Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 口腔生物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95073
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林思洸zh_TW
dc.contributor.advisorSze-Kwan Linen
dc.contributor.author徐郁雯zh_TW
dc.contributor.authorYu-Wen Hsuen
dc.date.accessioned2024-08-27T16:14:26Z-
dc.date.available2024-08-28-
dc.date.copyright2024-08-27-
dc.date.issued2024-
dc.date.submitted2024-07-06-
dc.identifier.citation1. Ferlay, J., et al., Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer, 2010. 127(12): p. 2893-917.
2. Bray, F., et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018. 68(6): p. 394-424.
3. Jemal, A., et al., Global cancer statistics. CA Cancer J Clin, 2011. 61(2): p. 69-90.
4. Makarewicz, J., et al., Anti-cancer management of head and neck cancers and oral microbiome-what can we clinically obtain? Front Cell Infect Microbiol, 2024. 14: p. 1329057.
5. Chang, C.C., et al., Metabolic syndrome and health-related behaviours associated with pre-oral cancerous lesions among adults aged 20-80 years in Yunlin County, Taiwan: a cross-sectional study. BMJ Open, 2015. 5(12): p. e008788.
6. Zheng, D.W., et al., Biomaterial-mediated modulation of oral microbiota synergizes with PD-1 blockade in mice with oral squamous cell carcinoma. Nat Biomed Eng, 2022. 6(1): p. 32-43.
7. Riquelme, E., et al., Tumor Microbiome Diversity and Composition Influence Pancreatic Cancer Outcomes. Cell, 2019. 178(4): p. 795-806 e12.
8. Zhang, Z., et al., The Role of Porphyromonas gingivalis Outer Membrane Vesicles in Periodontal Disease and Related Systemic Diseases. Front Cell Infect Microbiol, 2020. 10: p. 585917.
9. Shin, Y.J., et al., Association of Periodontitis with Oral Cancer: A Case-Control Study. J Dent Res, 2019. 98(5): p. 526-533.
10. Spuldaro, T.R., et al., Periodontal disease affects oral cancer progression in a surrogate animal model for tobacco exposure. Int J Oncol, 2022. 60(6).
11. Lafuente Ibanez de Mendoza, I., et al., Role of Porphyromonas gingivalis in oral squamous cell carcinoma development: A systematic review. J Periodontal Res, 2020. 55(1): p. 13-22.
12. Hoppe, T., et al., Oral pathogens change proliferation properties of oral tumor cells by affecting gene expression of human defensins. Tumour Biol, 2016. 37(10): p. 13789-13798.
13. <Oral cancer cells sustainedly infected with Porphyromonas gingivalis exhibit resistance to Taxol and have higher metastatic potentia.pdf>.
14. Guo, Z.C., et al., Bioinformatics and immunohistochemistry analyses of expression levels and clinical significance of CXCL2 and TANs in an oral squamous cell carcinoma tumor microenvironment of Prophyromonas gingivalis infection. Oncol Lett, 2021. 21(3): p. 189.
15. Schwechheimer, C. and M.J. Kuehn, Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat Rev Microbiol, 2015. 13(10): p. 605-19.
16. Aldick, T., et al., Vesicular stabilization and activity augmentation of enterohaemorrhagic Escherichia coli haemolysin. Mol Microbiol, 2009. 71(6): p. 1496-508.
17. Okamura, H., et al., Outer membrane vesicles of Porphyromonas gingivalis: Novel communication tool and strategy. Jpn Dent Sci Rev, 2021. 57: p. 138-146.
18. Martinez-Martinez, R.E., et al., Detection of periodontal bacterial DNA in serum and synovial fluid in refractory rheumatoid arthritis patients. J Clin Periodontol, 2009. 36(12): p. 1004-10.
19. Aleksijevic, L.H., et al., Porphyromonas gingivalis Virulence Factors and Clinical Significance in Periodontal Disease and Coronary Artery Diseases. Pathogens, 2022. 11(10).
20. Dominy, S.S., et al., Porphyromonas gingivalis in Alzheimer's disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. Sci Adv, 2019. 5(1): p. eaau3333.
21. Nonaka, S., T. Kadowaki, and H. Nakanishi, Secreted gingipains from Porphyromonas gingivalis increase permeability in human cerebral microvascular endothelial cells through intracellular degradation of tight junction proteins. Neurochem Int, 2022. 154: p. 105282.
22. Seyama, M., et al., Outer membrane vesicles of Porphyromonas gingivalis attenuate insulin sensitivity by delivering gingipains to the liver. Biochim Biophys Acta Mol Basis Dis, 2020. 1866(6): p. 165731.
23. Liu, D., et al., sRNA23392 packaged by Porphyromonas gingivalis outer membrane vesicles promotes oral squamous cell carcinomas migration and invasion by targeting desmocollin-2. Mol Oral Microbiol, 2021. 36(3): p. 182-191.
24. Magaña, G., et al., Bacterial Outer Membrane Vesicles: Role in Pathogenesis and Host-Cell Interactions. Antibiotics (Basel), 2023. 13(1).
25. Nakao, R., H. Senpuku, and H. Watanabe, Porphyromonas gingivalis galE is involved in lipopolysaccharide O-antigen synthesis and biofilm formation. Infect Immun, 2006. 74(11): p. 6145-53.
26. Nakao, R., et al., Outer membrane vesicles of Porphyromonas gingivalis elicit a mucosal immune response. PLoS One, 2011. 6(10): p. e26163.
27. Hong, M., et al., Fusobacterium nucleatum aggravates rheumatoid arthritis through FadA-containing outer membrane vesicles. Cell Host Microbe, 2023. 31(5): p. 798-810 e7.
28. Kosgodage, U.S., et al., Peptidylarginine Deiminase Inhibitors Reduce Bacterial Membrane Vesicle Release and Sensitize Bacteria to Antibiotic Treatment. Front Cell Infect Microbiol, 2019. 9: p. 227.
29. Kosgodage, U.S., et al., Cannabidiol Is a Novel Modulator of Bacterial Membrane Vesicles. Front Cell Infect Microbiol, 2019. 9: p. 324.
30. Shi, Y., et al., Genetic analyses of proteolysis, hemoglobin binding, and hemagglutination of Porphyromonas gingivalis. Construction of mutants with a combination of rgpA, rgpB, kgp, and hagA. J Biol Chem, 1999. 274(25): p. 17955-60.
31. Nakayama, M., et al., Porphyromonas gingivalis Gingipains Induce Cyclooxygenase-2 Expression and Prostaglandin E(2) Production via ERK1/2-Activated AP-1 (c-Jun/c-Fos) and IKK/NF-kappaB p65 Cascades. J Immunol, 2022. 208(5): p. 1146-1154.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95073-
dc.description.abstract頭頸癌是全球前十大常見癌症,並且有90%是位在口腔的鱗狀細胞癌(oral squamous cell carcinomas, OSCC),而轉移仍是導致患者死亡的重要原因。牙周病關鍵致病菌——牙齦卟啉單胞菌(Porphyromonas gingivalis, Pg)主要透過分泌奈米大小且富含磷脂質的外膜囊泡(outer membrane vesicles, OMVs),同時攜帶毒性因子牙齦蛋白酶(gingipains)來作為致病環境中,宿主與微生物之間跨界交流的關鍵參與者。因此目標在於探討富含gingipains的Pg OMVs是否為惡化頭頸癌轉移的因素。
使用即時定量聚合酶連鎖反應分析發現,Pg 16s-rRNA在口腔鱗狀細胞癌患者手術檢體的腫瘤部位略比腫瘤鄰近正常部位表現量高。在免疫組織化學染色中,中度惡性口腔鱗狀細胞癌患者組織切片比惡性患者gingipains表現強,且惡性患者淋巴轉移處有一定強度之gingipains表現。透過穿透式電子顯微鏡、奈米粒子追蹤儀分析,從口腔鱗狀細胞癌患者手術檢體中分離出約100 nm左右的奈米粒子後,利用蛋白水解酶活性試劑,發現晚期患者手術檢體分離之奈米粒子的精氨酸牙齦蛋白酶(arginine-gingipain)水解活性顯著較高(P < 0.05)。在細胞實驗,Pg OMVs顯著提升癌細胞遷移與侵襲的能力(P < 0.01),並使用抑制劑確認了遷移與侵襲的能力受gingipains調控(P < 0.01)。此外,動物實驗中,在給予含Pg OMVs的組別,發現較多的癌細胞發生頸部淋巴轉移。
在本研究中,能夠成功從頭頸癌患者手術檢體分離出含有Pg OMVs的奈米粒子,並且發現其中的蛋白水解酶活性與腫瘤的惡性程度有關。口腔微生物群外膜囊泡之於頭頸癌的關聯,在本研究掀起一頁序幕,而藉這冰山一角,或許在未來可以發展疾病預後預測的機制。而發現富含gingipains的Pg OMVs在頭頸癌轉移所扮演的角色,可以發展相關抑制藥物,作為治療後預防轉移的潛在目標。
zh_TW
dc.description.abstractHead and neck cancer ranks among the top ten most common cancers worldwide, with 90% being oral squamous cell carcinomas (OSCC). Metastasis remains a leading cause of death in these patients. The key periodontal pathogen, Porphyromonas gingivalis (Pg), primarily exerts its pathogenic effects through the secretion of phospholipid-rich outer membrane vesicles (OMVs) that carry the toxic factor gingipains. These OMVs act as crucial mediators of interkingdom communication between host and microorganisms in the pathogenic environment. This study aims to investigate whether gingipain-rich Pg OMVs contribute to the aggravation of head and neck cancer metastasis.
Real-time quantitative polymerase chain reaction (qPCR) analysis revealed that Pg 16s-rRNA levels were slightly higher in tumor tissues than adjacent normal tissues in surgical specimens from OSCC patients. Immunohistochemical staining showed that gingipains expression was stronger in advanced OSCC tumors than mild-moderate tumors, with notable gingipains expression in the lymph nodes of patients with lymphatic metastasis. Meanwhile, we isolated approximately 100 nm nanoparticles from OSCC surgical specimens, which were confirmed by transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). Proteolytic activity assays showed significantly higher arginine-gingipain activity in nanoparticles from advanced-stage patient specimens (P < 0.05). Pg OMVs significantly enhanced the migration and invasion abilities of cancer cells in vitro (P < 0.01). Moreover, these abilities were regulated by gingipains via using inhibitors (P < 0.01). Likewise, the group administered with Pg OMVs showed increased neck lymph node metastasis in vivo.
In conclusion, this study successfully isolated Pg OMVs-containing nanoparticles from head and neck cancer surgical specimens and found that their proteolytic activity is associated with tumor malignancy. This finding opens a new chapter in understanding the relationship between oral microbiome OMVs and head and neck cancer. This initial insight might lead to future developments in disease prognosis prediction. On the other hand, identifying the role of gingipains-enriched Pg OMVs in head and neck cancer metastasis could help develop targeted inhibitors as potential therapeutic options to prevent poor prognosis post-treatment.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-27T16:14:26Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-27T16:14:26Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents國立臺灣大學碩(博)士學位論文口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
目 次 vi
圖 次 viii
表 次 ix
第一章 導論 1
1.1 研究背景 1
1.1.1 頭頸鱗狀細胞癌(Head and neck squamous cell carcinoma, HNSCC) 1
1.1.2 牙周病(Periodontal disease)與頭頸癌 2
1.1.3 牙齦卟啉單胞菌(Porphyromonas gingivalis, Pg)富含牙齦蛋白酶(gingipains)的外膜囊泡(outer membrane vesicles, OMVs) 2
1.2 研究動機 4
1.3 研究目的 4
第二章 材料與方法 5
2.1 人類檢體搜集與準備 5
2.2 DNA萃取和即時定量聚合酶連鎖反應 5
2.3 組織奈米粒子萃取與Bicinchoninic acid定量法 5
2.4 牙齦蛋白酶活性測定 6
2.5 實驗細胞株與培養 6
2.6 MTT細胞生長率檢測 7
2.7 蛋白質萃取 7
2.8 西方點墨法 7
2.9 實驗細菌株與培養 8
2.9.1 菌株來源 8
2.9.2 菌株培養基 8
2.9.3 菌株培養 9
2.10 細菌外膜囊泡萃取 9
2.11 奈米粒子追蹤分析 9
2.12 穿透式電子顯微鏡 10
2.13 細胞遷移、侵襲檢測 10
2.14 動物模型建立(活體冷光影像系統) 11
2.15 組織病理學和免疫組織化學染色 11
2.16 統計方法 12
3 第三章 實驗結果 13
3.1 患者組織的Pg 16s-rRNA與gingipains相對表現量,腫瘤部位高於腫瘤周邊正常部位且晚期腫瘤表現高於早期。 13
3.2 患者組織存在具牙齦蛋白酶活性的奈米級顆粒。 13
3.3 從患者組織萃取出具gingipains活性的Pg OMVs表現與腫瘤期別有關。 14
3.4 在細胞實驗,富含gingipains的Pg OMVs促進HNSCC細胞轉移。 14
3.5 在動物實驗,Pg OMVs促進頭頸癌細胞轉移 15
第四章 結論與未來展望 28
參考文獻 29
附錄 32
-
dc.language.isozh_TW-
dc.title牙齦卟啉單胞菌的外膜囊泡透過牙齦蛋白酶加劇頭頸鱗狀細胞癌進展之研究zh_TW
dc.titlePorphyromonas gingivalis -derived outer membrane vesicles exacerbate head and neck squamous cell carcinoma progression via gingipains.en
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee郭生興;洪志遠zh_TW
dc.contributor.oralexamcommitteeSang-Heng Kok;Chi-Yuan Hongen
dc.subject.keyword牙周病,頭頸癌,牙齦卟啉單胞菌,外膜囊泡,牙齦蛋白酶,zh_TW
dc.subject.keywordPeriodontal disease,Head and neck cancer,Porphyromonas gingivalis,Outer membrane vesicles,Gingipains,en
dc.relation.page36-
dc.identifier.doi10.6342/NTU202401522-
dc.rights.note未授權-
dc.date.accepted2024-07-08-
dc.contributor.author-college醫學院-
dc.contributor.author-dept口腔生物科學研究所-
顯示於系所單位:口腔生物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  目前未授權公開取用
8.48 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved