、A313V、A218V common gate Po-V 54 4.7 ClC-2 helix O mutations 54 4.8 未來待解決的問題及實驗方向 56 4.8.1 cell-attached patch clamp 56 4.8.2 NEDD4L 可嘗試之變因 56 4.8.3 提升 ClC-2 突變型的轉染濃度 56 結論 57 圖表 58 附圖 110 參考文獻 111 | - |
dc.language.iso | zh_TW | - |
dc.title | E3 泛素連接酶與 helix O 突變對人類 CLC 通道之功能效應 | zh_TW |
dc.title | Functional effect of E3 ubiquitin ligases and helix O mutations on human CLC channels | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 鄭瓊娟;胡孟君 | zh_TW |
dc.contributor.oralexamcommittee | Chung-Jiuan Jeng;Meng-Chun Hu | en |
dc.subject.keyword | ClC-1,ClC-2,E3泛素連接酶,Helix O, | zh_TW |
dc.subject.keyword | ClC-1,ClC-2,E3 ubiquitin ligases,Helix O, | en |
dc.relation.page | 122 | - |
dc.identifier.doi | 10.6342/NTU202402840 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-07-31 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 生理學研究所 | - |
顯示於系所單位: | 生理學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 9.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。