Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95081
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 吳焜裕 | zh_TW |
dc.contributor.advisor | Kuen-Yuh Wu | en |
dc.contributor.author | 鍾君妍 | zh_TW |
dc.contributor.author | Kuan-In Chong | en |
dc.date.accessioned | 2024-08-28T16:10:01Z | - |
dc.date.available | 2024-08-29 | - |
dc.date.copyright | 2024-08-28 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-04-15 | - |
dc.identifier.citation | Canfield, R. L., Henderson, C. R., Jr., Cory-Slechta, D. A., Cox, C., Jusko, T. A., & Lanphear, B. P. (2003). Intellectual impairment in children with blood lead concentrations below 10 microg per deciliter. N Engl J Med, 348(16), 1517-1526. https://doi.org/10.1056/NEJMoa022848
Carmignani, M., Volpe, A. R., Boscolo, P., Qiao, N., Di Gioacchino, M., Grilli, A., & Felaco, M. (2000). Catcholamine and nitric oxide systems as targets of chronic lead exposure in inducing selective functional impairment. Life Sci, 68(4), 401-415. https://doi.org/10.1016/s0024-3205(00)00954-1 CEPA. (2009). Technical Support Document for Cancer potency Factors: Methodologies for Derivation, Listing of Available Values and Adjustments to Allow for Early Life Stage Exposures. Retrieved from https://oehha.ca.gov/media/downloads/crnr/appendixb.pdf Chaikhan, P., Udnan, Y., Ampiah-Bonney, R. J., & Chaiyasith, W. C. (2021). Air-assisted solvent terminated dispersive liquid–liquid microextraction (AA-ST-DLLME) for the determination of lead in water and beverage samples by graphite furnace atomic absorption spectrometry. Microchemical Journal, 162, 105828. https://doi.org/https://doi.org/10.1016/j.microc.2020.105828 Chen, H.-y., Wang, C.-w., Chou, P.-j., Chen, M.-c., Lin, H.-y., & Liu, F.-m. (2020). 108年度市售食品重金屬含量監測概況 [An Overview of Heavy Metal Contents Survey in Commercial Food Products in Taiwan, 2015-2018]. 食品藥物研究年報(11), 419-423. Chen, S. S., Lin, Y. W., Kao, Y. M., & Shih, Y. C. (2013). Trace elements and heavy metals in poultry and livestock meat in Taiwan. Food Addit Contam Part B Surveill, 6(4), 231-236. https://doi.org/10.1080/19393210.2013.804884 Chen, Y.-C., Wang, Y.-T., Kuan, L.-C., Lin, Y.-R., & Chou, H.-K. (2013). 101年度市售蔬果中重金屬含量監測 [Monitoring of Heavy Metal Contents in Fruits and Vegetables from Markets in Taiwan, 2012]. 食品藥物研究年報(4), 77-85. Cleveland, L. M., Minter, M. L., Cobb, K. A., Scott, A. A., & German, V. F. (2008). Lead hazards for pregnant women and children: part 1: immigrants and the poor shoulder most of the burden of lead exposure in this country. Part 1 of a two-part article details how exposure happens, whom it affects, and the harm it can do. Am J Nurs, 108(10), 40-49; quiz 50. https://doi.org/10.1097/01.Naj.0000337736.76730.66 Codex. (2022). General Standard for Contaminants and Toxins in Food and Feed. In (Vol. CXS 193-1995, pp. 51-55). Cory-Slechta, D. A. (1996). Legacy of Lead Exposure: Consequences for the Central Nervous System. Otolaryngology–Head and Neck Surgery, 114(2), 224-226. https://doi.org/10.1016/S0194-59989670171-7 EFSA. (2010). Scientific opinion on lead in food. EFSA Journal, 8(4), 1570. https://doi.org/https://doi.org/10.2903/j.efsa.2010.1570 EFSA. (2012). Lead dietary exposure in the European population. EFSA Journal, 10(7), 2831. https://doi.org/https://doi.org/10.2903/j.efsa.2012.2831 EPA, U. S. (1986). Air Quality Criteria for Lead (Final Report, 1986). European-Commission. (2001). Commission Regulation (EC) No 466/2001 of 8 March 2001 setting maximum levels for certain contaminants in foodstuffs. (02001R0466-20010405). European-Commission. (2006). Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. (02006R1881-20070701). European-Commission. (2008). Commission Regulation (EC) No 629/2008 of 2 July 2008 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs. (Document 32008R0629). European-Commission. (2015). Commission Regulation (EU) 2015/1005 of 25 June 2015 amending Regulation (EC) No 1881/2006 as regards maximum levels of lead in certain foodstuffs. (Document 32015R1005). European-Commission. (2021). Commission Regulation (EU) 2021/1317 of 9 August 2021 amending Regulation (EC) No 1881/2006 as regards maximum levels of lead in certain foodstuffs. (Document 32021R1317). European-Commission. (2023). Commission Regulation (EU) 2023/915 of 25 April 2023 on maximum levels for certain contaminants in food and repealing Regulation (EC) No 1881/2006. (02023R0915-20230810). FDA. (1995). 21 CFR 165.110 — Bottled water. Retrieved from https://www.ecfr.gov/current/title-21/part-165/section-165.110 FDA. (2004). Guidance for Industry: Juice Hazard Analysis Critical Control Point Hazards and Controls Guidance, First Edition. (E4-452). Retrieved from https://www.federalregister.gov/d/E4-452 FDA. (2006). Guidance for Industry: Lead in Candy Likely To Be Consumed Frequently by Small Children. (E6-19809). Retrieved from https://www.federalregister.gov/d/E6-19809 FDA. (2022a). 21 CFR Part 129—PROCESSING AND BOTTLING OF BOTTLED DRINKING WATER. Retrieved from https://www.ecfr.gov/current/title-21/part-129 FDA. (2022b). Draft Supporting Document for Establishing FDA’s Action Levels for Lead in Juice. (2022-09255). Retrieved from https://www.federalregister.gov/d/2022-09255 FDA. (2023). Draft Guidance for Industry: Action Levels for Lead in Food Intended for Babies and Young Children. (2023-01384). Retrieved from https://www.federalregister.gov/d/2023-01384 Finster, M. E., Gray, K. A., & Binns, H. J. (2004). Lead levels of edibles grown in contaminated residential soils: a field survey. Sci Total Environ, 320(2-3), 245-257. https://doi.org/10.1016/j.scitotenv.2003.08.009 Flannery, B. M., Dolan, L. C., Hoffman-Pennesi, D., Gavelek, A., Jones, O. E., Kanwal, R., Wolpert, B., Gensheimer, K., Dennis, S., & Fitzpatrick, S. (2020). U.S. Food and Drug Administration's interim reference levels for dietary lead exposure in children and women of childbearing age. Regul Toxicol Pharmacol, 110, 104516. https://doi.org/10.1016/j.yrtph.2019.104516 Flannery, B. M., & Middleton, K. B. (2022). Updated interim reference levels for dietary lead to support FDA's Closer to Zero action plan. Regul Toxicol Pharmacol, 133, 105202. https://doi.org/10.1016/j.yrtph.2022.105202 Flora, G., Gupta, D., & Tiwari, A. (2012). Toxicity of lead: A review with recent updates. Interdiscip Toxicol, 5(2), 47-58. https://doi.org/10.2478/v10102-012-0009-2 Flora, S. J., Flora, G., Saxena, G., & Mishra, M. (2007). Arsenic and lead induced free radical generation and their reversibility following chelation. Cell Mol Biol (Noisy-le-grand), 53(1), 26-47. Gavelek, A., Spungen, J., Hoffman-Pennesi, D., Flannery, B., Dolan, L., Dennis, S., & Fitzpatrick, S. (2020). Lead exposures in older children (males and females 7-17 years), women of childbearing age (females 16-49 years) and adults (males and females 18+ years): FDA total diet study 2014-16. Food Addit Contam Part A Chem Anal Control Expo Risk Assess, 37(1), 104-109. https://doi.org/10.1080/19440049.2019.1681595 Gheorghe Valentin, G., Emanuela, B., Maria Lavinia, B., & Victor, C. (2019). CADMIUM, LEAD AND ZINC LEVELS IN ORGANIC AND CONVENTIONAL EGGS. AgroLife Scientific Journal, 8(1). https://agrolifejournal.usamv.ro/index.php/agrolife/article/view/423 Goering, P. L. (1993). Lead-protein interactions as a basis for lead toxicity. Neurotoxicology, 14(2-3), 45-60. Gould, E. (2009). Childhood lead poisoning: conservative estimates of the social and economic benefits of lead hazard control. Environ Health Perspect, 117(7), 1162-1167. https://doi.org/10.1289/ehp.0800408 Guilarte, T. R., Miceli, R. C., & Jett, D. A. (1994). Neurochemical aspects of hippocampal and cortical Pb2+ neurotoxicity. Neurotoxicology, 15(3), 459-466. Heshmati, A., AliasgharVahidinia, & IrajSalehi. (2014). Evaluation of Heavy Metals Contamination of Unrefined and Refined Table Salt. Hong, Q.-Y., Jiang, Q.-R., Li, Y.-L., & Lin, S.-Z. (2016). 105 年度臺灣南部地區市售水產品中重金屬含量分析. Huang, H.-L., Wu, C.-F., Huang, Y.-C., Gu, P.-W., Jiang, Y.-S., & Ning, H.-C. (2012). 探討台灣南北兩地兒童血中鉛濃度之分布 [Blood Lead Levels Among Children in Northern and Southern Taiwan]. Journal of Biomedical & Laboratory Sciences, 24(3), 101-108. https://doi.org/10.30046/jbls.201209.0005 IARC. (2006). Inorganic and organic lead compounds. Monographs on the Evaluation of Carcinogenic Risks to Human, 87, 1-471. Jonasson, M. E., & Afshari, R. (2018). Historical documentation of lead toxicity prior to the 20th century in English literature. Hum Exp Toxicol, 37(8), 775-788. https://doi.org/10.1177/0960327117737146 López-García, I., Vicente-Martínez, Y., & Hernández-Córdoba, M. (2014). Determination of cadmium and lead in edible oils by electrothermal atomic absorption spectrometry after reverse dispersive liquid-liquid microextraction. Talanta, 124, 106-110. https://doi.org/10.1016/j.talanta.2014.02.011 Lacerda, D., Pestana, I. A., Santos Vergilio, C. D., & de Rezende, C. E. (2023). Global decrease in blood lead concentrations due to the removal of leaded gasoline. Chemosphere, 324, 138207. https://doi.org/10.1016/j.chemosphere.2023.138207 Lambert, O., Piroux, M., Puyo, S., Thorin, C., Larhantec, M., Delbac, F., & Pouliquen, H. (2012). Bees, honey and pollen as sentinels for lead environmental contamination. Environ Pollut, 170, 254-259. https://doi.org/10.1016/j.envpol.2012.07.012 Lanphear, B. P., Dietrich, K., Auinger, P., & Cox, C. (2000). Cognitive deficits associated with blood lead concentrations <10 microg/dL in US children and adolescents. Public Health Rep, 115(6), 521-529. https://doi.org/10.1093/phr/115.6.521 Lanphear, B. P., Hornung, R., Khoury, J., Yolton, K., Baghurst, P., Bellinger, D. C., Canfield, R. L., Dietrich, K. N., Bornschein, R., Greene, T., Rothenberg, S. J., Needleman, H. L., Schnaas, L., Wasserman, G., Graziano, J., & Roberts, R. (2005). Low-level environmental lead exposure and children's intellectual function: an international pooled analysis. Environ Health Perspect, 113(7), 894-899. https://doi.org/10.1289/ehp.7688 Lessler, M. A. (1988). Lead and Lead Poisoning from Antiquity to Modern Times. The Ohio Journal of Science, 88(3), 78-84. http://hdl.handle.net/1811/23252 Lin, C. C., Chen, Y. C., Su, F. C., Lin, C. M., Liao, H. F., Hwang, Y. H., Hsieh, W. S., Jeng, S. F., Su, Y. N., & Chen, P. C. (2013). In utero exposure to environmental lead and manganese and neurodevelopment at 2 years of age. Environ Res, 123, 52-57. https://doi.org/10.1016/j.envres.2013.03.003 Lin, Y.-H., Lin, C.-Y., Wang, I.-J., & Hwang, Y.-H. (2012). 2011年台灣地區幼稚園兒童血中鉛濃度與影響因素初探分析 [Distribution and Determinants of Blood Lead Levels in Kindergarten Children in Taiwan, 2011]. 台灣公共衛生雜誌, 31(3), 285-298. https://doi.org/10.6288/tjph2012-31-03-08 Malavolti, M., Fairweather-Tait, S. J., Malagoli, C., Vescovi, L., Vinceti, M., & Filippini, T. (2020). Lead exposure in an Italian population: Food content, dietary intake and risk assessment. Food Research International, 137, 109370. https://doi.org/https://doi.org/10.1016/j.foodres.2020.109370 Markovac, J., & Goldstein, G. W. (1988). Picomolar concentrations of lead stimulate brain protein kinase C. Nature, 334(6177), 71-73. https://doi.org/10.1038/334071a0 Meshref, A. M. S., Moselhy, W. A., & Hassan, N. E.-H. Y. (2014). Heavy metals and trace elements levels in milk and milk products. Journal of Food Measurement and Characterization, 8(4), 381-388. https://doi.org/10.1007/s11694-014-9203-6 National Food Institute, T. U. o. D., Denmark, Sá Monteiro, M., Sloth, J., Holdt, S., & Hansen, M. (2019). Analysis and Risk Assessment of Seaweed. EFSA Journal, 17(S2), e170915. https://doi.org/https://doi.org/10.2903/j.efsa.2019.e170915 Navas-Acien, A., Guallar, E., Silbergeld Ellen, K., & Rothenberg Stephen, J. (2007). Lead Exposure and Cardiovascular Disease—A Systematic Review. Environmental Health Perspectives, 115(3), 472-482. https://doi.org/10.1289/ehp.9785 Nawrot, T. S., Thijs, L., Den Hond, E. M., Roels, H. A., & Staessen, J. A. (2002). An epidemiological re-appraisal of the association between blood pressure and blood lead: a meta-analysis. Journal of Human Hypertension, 16(2), 123-131. https://doi.org/10.1038/sj.jhh.1001300 Ni, Z., Hou, S., Barton, C. H., & Vaziri, N. D. (2004). Lead exposure raises superoxide and hydrogen peroxide in human endothelial and vascular smooth muscle cells. Kidney Int, 66(6), 2329-2336. https://doi.org/10.1111/j.1523-1755.2004.66032.x NTP. (2021). Report on Carcinogens, Fifteenth Edition (Lead and Lead Compounds, Issue. P. H. S. U.S. Department of Health and Human Services. Olhoff, A., & Christensen, J. M. (2020). Emissions Gap Report 2020. Piomelli, S. (2002). Childhood lead poisoning. Pediatr Clin North Am, 49(6), 1285-1304, vii. https://doi.org/10.1016/s0031-3955(02)00097-4 Rajaraman, P., Stewart, P. A., Samet, J. M., Schwartz, B. S., Linet, M. S., Zahm, S. H., Rothman, N., Yeager, M., Fine, H. A., Black, P. M., Loeffler, J., Shapiro, W. R., Selker, R. G., & Inskip, P. D. (2006). Lead, genetic susceptibility, and risk of adult brain tumors. Cancer Epidemiol Biomarkers Prev, 15(12), 2514-2520. https://doi.org/10.1158/1055-9965.Epi-06-0482 Ruckart, P. Z., Jones, R. L., Courtney, J. G., LeBlanc, T. T., Jackson, W., Karwowski, M. P., Cheng, P. Y., Allwood, P., Svendsen, E. R., & Breysse, P. N. (2021). Update of the Blood Lead Reference Value - United States, 2021. MMWR Morb Mortal Wkly Rep, 70(43), 1509-1512. https://doi.org/10.15585/mmwr.mm7043a4 Rye, J. E., Ziegler, E. E., Nelson, S. E., & Fomon, S. J. (1983). Dietary intake of lead and blood lead concentration in early infancy. Am J Dis Child, 137(9), 886-891. Sanders, T., Liu, Y., Buchner, V., & Tchounwou, P. B. (2009). Neurotoxic effects and biomarkers of lead exposure: a review. Rev Environ Health, 24(1), 15-45. https://doi.org/10.1515/reveh.2009.24.1.15 Silbergeld, E. K., Waalkes, M., & Rice, J. M. (2000). Lead as a carcinogen: experimental evidence and mechanisms of action. Am J Ind Med, 38(3), 316-323. https://doi.org/10.1002/1097-0274(200009)38:3<316::aid-ajim11>3.0.co;2-p Tenenbein, M. (1997). Leaded gasoline abuse: the role of tetraethyl lead. Hum Exp Toxicol, 16(4), 217-222. https://doi.org/10.1177/096032719701600411 US ATSDR. (2020). Agency for Toxic Substances and Disease Registry (US). Vaziri, N. D., & Sica, D. A. (2004). Lead-induced hypertension: role of oxidative stress. Curr Hypertens Rep, 6(4), 314-320. https://doi.org/10.1007/s11906-004-0027-3 Vij, A. (2009). Hemopoietic, Hemostatic and Mutagenic Effects of Lead and Possible Prevention by Zinc and Vitamin C. Al Ameen Journal of Medical Sciences, 02. Waldron, H. A. (1973). Lead poisoning in the ancient world. Med Hist, 17(4), 391-399. https://doi.org/10.1017/s0025727300019013 Wang, C.-W., Weng, H.-T., Fu, S.-Y., Liao, H.-Y., Huang, W.-C., Wu, M.-M., Huang, H.-W., Wang, D.-Y., & Feng, R.-L. (2015). 102年度及103年度食米重金屬(鎘、汞、鉛)含量調查 [Investigation on Heavy Metals (Cadmium, Mercury and Lead) in Rice]. 食品藥物研究年報(6), 59-66. Wang, Y.-T., Fang, Y.-X., Lin, Y.-R., Wang, C.-S., & Xu, J.-X. (2015). 102至103年度市售蔬果植物類及菇類中重金屬鉛及鎘含量監測結果 [Survey on Contents of Cadmium and Lead in Fruits, Vegetables and Mushrooms in Taiwan, 2013-2014]. 食品藥物研究年報(6), 76-85. Wang, Y.-t., Lin, y.-x., Chen, t.-l., & Chiu, s.-y. (2016). 104年度市售蔬果植物類重金屬鉛及鎘含量監測結果 [Survey on the Contents of Cadmium and Lead in Fruits and Vegetables in Taiwan, 2015]. 食品藥物研究年報(7), 53-59. WHO. (1972). Evaluation of certain food additives and the contaminants mercury, lead, and cadmium : sixteenth report of the Joint FAO/WHO Expert Committee on Food Additives, Geneva, 4-12 April 1972 (9241205059). https://iris.who.int/handle/10665/40985 WHO. (1986). Lead (evaluation of health risk to infants and children). http://www.inchem.org/documents/jecfa/jecmono/v21je16.htm. WHO. (1993). Evaluation of certain food additives and contaminants. Forty-first report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organ Tech Rep Ser, 837, 1-53. WHO. (2000). Evaluation of certain food additives and contaminants. World Health Organ Tech Rep Ser, 896, 1-128. WHO. (2011). Evaluation of certain food additive and contaminants. World Health Organ Tech Rep Ser(960), 1-226. WHO, F. a. (2022). Code of Practice for the Prevention and Reduction of Lead Contamination in Foods. (No. CXC 56-2004). Rome, Italy: Codex Alimentarius Commission Wong, C., Roberts, S. M., & Saab, I. N. (2022). Review of regulatory reference values and background levels for heavy metals in the human diet. Regul Toxicol Pharmacol, 130, 105122. https://doi.org/10.1016/j.yrtph.2022.105122 行政院衛生署. (2004). 牛羊豬及家禽可食性內臟重金屬限量標準. 衛生限量標準. 行政院衛生署. (2009). 水產動物類衛生標準. 食品衛生標準 行政處主計處. (2023). 111年綠色國民所得帳編製報告. 衛生福利部. (2022). 食品中重金屬之限量標準. 食品中污染物質及毒素衛生標準 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95081 | - |
dc.description.abstract | 鉛 (Pb) 是一種重金屬污染物,廣泛分佈在整個環境中,並且不會被分解。鉛對人類各系統及器官均產生危害,如生殖系統、循環系統、神經系統和腎臟系統等,國際癌症研究機構 (IARC) 將無機鉛歸類為2A類致癌物。 鉛的暴露主要是透過飲食途徑,鉛對食物鏈的污染引起了人們的高度關注。各國與國際組織為各種食品訂定了鉛最大殘留限量 (MRL)。
本研究採用機率累積性健康風險評估,並利用國家攝食資料庫的數據,評估了台灣目前各種食品的鉛最大殘留限量是否足以保護民眾健康,評估結果可以使政府和監察機構提供科學證據為制定法規提供參考。本研究假設食品中的鉛濃度是台灣目前最新訂定的法規值的95%信賴區間的上限,並設定為對數常態分佈,攝食量數據和體重數據皆設定為常態分佈,為計算台灣民眾的平均每日暴露劑量(ADD),使用Crystal Ball軟件進行蒙地卡羅模擬,進行10,000次模擬。採用美國食品藥物管理局 (FDA) 建議的臨時參考水準 (IRL) 和歐洲食品安全局 (EFSA) 認為鉛的關鍵毒性效應為神經毒性及神經發育毒性和心血管影響,其基準劑量下限 (BMDL) 作為鉛的非致癌性風險評估。 結果顯示,ADD隨著年齡越小,暴露劑量越高,所有年齡組別的危害指數 (HI) 均大於 1,表示民眾有可能受到鉛的非致癌不良健康效應危害,暴露限值 (MOE) 在0-3歲和3-6歲的結果指出,不能忽略鉛對兒童造成的發展神經毒性的影響,在致癌風險評估方面,所有年齡層的致癌風險都超過10-6,皆為不可接受的風險,在敏感度分析中,各年齡層貢獻最高食品類別為飲料類。 這些結果表明,應透過台灣的飲食暴露重新評估鉛的健康風險,優先考量評估飲品類,為政府提供一個修訂政策的科學根據,以充分保護民眾健康。 | zh_TW |
dc.description.abstract | Lead (Pb) is a heavy metal pollutant widely distributed in the environment and is non-degradable. Lead poses hazards to various human systems and organs, including the reproductive system, circulatory system, nervous system, and kidney system. The International Agency for Research on Cancer (IARC) classifies inorganic lead as a Group 2A carcinogen. Exposure to lead mainly occurs through dietary pathways, and the contamination of the food chain by lead has raised significant concerns. Various countries and international organizations have established Maximum Residue Limits (MRL) for lead in different food items.
This study employs probabilistic cumulative health risk assessment and utilizes data from the national food consumption database to evaluate whether the current MRLs for lead in various foods in Taiwan are sufficient to protect public health. The assessment results can provide scientific evidence for government and regulatory bodies in formulating regulations. The study assumes that lead concentrations in food are at the upper limit of the 95% confidence interval of the latest regulatory values in Taiwan. It is set as a log-normal distribution, and intake and body weight are both assumed belongs to normal distributions. To calculate the Average Daily Dose (ADD) for the Taiwanese population, Monte Carlo simulation is conducted using the Crystal Ball software with 10,000 trials. The study adopts the Interim Reference Level (IRL) recommended by the U.S. Food and Drug Administration (FDA) and the Benchmark Dose Lower Limit (BMDL) as the non-carcinogenic risk assessment for lead, considering its key toxic effects on Neurotoxicity and neurodevelopmental toxicity and Cardiovascular effects as suggested by the European Food Safety Authority (EFSA). Results indicate that as age decreases, ADD increases, and the Hazard Index (HI) for all age groups greater than 1, indicating potential non-carcinogenic adverse health effects of lead on the population. The Margin of Exposure (MOE) results for 0-3 years and 3-6 years suggest that the impact of lead on developmental neurotoxicity in children cannot be ignored. In terms of carcinogenic risk assessment, the risk greater than 10-6 for all age groups, indicating unacceptable risk. Sensitivity analysis reveals that beverages contribute the highest to the exposure in each age group. These findings suggest a need for a reevaluation of the health risks of lead through dietary exposure in Taiwan, with a priority on assessing beverage categories. This can provide the government with a scientific basis for revising policies to adequately protect public health. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-28T16:10:01Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-28T16:10:01Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 中文摘要 iii Abstract iv 目錄 vi 圖目錄 viii 表目錄 x 第一章緒論 1 1.1 鉛簡介 1 1.2 過去使用鉛的歷史 1 1.3 鉛的法規建立與改變 3 1.3.1 國際食品法典委員會 3 1.3.2 歐洲 3 1.3.3 美國 5 1.3.4 台灣 6 1.4 國際上鉛的耐受標準 7 1.4.1 鉛的暫定每週耐受攝入量 7 1.4.2 血鉛參考值 9 1.4.3 FDA’s Closer to Zero action plan 10 1.5 研究背景與目的 11 第二章文獻回顧 12 2.1 鉛的來源及暴露途徑 12 2.2 非致癌性風險評估 13 2.2.1 神經毒性及神經發育毒性 13 2.2.2 心血管影響 15 2.3 致癌性風險評估 16 第三章方法 19 3.1 研究架構 19 3.2 國家攝食資料庫 20 3.3 台灣食品中鉛的法規值分佈假設 21 3.4 暴露評估 22 3.5 非致癌性風險評估 22 3.5.1 危害指數(Hazard Index, HI) 22 3.5.2 暴露限值(Margin of Exposure, MOE) 23 3.6 致癌性風險評估 24 3.7 統計分析及軟體 25 第四章結果與討論 26 4.1 暴露評估結果 26 4.2 風險特性化結果 27 4.2.1 非致癌風險結果 27 4.2.2 致癌風險結果 28 4.2.3 敏感度分析結果 29 4.2.4 貢獻度百分比分析結果 30 4.3 與國際間的飲食暴露評估之比較 32 4.4 鉛飲食暴露、血鉛濃度和IQ 智商之間關係 34 4.5 建議修訂食品中鉛的最大限量 36 4.6 研究限制 37 第五章結論 39 參考文獻 40 | - |
dc.language.iso | zh_TW | - |
dc.title | 系統性評估台灣食品中鉛最大殘留限量的安全性 | zh_TW |
dc.title | Systematic Evaluation of the Maximum Residue Limits of Lead in Foods of Taiwan | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 羅宇軒;蕭伊倫 | zh_TW |
dc.contributor.oralexamcommittee | Yu-Syuan Luo;I-Lun Hsiao | en |
dc.subject.keyword | 鉛,蒙地卡羅模擬,機率性風險評估,最大殘留限量,飲食暴露, | zh_TW |
dc.subject.keyword | Lead,Monte Carlo simulation,Probabilistic risk assessment,Maximum Residue Limit,Dietary exposure, | en |
dc.relation.page | 157 | - |
dc.identifier.doi | 10.6342/NTU202400795 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-04-17 | - |
dc.contributor.author-college | 公共衛生學院 | - |
dc.contributor.author-dept | 食品安全與健康研究所 | - |
Appears in Collections: | 食品安全與健康研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-112-2.pdf Restricted Access | 7.34 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.