Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95076
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor杜裕康zh_TW
dc.contributor.advisorYu-Kang Tuen
dc.contributor.author林義智zh_TW
dc.contributor.authorYi-Chih Linen
dc.date.accessioned2024-08-28T16:08:09Z-
dc.date.available2024-08-29-
dc.date.copyright2024-08-28-
dc.date.issued2024-
dc.date.submitted2024-05-28-
dc.identifier.citation1. Cinà CS, Devereaux PJ. Coronary-artery revascularization before elective major vascular surgery. McFalls EO, ward HB, Moritz TE, Goldman S, Krupski WC, Littooy F, Pierpont G, Santilli S, Rapp J, Hattler B, Shunk K, Jaenicke C, Thottapurathu L, Ellis N, Reda DJ, Henderson WG. N Engl J Med. 2004; 351: 2795-804. Vasc Med 2006;11(1):61-3.
2. Jungers P, Massy ZA, Nguyen Khoa T, Fumeron C, Labrunie M, Lacour B, et al. Incidence and risk factors of atherosclerotic cardiovascular accidents in predialysis chronic renal failure patients: a prospective study. Nephrol Dial Transplant 1997;12(12):2597-602.
3. James MT, Hemmelgarn BR, Tonelli M. Early recognition and prevention of chronic kidney disease. Lancet 2010;375(9722):1296-309.
4. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015;385(9963):117-71.
5. Plantinga LC, Boulware LE, Coresh J, Stevens LA, Miller ER, 3rd, Saran R, et al. Patient awareness of chronic kidney disease: trends and predictors. Arch Intern Med 2008;168(20):2268-75.
6. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 2004;351(13):1296-305.
7. Pinkau T, Hilgers KF, Veelken R, Mann JF. How does minor renal dysfunction influence cardiovascular risk and the management of cardiovascular disease? J Am Soc Nephrol 2004;15(3):517-23.
8. Bosco E, Hsueh L, McConeghy KW, Gravenstein S, Saade E. Major adverse cardiovascular event definitions used in observational analysis of administrative databases: a systematic review. BMC Med Res Methodol 2021;21(1):241.
9. Lambers Heerspink HJ, Tighiouart H, Sang Y, Ballew S, Mondal H, Matsushita K, et al. GFR decline and subsequent risk of established kidney outcomes: a meta-analysis of 37 randomized controlled trials. Am J Kidney Dis 2014;64(6):860-6.
10. Rodriguez-Colon SM, Mo J, Duan Y, Liu J, Caulfield JE, Jin X, et al. Metabolic syndrome clusters and the risk of incident stroke: the atherosclerosis risk in communities (ARIC) study. Stroke 2009;40(1):200-5.
11. Kopin L, Lowenstein C. Dyslipidemia. Ann Intern Med 2017;167(11):Itc81-itc96.
12. Michos ED, McEvoy JW, Blumenthal RS. Lipid Management for the Prevention of Atherosclerotic Cardiovascular Disease. N Engl J Med 2019;381(16):1557-67.
13. Schaeffner ES, Kurth T, Curhan GC, Glynn RJ, Rexrode KM, Baigent C, et al. Cholesterol and the risk of renal dysfunction in apparently healthy men. J Am Soc Nephrol 2003;14(8):2084-91.
14. Hyre AD, Fox CS, Astor BC, Cohen AJ, Muntner P. The impact of reclassifying moderate CKD as a coronary heart disease risk equivalent on the number of US adults recommended lipid-lowering treatment. Am J Kidney Dis 2007;49(1):37-45.
15. Hager MR, Narla AD, Tannock LR. Dyslipidemia in patients with chronic kidney disease. Rev Endocr Metab Disord 2017;18(1):29-40.
16. Lin YC, Tsao HM, Lai TS, Chen YT, Chou YH, Lin SL, et al. Effect of Lipid-Lowering Drugs on Renal and Cardiovascular Outcomes in Patients with Chronic Kidney Disease and Dyslipidemia: A Retrospective Cohort Study. Clin Pharmacol Ther 2023;114(6):1366-74.
17. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 2002;360(9326):7-22.
18. Pellicori P, Costanzo P, Joseph AC, Hoye A, Atkin SL, Cleland JG. Medical management of stable coronary atherosclerosis. Curr Atheroscler Rep 2013;15(4):313.
19. Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD, Murphy SA, et al. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N Engl J Med 2017;376(18):1713-22.
20. Baigent C, Landray MJ, Reith C, Emberson J, Wheeler DC, Tomson C, et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. Lancet 2011;377(9784):2181-92.
21. Lin YC, Lai TS, Wu HY, Chou YH, Chiang WC, Lin SL, et al. Effects and Safety of Statin and Ezetimibe Combination Therapy in Patients with Chronic Kidney Disease: A Systematic Review and Meta-Analysis. Clin Pharmacol Ther 2020;108(4):833-43.
22. Major RW, Cheung CK, Gray LJ, Brunskill NJ. Statins and Cardiovascular Primary Prevention in CKD: A Meta-Analysis. Clin J Am Soc Nephrol 2015;10(5):732-9.
23. Palmer SC, Craig JC, Navaneethan SD, Tonelli M, Pellegrini F, Strippoli GF. Benefits and harms of statin therapy for persons with chronic kidney disease: a systematic review and meta-analysis. Ann Intern Med 2012;157(4):263-75.
24. Tonelli M, Wanner C. Lipid management in chronic kidney disease: synopsis of the Kidney Disease: Improving Global Outcomes 2013 clinical practice guideline. Ann Intern Med 2014;160(3):182.
25. Wanner C, Tonelli M. KDIGO Clinical Practice Guideline for Lipid Management in CKD: summary of recommendation statements and clinical approach to the patient. Kidney Int 2014;85(6):1303-9.
26. Upadhyay A, Earley A, Lamont JL, Haynes S, Wanner C, Balk EM. Lipid-lowering therapy in persons with chronic kidney disease: a systematic review and meta-analysis. Ann Intern Med 2012;157(4):251-62.
27. Davidson MH, McGarry T, Bettis R, Melani L, Lipka LJ, LeBeaut AP, et al. Ezetimibe coadministered with simvastatin in patients with primary hypercholesterolemia. J Am Coll Cardiol 2002;40(12):2125-34.
28. Ballantyne CM, Blazing MA, King TR, Brady WE, Palmisano J. Efficacy and safety of ezetimibe co-administered with simvastatin compared with atorvastatin in adults with hypercholesterolemia. Am J Cardiol 2004;93(12):1487-94.
29. Zoja C, Corna D, Rottoli D, Cattaneo D, Zanchi C, Tomasoni S, et al. Effect of combining ACE inhibitor and statin in severe experimental nephropathy. Kidney Int 2002;61(5):1635-45.
30. Ishibashi Y, Yamagishi S, Matsui T, Ohta K, Tanoue R, Takeuchi M, et al. Pravastatin inhibits advanced glycation end products (AGEs)-induced proximal tubular cell apoptosis and injury by reducing receptor for AGEs (RAGE) level. Metabolism 2012;61(8):1067-72.
31. Kimura G, Kasahara M, Ueshima K, Tanaka S, Yasuno S, Fujimoto A, et al. Effects of atorvastatin on renal function in patients with dyslipidemia and chronic kidney disease: assessment of clinical usefulness in CKD patients with atorvastatin (ASUCA) trial. Clin Exp Nephrol 2017;21(3):417-24.
32. Ohsawa M, Tamura K, Wakui H, Kanaoka T, Azushima K, Uneda K, et al. Effects of pitavastatin add-on therapy on chronic kidney disease with albuminuria and dyslipidemia. Lipids Health Dis 2015;14:161.
33. Haynes R, Lewis D, Emberson J, Reith C, Agodoa L, Cass A, et al. Effects of lowering LDL cholesterol on progression of kidney disease. J Am Soc Nephrol 2014;25(8):1825-33.
34. Adhyaru BB, Jacobson TA. Safety and efficacy of statin therapy. Nat Rev Cardiol 2018;15(12):757-69.
35. Hwang SD, Kim K, Kim YJ, Lee SW, Lee JH, Song JH. Effect of statins on cardiovascular complications in chronic kidney disease patients: A network meta-analysis. Medicine (Baltimore) 2020;99(22):e20061.
36. Herrera-Gómez F, Chimeno MM, Martín-García D, Lizaraso-Soto F, Maurtua-Briseño- Meiggs Á, Grande-Villoria J, et al. Cholesterol-Lowering Treatment in Chronic Kidney Disease: Multistage Pairwise and Network Meta-Analyses. Sci Rep 2019;9(1):8951.
37. Brown G, Albers JJ, Fisher LD, Schaefer SM, Lin JT, Kaplan C, et al. Regression of coronary artery disease as a result of intensive lipid-lowering therapy in men with high levels of apolipoprotein B. N Engl J Med 1990;323(19):1289-98.
38. Liao G, Wang X, Li Y, Chen X, Huang K, Bai L, et al. Antidyslipidemia Pharmacotherapy in Chronic Kidney Disease: A Systematic Review and Bayesian Network Meta-Analysis. Pharmaceutics 2022;15(1).
39. Boden WE, Probstfield JL, Anderson T, Chaitman BR, Desvignes-Nickens P, Koprowicz K, et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med 2011;365(24):2255-67.
40. Bhat S, Sarkar S, Zaffar D, Dandona P, Kalyani RR. Omega-3 Fatty Acids in Cardiovascular Disease and Diabetes: a Review of Recent Evidence. Curr Cardiol Rep 2023;25(2):51-65.
41. Webster AC, Nagler EV, Morton RL, Masson P. Chronic Kidney Disease. Lancet 2017;389(10075):1238-52.
42. Vassalotti JA, Stevens LA, Levey AS. Testing for chronic kidney disease: a position statement from the National Kidney Foundation. Am J Kidney Dis 2007;50(2):169-80.
43. Vanholder R, Baurmeister U, Brunet P, Cohen G, Glorieux G, Jankowski J. A bench to bedside view of uremic toxins. J Am Soc Nephrol 2008;19(5):863-70.
44. Anders HJ, Andersen K, Stecher B. The intestinal microbiota, a leaky gut, and abnormal immunity in kidney disease. Kidney Int 2013;83(6):1010-6.
45. Reiss AB, Voloshyna I, De Leon J, Miyawaki N, Mattana J. Cholesterol Metabolism in CKD. Am J Kidney Dis 2015;66(6):1071-82.
46. Murphy D, McCulloch CE, Lin F, Banerjee T, Bragg-Gresham JL, Eberhardt MS, et al. Trends in Prevalence of Chronic Kidney Disease in the United States. Ann Intern Med 2016;165(7):473-81.
47. Morton RL, Schlackow I, Mihaylova B, Staplin ND, Gray A, Cass A. The impact of social disadvantage in moderate-to-severe chronic kidney disease: an equity-focused systematic review. Nephrol Dial Transplant 2016;31(1):46-56.
48. Di Angelantonio E, Danesh J, Eiriksdottir G, Gudnason V. Renal function and risk of coronary heart disease in general populations: new prospective study and systematic review. PLoS Med 2007;4(9):e270.
49. Perkovic V, Verdon C, Ninomiya T, Barzi F, Cass A, Patel A, et al. The relationship between proteinuria and coronary risk: a systematic review and meta-analysis. PLoS Med 2008;5(10):e207.
50. Thompson S, James M, Wiebe N, Hemmelgarn B, Manns B, Klarenbach S, et al. Cause of Death in Patients with Reduced Kidney Function. J Am Soc Nephrol 2015;26(10):2504-11.
51. Tonelli M, Wiebe N, Culleton B, House A, Rabbat C, Fok M, et al. Chronic kidney disease and mortality risk: a systematic review. J Am Soc Nephrol 2006;17(7):2034-47.
52. Parfrey PS, Foley RN, Harnett JD, Kent GM, Murray D, Barre PE. Outcome and risk factors of ischemic heart disease in chronic uremia. Kidney Int 1996;49(5):1428-34.
53. Fried LF, Shlipak MG, Crump C, Bleyer AJ, Gottdiener JS, Kronmal RA, et al. Renal insufficiency as a predictor of cardiovascular outcomes and mortality in elderly individuals. J Am Coll Cardiol 2003;41(8):1364-72.
54. Foley RN, Murray AM, Li S, Herzog CA, McBean AM, Eggers PW, et al. Chronic kidney disease and the risk for cardiovascular disease, renal replacement, and death in the United States Medicare population, 1998 to 1999. J Am Soc Nephrol 2005;16(2):489-95.
55. Libby P. Inflammation in atherosclerosis. Nature 2002;420(6917):868-74.
56. Tulenko TN, Chen M, Mason PE, Mason RP. Physical effects of cholesterol on arterial smooth muscle membranes: evidence of immiscible cholesterol domains and alterations in bilayer width during atherogenesis. J Lipid Res 1998;39(5):947-56.
57. Muntner P, He J, Astor BC, Folsom AR, Coresh J. Traditional and nontraditional risk factors predict coronary heart disease in chronic kidney disease: results from the atherosclerosis risk in communities study. J Am Soc Nephrol 2005;16(2):529-38.
58. Lindner A, Charra B, Sherrard DJ, Scribner BH. Accelerated atherosclerosis in prolonged maintenance hemodialysis. N Engl J Med 1974;290(13):697-701.
59. Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, de Jong PE, et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 2010;375(9731):2073-81.
60. Manjunath G, Tighiouart H, Ibrahim H, MacLeod B, Salem DN, Griffith JL, et al. Level of kidney function as a risk factor for atherosclerotic cardiovascular outcomes in the community. J Am Coll Cardiol 2003;41(1):47-55.
61. Cherney DZI, Rosenson RS, Lawler PR. Atherosclerotic Cardiovascular Disease and Chronic Kidney Disease: An Emerging Role for Evolocumab? J Am Coll Cardiol 2019;73(23):2971-5.
62. Foley RN, Wang C, Collins AJ. Cardiovascular risk factor profiles and kidney function stage in the US general population: the NHANES III study. Mayo Clin Proc 2005;80(10):1270-7.
63. Sarnak MJ, Amann K, Bangalore S, Cavalcante JL, Charytan DM, Craig JC, et al. Chronic Kidney Disease and Coronary Artery Disease: JACC State-of-the-Art Review. J Am Coll Cardiol 2019;74(14):1823-38.
64. Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol 2019;73(24):3168-209.
65. Piecha G, Adamczak M, Ritz E. Dyslipidemia in chronic kidney disease: pathogenesis and intervention. Pol Arch Med Wewn 2009;119(7-8):487-92.
66. Hales CN, Barker DJ. The thrifty phenotype hypothesis. Br Med Bull 2001;60:5-20.
67. Kwan BC, Kronenberg F, Beddhu S, Cheung AK. Lipoprotein metabolism and lipid management in chronic kidney disease. J Am Soc Nephrol 2007;18(4):1246-61.
68. Lamprea-Montealegre JA, Staplin N, Herrington WG, Haynes R, Emberson J, Baigent C, et al. Apolipoprotein B, Triglyceride-Rich Lipoproteins, and Risk of Cardiovascular Events in Persons with CKD. Clin J Am Soc Nephrol 2020;15(1):47-60.
69. Charlesworth JA, Kriketos AD, Jones JE, Erlich JH, Campbell LV, Peake PW. Insulin resistance and postprandial triglyceride levels in primary renal disease. Metabolism 2005;54(6):821-8.
70. Vaziri ND, Liang K. Down-regulation of tissue lipoprotein lipase expression in experimental chronic renal failure. Kidney Int 1996;50(6):1928-35.
71. Vaziri ND, Wang XQ, Liang K. Secondary hyperparathyroidism downregulates lipoprotein lipase expression in chronic renal failure. Am J Physiol 1997;273(6):F925-30.
72. Akmal M, Kasim SE, Soliman AR, Massry SG. Excess parathyroid hormone adversely affects lipid metabolism in chronic renal failure. Kidney Int 1990;37(3):854-8.
73. Hirano T, Sakaue T, Misaki A, Murayama S, Takahashi T, Okada K, et al. Very low-density lipoprotein-apoprotein CI is increased in diabetic nephropathy: comparison with apoprotein CIII. Kidney Int 2003;63(6):2171-7.
74. Mikolasevic I, Žutelija M, Mavrinac V, Orlic L. Dyslipidemia in patients with chronic kidney disease: etiology and management. Int J Nephrol Renovasc Dis 2017;10:35-45.
75. Tsimihodimos V, Mitrogianni Z, Elisaf M. Dyslipidemia associated with chronic kidney disease. Open Cardiovasc Med J 2011;5:41-8.
76. Després JP, Lemieux I, Dagenais GR, Cantin B, Lamarche B. HDL-cholesterol as a marker of coronary heart disease risk: the Québec cardiovascular study. Atherosclerosis 2000;153(2):263-72.
77. Vaziri ND, Deng G, Liang K. Hepatic HDL receptor, SR-B1 and Apo A-I expression in chronic renal failure. Nephrol Dial Transplant 1999;14(6):1462-6.
78. Harper CR, Jacobson TA. Managing dyslipidemia in chronic kidney disease. J Am Coll Cardiol 2008;51(25):2375-84.
79. Kaysen GA. Lipid and lipoprotein metabolism in chronic kidney disease. J Ren Nutr 2009;19(1):73-7.
80. Afshinnia F, Pennathur S. Lipids and Cardiovascular Risk with CKD. Clin J Am Soc Nephrol
2020;15(1):5-7.
81. Deighan CJ, Caslake MJ, McConnell M, Boulton-Jones JM, Packard CJ. The atherogenic lipoprotein phenotype: small dense LDL and lipoprotein remnants in nephrotic range proteinuria. Atherosclerosis 2001;157(1):211-20.
82. Oi K, Hirano T, Sakai S, Kawaguchi Y, Hosoya T. Role of hepatic lipase in intermediate-density lipoprotein and small, dense low-density lipoprotein formation in hemodialysis patients. Kidney Int Suppl 1999;71:S227-8.
83. Ikewaki K, Schaefer JR, Frischmann ME, Okubo K, Hosoya T, Mochizuki S, et al. Delayed in vivo catabolism of intermediate-density lipoprotein and low-density lipoprotein in hemodialysis patients as potential cause of premature atherosclerosis. Arterioscler Thromb Vasc Biol 2005;25(12):2615-22.
84. Vaziri ND, Sato T, Liang K. Molecular mechanisms of altered cholesterol metabolism in rats with spontaneous focal glomerulosclerosis. Kidney Int 2003;63(5):1756-63.
85. Vaziri ND, Moradi H. Mechanisms of dyslipidemia of chronic renal failure. Hemodial Int 2006;10(1):1-7.
86. Mesquita J, Varela A, Medina JL. Dyslipidemia in renal disease: causes, consequences and treatment. Endocrinol Nutr 2010;57(9):440-8.
87. Quaschning T, Krane V, Metzger T, Wanner C. Abnormalities in uremic lipoprotein metabolism and its impact on cardiovascular disease. Am J Kidney Dis 2001;38(4 Suppl 1):S14-9.
88. Becker B, Kronenberg F, Kielstein JT, Haller H, Morath C, Ritz E, et al. Renal insulin resistance syndrome, adiponectin and cardiovascular events in patients with kidney disease: the mild and moderate kidney disease study. J Am Soc Nephrol 2005;16(4):1091-8.
89. Weintraub M, Burstein A, Rassin T, Liron M, Ringel Y, Cabili S, et al. Severe defect in clearing postprandial chylomicron remnants in dialysis patients. Kidney Int 1992;42(5):1247- 52.
90. Bagdade J, Casaretto A, Albers J. Effects of chronic uremia, hemodialysis, and renal transplantation on plasma lipids and lipoproteins in man. J Lab Clin Med 1976;87(1):38-48.
91. Karabina SA, Pappas H, Miltiadous G, Bairaktari E, Christides D, Tselepis A, et al. Compositional lipoprotein changes and low-density lipoprotein susceptibility to oxidation in chronic renal failure patients with heavy proteinuria. Nephron Clin Pract 2003;95(3):c77-83.
92. Fishbane S, Bucala R, Pereira BJ, Founds H, Vlassara H. Reduction of plasma apolipoprotein- B by effective removal of circulating glycation derivatives in uremia. Kidney Int 1997;52(6):1645-50.
93. Hörkkö S, Savolainen MJ, Kervinen K, Kesäniemi YA. Carbamylation-induced alterations in low-density lipoprotein metabolism. Kidney Int 1992;41(5):1175-81.
94. Königer M, Quaschning T, Wanner C, Schollmeyer P, Krämer-Guth A. Abnormalities in lipoprotein metabolism in hemodialysis patients. Kidney Int Suppl 1999;71:S248-50.
95. Ando M, Lundkvist I, Bergström J, Lindholm B. Enhanced scavenger receptor expression in monocyte-macrophages in dialysis patients. Kidney Int 1996;49(3):773-80.
96. Kronenberg F, Kuen E, Ritz E, Junker R, König P, Kraatz G, et al. Lipoprotein(a) serum concentrations and apolipoprotein(a) phenotypes in mild and moderate renal failure. J Am Soc Nephrol 2000;11(1):105-15.
97. Kronenberg F, Neyer U, Lhotta K, Trenkwalder E, Auinger M, Pribasnig A, et al. The low molecular weight apo(a) phenotype is an independent predictor for coronary artery disease in hemodialysis patients: a prospective follow-up. J Am Soc Nephrol 1999;10(5):1027-36.
98. Sato H, Suzuki S, Kobayashi H, Ogino S, Inomata A, Arakawa M. Immunohistological localization of apolipoproteins in the glomeruli in renal disease: specifically apoB and apoE. Clin Nephrol 1991;36(3):127-33.
99. Sarnak MJ, Bloom R, Muntner P, Rahman M, Saland JM, Wilson PW, et al. KDOQI US commentary on the 2013 KDIGO Clinical Practice Guideline for Lipid Management in CKD. Am J Kidney Dis 2015;65(3):354-66.
100.Mach F, Baigent C, Catapano AL, Koskinas KC, Casula M, Badimon L, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J 2020;41(1):111-88.
101.Tonelli M, Moyé L, Sacks FM, Kiberd B, Curhan G. Pravastatin for secondary prevention of cardiovascular events in persons with mild chronic renal insufficiency. Ann Intern Med 2003;138(2):98-104.
102.Baigent C, Blackwell L, Emberson J, Holland LE, Reith C, Bhala N, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 2010;376(9753):1670-81.
103.Wanner C, Krane V, März W, Olschewski M, Mann JF, Ruf G, et al. Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. N Engl J Med 2005;353(3):238-48.
104.Fellström BC, Jardine AG, Schmieder RE, Holdaas H, Bannister K, Beutler J, et al. Rosuvastatin and cardiovascular events in patients undergoing hemodialysis. N Engl J Med 2009;360(14):1395-407.
105.Stevens KK, Jardine AG. SHARP: a stab in the right direction in chronic kidney disease. Lancet 2011;377(9784):2153-4.
106.Sudhop T, Lütjohann D, Kodal A, Igel M, Tribble DL, Shah S, et al. Inhibition of intestinal cholesterol absorption by ezetimibe in humans. Circulation 2002;106(15):1943-8.
107.Morita T, Morimoto S, Nakano C, Kubo R, Okuno Y, Seo M, et al. Renal and vascular protective effects of ezetimibe in chronic kidney disease. Intern Med 2014;53(4):307-14.
108.Tenenbaum A, Fisman EZ. Balanced pan-PPAR activator bezafibrate in combination with statin: comprehensive lipids control and diabetes prevention? Cardiovasc Diabetol 2012;11:140.
109.Staels B, Dallongeville J, Auwerx J, Schoonjans K, Leitersdorf E, Fruchart JC. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation 1998;98(19):2088-93.
110.Keech A, Simes RJ, Barter P, Best J, Scott R, Taskinen MR, et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet 2005;366(9500):1849-61.
111. Davis TM, Ting R, Best JD, Donoghoe MW, Drury PL, Sullivan DR, et al. Effects of fenofibrate on renal function in patients with type 2 diabetes mellitus: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) Study. Diabetologia 2011;54(2):280- 90.
112.Jun M, Zhu B, Tonelli M, Jardine MJ, Patel A, Neal B, et al. Effects of fibrates in kidney disease: a systematic review and meta-analysis. J Am Coll Cardiol 2012;60(20):2061-71.
113.K/DOQI clinical practice guidelines for management of dyslipidemias in patients with kidney disease. Am J Kidney Dis 2003;41(4 Suppl 3):I-iv, s1-91.
114.Page MM, Watts GF. PCSK9 inhibitors - mechanisms of action. Aust Prescr 2016;39(5):164- 7.
115.Charytan DM, Sabatine MS, Pedersen TR, Im K, Park JG, Pineda AL, et al. Efficacy and Safety of Evolocumab in Chronic Kidney Disease in the FOURIER Trial. J Am Coll Cardiol 2019;73(23):2961-70.
116.Schwartz GG, Steg PG, Szarek M, Bhatt DL, Bittner VA, Diaz R, et al. Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome. N Engl J Med 2018;379(22):2097- 107.
117.Bittner VA, Szarek M, Aylward PE, Bhatt DL, Diaz R, Edelberg JM, et al. Effect of Alirocumab on Lipoprotein(a) and Cardiovascular Risk After Acute Coronary Syndrome. J Am Coll Cardiol 2020;75(2):133-44.
118.Sorrentino SA, Besler C, Rohrer L, Meyer M, Heinrich K, Bahlmann FH, et al. Endothelial- vasoprotective effects of high-density lipoprotein are impaired in patients with type 2 diabetes mellitus but are improved after extended-release niacin therapy. Circulation 2010;121(1):110- 22.
119.Barter PJ, Caulfield M, Eriksson M, Grundy SM, Kastelein JJ, Komajda M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med 2007;357(21):2109-22.
120.Gerstein HC, Miller ME, Byington RP, Goff DC, Jr., Bigger JT, Buse JB, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 2008;358(24):2545-59.
121.Barter PJ, Nicholls S, Rye KA, Anantharamaiah GM, Navab M, Fogelman AM. Antiinflammatory properties of HDL. Circ Res 2004;95(8):764-72.
122.Kalil RS, Wang JH, de Boer IH, Mathew RO, Ix JH, Asif A, et al. Effect of extended-release niacin on cardiovascular events and kidney function in chronic kidney disease: a post hoc analysis of the AIM-HIGH trial. Kidney Int 2015;87(6):1250-7.
123.Kim W, Barhoumi R, McMurray DN, Chapkin RS. Dietary fish oil and DHA down-regulate antigen-activated CD4+ T-cells while promoting the formation of liquid-ordered mesodomains. Br J Nutr 2014;111(2):254-60.
124.Sasaki J, Miwa T, Odawara M. Administration of highly purified eicosapentaenoic acid to statin-treated diabetic patients further improves vascular function. Endocr J 2012;59(4):297- 304.
125.Borow KM, Nelson JR, Mason RP. Biologic plausibility, cellular effects, and molecular mechanisms of eicosapentaenoic acid (EPA) in atherosclerosis. Atherosclerosis 2015;242(1):357-66.
126.Bays HE, Ballantyne CM, Kastelein JJ, Isaacsohn JL, Braeckman RA, Soni PN. Eicosapentaenoic acid ethyl ester (AMR101) therapy in patients with very high triglyceride levels (from the Multi-center, plAcebo-controlled, Randomized, double-blINd, 12-week study with an open-label Extension [MARINE] trial). Am J Cardiol 2011;108(5):682-90.
127.Ballantyne CM, Bays HE, Kastelein JJ, Stein E, Isaacsohn JL, Braeckman RA, et al. Efficacy and safety of eicosapentaenoic acid ethyl ester (AMR101) therapy in statin-treated patients with persistent high triglycerides (from the ANCHOR study). Am J Cardiol 2012;110(7):984- 92.
128.Mason RP, Jacob RF, Shrivastava S, Sherratt SCR, Chattopadhyay A. Eicosapentaenoic acid reduces membrane fluidity, inhibits cholesterol domain formation, and normalizes bilayer width in atherosclerotic-like model membranes. Biochim Biophys Acta 2016;1858(12):3131- 40.
129.Shim S, Yoon BH, Shin IS, Bae JM. Network meta-analysis: application and practice using Stata. Epidemiol Health 2017;39:e2017047.
130.Jansen JP, Fleurence R, Devine B, Itzler R, Barrett A, Hawkins N, et al. Interpreting indirect
treatment comparisons and network meta-analysis for health-care decision making: report of the ISPOR Task Force on Indirect Treatment Comparisons Good Research Practices: part 1. Value Health 2011;14(4):417-28.
131.Shim SR, Kim SJ, Lee J, Rücker G. Network meta-analysis: application and practice using R software. Epidemiol Health 2019;41:e2019013.
132.Reken S, Sturtz S, Kiefer C, Böhler YB, Wieseler B. Assumptions of Mixed Treatment Comparisons in Health Technology Assessments - Challenges and Possible Steps for Practical Application. PLoS One 2016;11(8):e0160712.
133.Cipriani A, Higgins JP, Geddes JR, Salanti G. Conceptual and technical challenges in network meta-analysis. Ann Intern Med 2013;159(2):130-7.
134.Bayliss EA, Bhardwaja B, Ross C, Beck A, Lanese DM. Multidisciplinary team care may slow the rate of decline in renal function. Clin J Am Soc Nephrol 2011;6(4):704-10.
135.Chen PM, Lai TS, Chen PY, Lai CF, Yang SY, Wu V, et al. Multidisciplinary care program for advanced chronic kidney disease: reduces renal replacement and medical costs. Am J Med 2015;128(1):68-76.
136.Peeters MJ, van Zuilen AD, van den Brand JA, Bots ML, van Buren M, Ten Dam MA, et al. Nurse practitioner care improves renal outcome in patients with CKD. J Am Soc Nephrol 2014;25(2):390-8.
137.K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 2002;39(2 Suppl 1):S1-266.
138.Grundy SM, Cleeman JI, Merz CN, Brewer HB, Jr., Clark LT, Hunninghake DB, et al. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation 2004;110(2):227-39.
139.Zhou Z, Rahme E, Abrahamowicz M, Pilote L. Survival bias associated with time-to- treatment initiation in drug effectiveness evaluation: a comparison of methods. Am J Epidemiol 2005;162(10):1016-23.
140.Jackson D, White IR, Seaman S, Evans H, Baisley K, Carpenter J. Relaxing the independent censoring assumption in the Cox proportional hazards model using multiple imputation. Stat Med 2014;33(27):4681-94.
141.Li L, Hu B, Kattan MW. Modeling potential time to event data with competing risks. Lifetime Data Anal 2014;20(2):316-34.
142.Zhang Z, Reinikainen J, Adeleke KA, Pieterse ME, Groothuis-Oudshoorn CGM. Time- varying covariates and coefficients in Cox regression models. Ann Transl Med 2018;6(7):121.
143.de Zeeuw D, Anzalone DA, Cain VA, Cressman MD, Heerspink HJ, Molitoris BA, et al. Renal effects of atorvastatin and rosuvastatin in patients with diabetes who have progressive renal disease (PLANET I): a randomised clinical trial. Lancet Diabetes Endocrinol 2015;3(3):181-90.
144.Xue X, Xie X, Gunter M, Rohan TE, Wassertheil-Smoller S, Ho GY, et al. Testing the proportional hazards assumption in case-cohort analysis. BMC Med Res Methodol 2013;13:88.
145.Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C, et al. The PRISMA
extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med 2015;162(11):777- 84.
146.Killeen PR. An alternative to null-hypothesis significance tests. Psychol Sci 2005;16(5):345- 53.
147.Reis de Carvalho C, Bigotte Vieira M, Costa J, Vaz Carneiro A. [Analysis of the Cochrane Review: Antiplatelet Agents for Preventing Pre-Eclampsia and Its Complications. Cochrane Database Syst Rev. 2019;10:CD004659.]. Acta Med Port 2021;34(12):810-4.
148.Guyatt G, Oxman AD, Akl EA, Kunz R, Vist G, Brozek J, et al. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J Clin Epidemiol 2011;64(4):383-94.
149.Rücker G, Schwarzer G. Ranking treatments in frequentist network meta-analysis works without resampling methods. BMC Med Res Methodol 2015;15:58.
150.Chaimani A, Higgins JP, Mavridis D, Spyridonos P, Salanti G. Graphical tools for network meta-analysis in STATA. PLoS One 2013;8(10):e76654.
151.Law M, Jackson D, Turner R, Rhodes K, Viechtbauer W. Two new methods to fit models for network meta-analysis with random inconsistency effects. BMC Med Res Methodol 2016;16:87.
152.White IR, Barrett JK, Jackson D, Higgins JP. Consistency and inconsistency in network meta- analysis: model estimation using multivariate meta-regression. Res Synth Methods 2012;3(2):111-25.
153.Dias S, Welton NJ, Caldwell DM, Ades AE. Checking consistency in mixed treatment comparison meta-analysis. Stat Med 2010;29(7-8):932-44.
154.Sterne JA, Sutton AJ, Ioannidis JP, Terrin N, Jones DR, Lau J, et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. Bmj 2011;343:d4002.
155.Nikolakopoulou A, Higgins JPT, Papakonstantinou T, Chaimani A, Del Giovane C, Egger M, et al. CINeMA: An approach for assessing confidence in the results of a network meta- analysis. PLoS Med 2020;17(4):e1003082.
156.Nakamura H, Mizuno K, Ohashi Y, Yoshida T, Hirao K, Uchida Y. Pravastatin and cardiovascular risk in moderate chronic kidney disease. Atherosclerosis 2009;206(2):512-7.
157.Collins R, Armitage J, Parish S, Sleigh P, Peto R. MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomised placebo-controlled trial. Lancet 2003;361(9374):2005-16.
158.Sandhu S, Wiebe N, Fried LF, Tonelli M. Statins for improving renal outcomes: a meta-
analysis. J Am Soc Nephrol 2006;17(7):2006-16.
159.Shikata K, Haneda M, Ninomiya T, Koya D, Suzuki Y, Suzuki D, et al. Randomized trial of an
intensified, multifactorial intervention in patients with advanced-stage diabetic kidney disease: Diabetic Nephropathy Remission and Regression Team Trial in Japan (DNETT- Japan). J Diabetes Investig 2021;12(2):207-16.
160.Fox CS, Matsushita K, Woodward M, Bilo HJ, Chalmers J, Heerspink HJ, et al. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: a meta-analysis. Lancet 2012;380(9854):1662-73.
161.Shibata T, Tamura M, Kabashima N, Serino R, Tokunaga M, Matsumoto M, et al. Fluvastatin attenuates IGF-1-induced ERK1/2 activation and cell proliferation by mevalonic acid depletion in human mesangial cells. Life Sci 2009;84(21-22):725-31.
162.Laufs U, Gertz K, Huang P, Nickenig G, Böhm M, Dirnagl U, et al. Atorvastatin upregulates type III nitric oxide synthase in thrombocytes, decreases platelet activation, and protects from cerebral ischemia in normocholesterolemic mice. Stroke 2000;31(10):2442-9.
163.Baigent C, Landray M, Leaper C, Altmann P, Armitage J, Baxter A, et al. First United Kingdom Heart and Renal Protection (UK-HARP-I) study: biochemical efficacy and safety of simvastatin and safety of low-dose aspirin in chronic kidney disease. Am J Kidney Dis 2005;45(3):473-84.
164.Landray M, Baigent C, Leaper C, Adu D, Altmann P, Armitage J, et al. The second United Kingdom Heart and Renal Protection (UK-HARP-II) Study: a randomized controlled study of the biochemical safety and efficacy of adding ezetimibe to simvastatin as initial therapy among patients with CKD. Am J Kidney Dis 2006;47(3):385-95.
165.Tonelli M, Isles C, Curhan GC, Tonkin A, Pfeffer MA, Shepherd J, et al. Effect of pravastatin on cardiovascular events in people with chronic kidney disease. Circulation 2004;110(12):1557-63.
166.Cnossen MC, van Essen TA, Ceyisakar IE, Polinder S, Andriessen TM, van der Naalt J, et al. Adjusting for confounding by indication in observational studies: a case study in traumatic brain injury. Clin Epidemiol 2018;10:841-52.
167.Wang J, Chen Z, Qiu Y, Wu L, Wang H, Wu L, et al. Statins Have an Anti-Inflammation in CKD Patients: A Meta-Analysis of Randomized Trials. Biomed Res Int 2022;2022:4842699.
168.Sidaway JE, Davidson RG, McTaggart F, Orton TC, Scott RC, Smith GJ, et al. Inhibitors of 3- hydroxy-3-methylglutaryl-CoA reductase reduce receptor-mediated endocytosis in opossum kidney cells. J Am Soc Nephrol 2004;15(9):2258-65.
169.Khurana S, Gupta S, Bhalla H, Nandwani S, Gupta V. Comparison of anti-inflammatory effect of atorvastatin with rosuvastatin in patients of acute coronary syndrome. J Pharmacol Pharmacother 2015;6(3):130-5.
170.Verhulst A, D'Haese PC, De Broe ME. Inhibitors of HMG-CoA reductase reduce receptor- mediated endocytosis in human kidney proximal tubular cells. J Am Soc Nephrol 2004;15(9):2249-57.
171.O'Donnell MP, Kasiske BL, Kim Y, Schmitz PG, Keane WF. Lovastatin retards the progression of established glomerular disease in obese Zucker rats. Am J Kidney Dis 1993;22(1):83-9.
172.Campese VM, Nadim MK, Epstein M. Are 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors renoprotective? J Am Soc Nephrol 2005;16 Suppl 1:S11-7.
173.Fried LF, Orchard TJ, Kasiske BL. Effect of lipid reduction on the progression of renal disease: a meta-analysis. Kidney Int 2001;59(1):260-9.
174.Atthobari J, Brantsma AH, Gansevoort RT, Visser ST, Asselbergs FW, van Gilst WH, et al. The effect of statins on urinary albumin excretion and glomerular filtration rate: results from both a randomized clinical trial and an observational cohort study. Nephrol Dial Transplant 2006;21(11):3106-14.
175.Sorof J, Berne C, Siewert-Delle A, Jørgensen L, Sager P. Effect of rosuvastatin or atorvastatin on urinary albumin excretion and renal function in type 2 diabetic patients. Diabetes Res Clin Pract 2006;72(1):81-7.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95076-
dc.description.abstract研究背景: 慢性腎臟病是發生心血管疾病的主要危險因素之一,也是導致死亡的主要原因之一,慢性腎臟病患者已被證實比起一般人與較高的心血管事件和死亡發生風險相關。 由於在 尿毒環境中使得血清脂蛋白代謝失調,高膽固醇血症和高血脂症等脂質代謝異常是慢性 腎臟病患者常見的合併症之一,而脂質代謝異常若未加以控制,除了可能導致腎功能更 加惡化外,也會增加重大心血管事件發生的風險,繼而造成死亡風險的上升。對於慢性 腎臟病又合併脂質代謝異常患者,此類患者將可能暴露更高的心血管疾病和事件發生和 腎臟功能更加惡化的風險。因此,妥善控制慢性腎臟病患者的脂質代謝異常的問題是相 當重要的臨床議題。降血脂藥物,如 statin、ezetimibe 以及 fibrates 等,已被用於減少血 脂異常患者的主要不良心血管事件和治療動脈粥狀硬化性心血管疾病。然而,這類藥物 對於慢性腎臟病合併血脂異常患者在心血管疾病或事件和腎臟疾病預後的影響仍欠缺客 觀實證的結論; 此外,這些臨床上已在使用的降血脂藥物其各自對於慢性腎臟病族群在 心血管和腎功能預後的效益程度仍有待進一步比較,以提供臨床工作者更適當的藥物選擇。
研究目的:
本研究目的為藉由競爭性風險存活分析進行單一醫學中心資料回溯性世代研究(retrospective cohort study),以了解降血脂藥物使用於慢性腎臟病合併血脂異常患者在心血管疾病事件發生以及不良腎臟預後的保護效益。此外,為了研究不同類別的 statin 和近期發展出的降血脂藥物在慢性腎臟病患者的保護作用之差異並獲得最佳降血脂藥物 選擇的資訊,透過系統性回顧和網絡統合分析(systematic review and network meta-analysis),比較各種降血脂藥物在降低重大心血管事件發生和不良腎臟預後風險的功效差異,以提供臨床工作者更適當的藥物選擇。
研究方法:
本論文包括兩個主要研究計畫所組成。第一個研究計畫是單一醫學中心資料回溯性世代 研究,評估降血脂藥物對於慢性腎臟病第3b、4 或5期合併血脂異常之成年患者在末期腎疾病、重大心血管事件發生以及全因死亡率的影響。參與者於2008年1月1日至2018年12月 31日期間所招募,並將其分為使用降血脂藥物組以及未使用降血脂藥物組,最終追蹤日期為2020年12月31日。主要研究終點為複合不良腎臟結果發生,包括末期腎疾病發生或因腎衰竭死亡,次要研究終點為重大心血管事件發生,以多變項調整(包括隨時間變化自變項-血脂濃度)之亞分佈風險回歸模型(Sub-distribution hazard regression models)進行存活分析。第二個研究計畫是使用頻率學派隨機效應網絡統合分析(frequentist random-effects network meta-analysis),客觀比較使用於臨床之各種降血脂 藥物對於慢性腎臟病患者的保護效果。分析資料來源為PubMed、Embase、Web of Science 和 Cochrane Library 資料庫,收集內容為2022年10月31日之前包括慢性腎臟 病患者且為降血脂藥物彼此比較或降血脂藥物比較控制組效益的隨機對照試驗(randomized controlled trials,RCTs),主要研究終點是重大心血管事件的發生,次要研究終點包括全因死亡發生、末期腎疾病發生、腎絲球過濾率變化、蛋白尿的變化以及降血脂藥物副作用發生。
研究結果:
在6,740位慢性腎臟病患者的回溯性世代研究中,最終是4,280位慢性腎臟病合併血脂異常的參與者完成了主要分析,其中872位歸於使用降血脂藥物組,3,408位歸於未使用降血脂藥物組。多變量分析結果顯示,使用降血脂藥物組的複合不良腎臟結果發生風 險(調整後風險比為0.76;95%信賴區間為 0.65-0.89)和重大心血管事件發生率(調整後風險比為0.75;95%信賴區間為 0.62–0.93)顯著低於未使用降血脂藥物組。加上調整 隨時間血脂濃度變化的自變項後,使用降血脂藥物組的複合不良腎臟結果發生風險(調 整後風險比為0.78;95%信賴區間為0.65-0.93)和重大心血管事件發生風險(調整後風 險比為 0.77;95%信賴區間為 0.60-0.98)仍顯著低於未使用降血脂藥物組。在系統性回 顧和網絡統合分析研究,共納入了49個符合條件的隨機對照試驗資料,包括77,826名慢性腎臟病參與者以及13 種藥物和對照組。參與者的平均年齡在38.7歲至80.6歲之間,其中 62.6%為男性(比例範圍為24.3%至89.7%)。經證據品質和可信度評估後,rosuvastatin 和 atorvastatin 比起對照組顯著地降低重大心血管發生風險,其中 rosuvastatin 的風險比為0.55(95%信賴區間為 0.33-0.91),atorvastatin為0.67(95%信賴區間為 0.49-0.90)。在腎絲球過濾率變化方面,相較於控制組,atorvastatin(平均值差為 1.40;95%信賴區間為 0.61 至 2.18)、rosuvastatin(平均值差為1.73;95%信賴區間為0.63至2.83)和statin 合併 ezetimibe 治療(平均值差為2.35; 95%信賴區間為0.44至4.26)顯著地增加平均腎絲球過濾率。
結論:
對於中晚期慢性腎臟病合併血脂異常的成年患者,降血脂藥物使用者之複合不良腎臟結果和重大心血管事件的發生風險顯著低於未使用降血脂藥物者,而且除了降低血脂外,降血脂藥物本身可能就具有腎臟和心血管保護作用。就現有的研究證據資料分析各種降血脂藥物的效益結果顯示,與對照組相比,rosuvastatin 和 atorvastatin 顯著地降低重大心血管事件發生風險以及增加平均腎絲球過濾率。
zh_TW
dc.description.abstractBackground:
Chronic kidney disease (CKD) is a significant risk factor for cardiovascular disease (CVD) and is one of the leading causes of mortality in the world. Patients with CKD are prone to dyslipidemia, leading to CKD progression and cardiovascular complications due to dysregulation of lipoprotein metabolism in uremic serum. Lipid-lowering drugs (LLDs), such as statins, ezetimibe, and fibrates, have been used to reduce major adverse cardiovascular events (MACEs) and treat atherosclerotic CVD in patients with dyslipidemia. However, the effects of LLDs on cardiovascular and renal outcomes in patients with advanced CKD and dyslipidemia are not fully understood. Furthermore, the impact of specific classes of LLDs on these outcomes in this population is not well characterized.
Objectives:
We conducted a retrospective, single-center cohort study using competing risk survival analysis to elucidate whether LLDs could protect against poor cardiovascular and renal outcomes in patients with CKD and dyslipidemia. Furthermore, to investigate the protective effects of different classes of statins and newer LLDs and to determine the best choice of LLD for patients with non-dialysis CKD, we conducted a systematic review and network meta-analysis to compare their efficacy in reducing the risk of MACEs and poor renal outcomes.
Methods:
The thesis consisted of two major projects. First, a retrospective cohort study was conducted to evaluate the effect of LLDs on end-stage kidney disease (ESKD), MACEs, and all-cause mortality in adult patients with CKD stage 3b, 4, or 5 and dyslipidemia. Participants were recruited between January 1, 2008, and December 31, 2018, and were classified as LLD or non-LLD users; the final follow-up date was December 31, 2020. The primary outcome was time to ESKD or death due to renal failure. Sub-distribution hazard regression models adjusted for multivariable, including time-varying lipid profile covariates, were used for the analysis. Second, a frequentist random-effects network meta-analysis of randomized controlled trials (RCTs) will be used to assess the protective effect of the LLDs in non-dialysis CKD patients. The databases of PubMed, Embase, Web of Science, and Cochrane Library were systematically searched for relevant trials, comparing the efficacy between at least two included LLDs or between one of the included LLDs and non-pharmacological treatment, such as placebo, diet control, and usual care, defined as the control group in patients with CKD, published before October 31, 2022. The primary outcome was the incidence of MACEs. The secondary outcomes included all-cause mortality, ESKD, changes in estimated glomerular filtration rate (eGFR), proteinuria, and lipid profiles, and safety.
Results:
In the retrospective cohort study with 6,740 participants, 4,280 patients with CKD and dyslipidemia, including 872 using LLDs and 3,408 not using LLDs, completed the primary analysis. The multivariable analyses showed that LLD users had a significantly lower risk of time to the composite renal outcome (adjusted hazard ratio [aHR], 0.76; 95% confidence interval [CI], 0.65-0.89) and MACE incidence (aHR, 0.75; 95% CI, 0.62–0.93) than did non- LLD users. After adjusting for time-varying covariates of the lipid profile, there was a significant difference in the composite renal outcome (aHR, 0.78; 95% CI, 0.65-0.93) and MACEs (aHR, 0.77; 95% CI, 0.60-0.98). The systematic review and network meta-analysis included forty-nine eligible RCTs with 77,826 participants with non-dialysis CKD, 13 medications, and the control group. The mean age of the participants was between 38.7 and 80.6 years, and 62.6% were men (range, 24.3%–89.7%). With moderate confidence in the evidence, rosuvastatin and atorvastatin showed significant efficacy in reducing the risk of MACE, with a pooled risk ratio of 0.55 (95% CI 0.33-0.91) for rosuvastatin and 0.67 (0.49- 0.90) for atorvastatin, respectively, compared with the control group. For the change in the eGFR, atorvastatin (mean difference [MD], 1.40; 95% CI, 0.61 to 2.18), rosuvastatin (MD, 1.73; 95% CI, 0.63 to 2.83), and statin plus ezetimibe (MD, 2.35; 95% CI, 0.44 to 4.26) showed significant increases in the mean eGFR.
Conclusion:
In adult patients with advanced CKD and dyslipidemia, LLD users have a significantly lower risk of composite renal outcomes and MACEs than non-LLD users. In addition to reducing lipid profile, using LLDs is associated with renal and cardiovascular protective effects. There is also sufficient evidence to show that rosuvastatin and atorvastatin significantly reduced the risk of MACEs and increased mean eGFR compared with control groups.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-28T16:08:09Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-28T16:08:09Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgments 1
中文摘要 2
Abstract 6
Abbreviations 13
Publications 14
Chapter 1:Introduction 15
Chapter 2:Literature Review 18
2.1 Overview of Chronic Kidney Disease 18
2.2 Relation between Chronic Kidney Disease and Cardiovascular Disease 21
2.3 Dyslipidemia in Chronic Kidney Disease 22
2.4 Current Lipid-Lowering Drug Options in Chronic Kidney Disease 29
2.5 Concepts of Network Meta-Analysis 37
2.6 Study Projects, Gaps, Hypotheses, Aims 39
Chapter 3:Methods 42
3.1 Project 1: Renal and Cardiovascular Outcomes of Lipid-Lowering Drugs in Patients with Chronic Kidney Disease 42
3.1.1 Study Population Setting 42
3.1.2 Design and Data Collection 43
3.1.3 Outcomes Evaluation 45
3.1.4 Statistical Analysis 46
3.1.5 Sample Size and Power 49
3.2 Project 2: Comparison of the Impact of Different Lipid-Lowering Drugs on Cardiovascular and Renal Outcomes, Lipid Reduction and Safety in Patients with Chronic Kidney Disease 50
3.2.1 Data sources and search strategies 50
3.2.2 Eligibility criteria and study selection 50
3.2.3 Data extraction and quality assessment 51
3.2.4 Data synthesis and statistical analysis 52
Chapter 4:Results 55
4.1 Project 1: Renal and Cardiovascular Outcomes of Lipid-Lowering Drugs in Patients with Chronic Kidney Disease 55
4.1.1 Description of Baseline Characteristics of the Study Population 55
4.1.2 Primary Outcomes and Further Renal Outcomes Analyses 59
4.1.3 Secondary Outcomes for Major Adverse Cardiovascular Events and All-Cause Mortality 63
4.1.4 Tertiary Outcomes for Change in Lipid Profile, Proteinuria, and eGFR 65
4.1.5 Sensitivity Analyses for Only Statin Users 67
4.1.6 Subgroup Analyses 71
4.2 Project 2: Comparison of the Impact of Different Lipid-Lowering Drugs on Cardiovascular and Renal Outcomes, Lipid Reduction and Safety in Patients with Chronic Kidney Disease 73
4.2.1 Characteristics of Included Studies 73
4.2.2 Primary Outcomes 94
4.2.3 Secondary Outcomes 119
4.2.4 Consistency, subgroup analysis, meta-regression, and publication bias 128
Chapter 5:Discussions 159
5.1 Project 1: Renal and Cardiovascular Outcomes of Lipid-Lowering Drugs in Patients with Chronic Kidney Disease 160
5.1.1 Clinical Evidence of Lowering-Lipid Drug on Renoprotection 160
5.1.2 Experimental Evidence and Possible Mechanism of Lowering-Lipid Drug on Renoprotection 161
5.1.3 Effect of Lowering-Lipid Drug on Changes in Serum Lipid Profile 162
5.1.4 Clinical Evidence of Lowering-Lipid Drug on Prevention of CV Events 163
5.1.5 Study Strengths and Limitations 164
5.2 Project 2: Comparison of the Impact of Different Lipid-Lowering Drugs on Cardiovascular and Renal Outcomes, Lipid Reduction and Safety in Patients with Chronic Kidney Disease 165
5.2.1 Association between LLD and Cardiovascular Outcomes 165
5.2.2 Influence of LLD on renal outcomes 166
5.2.3 Study Strengths and Limitations 167
Chapter 6:Conclusions 169
References170
Appendices 183
Published Articles 197
-
dc.language.isoen-
dc.subject腎絲球過濾率zh_TW
dc.subject末期腎疾病zh_TW
dc.subject重大心血管事件zh_TW
dc.subject血脂異常zh_TW
dc.subject慢性腎臟病zh_TW
dc.subject降血脂藥物zh_TW
dc.subjectproteinuriaen
dc.subjectestimated glomerular filtration rateen
dc.subjectend-stage kidney diseaseen
dc.subjectmajor adverse cardiovascular eventsen
dc.subjectdyslipidemiaen
dc.subjectchronic kidney diseaseen
dc.subjectLipid-lowering drugsen
dc.title降血脂藥物對於慢性腎臟病合併血脂異常之患者在心血管事件與腎功能之效益zh_TW
dc.titleEffect of Lipid-Lowering Drugs on Outcomes of Cardiovascular Events and Renal Function in Patients with Chronic Kidney Disease and Dyslipidemiaen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee簡國龍;賴台軒;吳泓彥;林建宇;周鈺翔zh_TW
dc.contributor.oralexamcommitteeKuo-Liong Chien;Tai-Shuan Lai;Hon-Yen Wu;Chien-Yu Lin;Yu-Hsiang Chouen
dc.subject.keyword降血脂藥物,慢性腎臟病,血脂異常,重大心血管事件,末期腎疾病,腎絲球過濾率,zh_TW
dc.subject.keywordLipid-lowering drugs,chronic kidney disease,dyslipidemia,major adverse cardiovascular events,end-stage kidney disease,estimated glomerular filtration rate,proteinuria,en
dc.relation.page225-
dc.identifier.doi10.6342/NTU202401023-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-05-29-
dc.contributor.author-college公共衛生學院-
dc.contributor.author-dept流行病學與預防醫學研究所-
dc.date.embargo-lift2026-06-30-
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
43.5 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved