請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95069完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王東美 | zh_TW |
| dc.contributor.advisor | Tong-Mei Wang | en |
| dc.contributor.author | 許彥威 | zh_TW |
| dc.contributor.author | Yen-Wei Hsu | en |
| dc.date.accessioned | 2024-08-27T16:13:05Z | - |
| dc.date.available | 2024-08-28 | - |
| dc.date.copyright | 2024-08-27 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-05 | - |
| dc.identifier.citation | 黃懿萱(2016):下顎骨邊緣切除手術後之骨折預防功效。國立臺灣大學牙醫專業學院臨床牙醫學研究所學位論文。[未出版之碩士論文]
陳孝宇(2018):下顎骨大範圍邊緣切除術後之骨折預防效能。國立臺灣大學牙醫專業學院臨床牙醫學研究所學位論文。[未出版之碩士論文] 歐旭峯(2019):下顎骨切除術後以金屬重建板預防骨折之功效。國立臺灣大學牙醫專業學院臨床牙醫學研究所學位論文。[未出版之碩士論文] 周佳霖(2021): 咀嚼肌肌力對下顎骨切除術後之殘餘下顎骨應力分佈之影響。國立臺灣大學牙醫專業學院臨床牙醫學研究所學位論文。[未出版之碩士論文] Al-Sukhun J. Modelling of mandibular functional deformation. University of London, University College London (United Kingdom); 2003. Al-Sukhun J, Kelleway J. Biomechanics of the mandible: Part II. Development of a 3-dimensional finite element model to study mandibular functional deformation in subjects treated with dental implants. Int J Oral Maxillofac Implants. 2007;22(3)455-66. Awadalkreem F, Khalifa N, Ahmad AG, Suliman AM, Osman M. Rehabilitation of an irradiated marginal mandibulectomy patient using immediately loaded basal implant-supported fixed prostheses and hyperbaric oxygen therapy: A 2-year follow-up. Int J Surg Case Rep. 2020;71:297-302. Baron P, Debussy T. A biomechanical functional analysis of the masticatory muscles in man. Arch Oral Biol. 1979;24(7):547-53. Barrowman RA, Wilson PR, Wiesenfeld D. Oral rehabilitation with dental implants after cancer treatment. Aust Dent J. 2011 Jun;56(2):160-5. Barttelbort SW, Ariyan S. Mandible preservation with oral cavity carcinoma: rim mandibulectomy versus sagittal mandibulectomy. Am J Surg. 1993 Oct;166(4):411-5. Basit H, Tariq MA, Siccardi MA. Anatomy, head and neck, mastication muscles. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2019. . Battaglia S, Ricotta F, Crimi S, Mineo R, Michelon F, Tarsitano A, et al. Mandibular reconstruction with bridging customized plate after ablative surgery for ONJ: A multi-centric case series. Applied Sciences. 2021 Nov 22;11(22):11069. Bähr W, Stoll P, Wächter R. Use of the “double barrel” free vascularized fibula in mandibular reconstruction. J Oral Maxillofac Surg. 1998 Jan;56(1):38-44. Chou CW, Lin CR, Chung YT, Tang CS. Epidemiology of oral cancer in Taiwan: a population-based cancer registry study. Cancers (Basel). 2023 Apr 6;15(7):2175. Cuéllar CN, Ochandiano Caicoya S, Navarro Cuéllar I, Valladares Pérez S, Fariña Sirandoni R, Antúnez-Conde R, et al. Vertical ridge augmentation of fibula flap in mandibular reconstruction: a comparison between vertical distraction, double-barrel flap and iliac crest graft. J Clin Med. 2020 Dec 30;10(1):101 Curtis DA, Plesh O, Hannam AG, Sharma A, Curtis TA. Modeling of jaw biomechanics in the reconstructed mandibulectomy patient. J Prosthet Dent. 1999 Feb;81(2):167-73. Disa JJ, Cordeiro PG. Mandible reconstruction with microvascular surgery. Semin Surg Oncol. 2000;19(3):226-34. Dupret-Bories A, Vergez S, Meresse T, Brouillet F, Bertrand G. Contribution of 3D printing to mandibular reconstruction after cancer. Eur Ann Otorhinolaryngol Head Neck Dis. 2018 Apr;135(2):133-6. Eckardt A, Swennen G, Barth EL, Brachvogel P. Long-term results after mandibular continuity resection in infancy: the role of autogenous rib grafts for mandibular restoration. J Craniofac Surg. 2006 Mar;17(2):255-60. El-Anwar M, Ghali R, Aboelnagga M. 3D finite element study on: Bar splinted implants supporting partial denture in the reconstructed mandible. Open Access Maced J Med Sci. 2016 Mar 15;4(1):164-71. Ertem SY, Uckan S, Ozden UA. The comparison of angular and curvilinear marginal mandibulectomy on force distribution with three dimensional finite element analysis. J Craniomaxillofac Surg. 2013 Apr;41(3):e54-8. Faverani LP, Rios BR, Santos AMS, Mendes BC, Santiago-Júnior JF, Sukotjo C, et al. Predictability of single versus double-barrel vascularized fibula flaps and dental implants in mandibular reconstructions: A systematic review and meta-analysis of prospective studies. J Prosthet Dent. [published online: November 15, 2023]. 10.1016/j.prosdent.2023.10.007 Frost HM. The mechanostat: a proposed pathogenic mechanism of osteoporoses and the bone mass effects of mechanical and non mechanical agents. Bone Miner. 1987 Apr;2(2):73-85. Frost HM. Perspectives: bone's mechanical usage windows. Bone Miner. 1992 Dec;19(3):257-71. Frost HM. Bone's mechanostat: a 2003 update. Anat Rec A Discov Mol Cell Evol Biol. 2003 Dec;275(2):1081-101. Fueki K, Roumanas ED, Blackwell KE, Freymiller E, Abemayor E, Wong WK, et al. Effect of implant support for prostheses on electromyographic activity of masseter muscle and jaw movement in patients after mandibular fibula free flap reconstruction. Int J Oral Maxillofac Implants. 2014;29(1):162-70. Gaur V, Doshi AG, Gandhi S. Immediate prosthetic rehabilitation of marginal mandibulectomy post radiation case by single-piece implant-a case report. Ann Maxillofac Surg. 2020;10(2):501-6. González-García R, Naval-Gías L, Rodríguez-Campo FJ, Muñoz-Guerra MF, Sastre-Pérez J. Vascularized free fibular flap for the reconstruction of mandibular defects: clinical experience in 42 cases. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008 Aug;106(2):191-202. Haraguchi M, Mukohyama H, Reisberg DJ, Taniguchi H. Electromyographic activity of masticatory muscles and mandibular movement during function in marginal mandibulectomy patients. J Med Dent Sci. 2003 Dec;50(4):257-64. He Y, Zhang ZY, Zhu HG, Wu YQ, Fu HH. Double-barrel fibula vascularized free flap with dental rehabilitation for mandibular reconstruction. J Oral Maxillofac Surg. 2011 Oct;69(10):2663-9. Heo KH, Lim YJ, Kim MJ, Kwon HB. Three-dimensional finite element analysis of the splinted implant prosthesis in a reconstructed mandible. J Adv Prosthodont. 2018 Apr;10(2):138-46. Hidalgo DA. Fibula free flap: a new method of mandible reconstruction. Plast Reconstr Surg. 1989 Jul;84(1):71-9. Horiuchi K, Hattori A, Inada I, Kamibayashi T, Sugimura M, Yajima H, et al. Mandibular reconstruction using the double barrel fibular graft. Microsurgery. 1995;16(7):450-4. Hurczulack MV, Guebur MI, Albrecht Ramos GH, Duarte da Silva AB, Sassi LM. Results of a novel technique for increasing bone contact and stability in mandibular reconstruction with micro-vascularized fibula flap. J Maxillofac Oral Surg. 2024 Apr;23(2):235-41. Ide Y, Matsunaga S, Harris J, O' Connell D, Seikaly H, Wolfaardt J. Anatomical examination of the fibula: digital imaging study for osseointegrated implant installation. J Otolaryngol Head Neck Surg. 2015 Feb 3;44(1):1.. Ishii N, Shimizu Y, Ihara J, Kishi K. Analysis of fibular single graft and fibular double-barrel graft for mandibular reconstruction. Plast Reconstr Surg Glob Open. 2016 Aug;4(8):e1018. Isidor F. Influence of forces on peri‐implant bone. Clin Oral Implants Res. 2006 Oct;17 Suppl 2:8-18. Jang JY, Choi N, Jeong HS. Surgical extent for oral cancer: Emphasis on a cut-off value for the resection margin status: A narrative literature review. Cancers (Basel). 2022 Nov 21;14(22):5702. Jones NF, Swartz WM, Mears DC, Jupiter JB, Grossman A. The “double barrel” free vascularized fibular bone graft. Plast Reconstr Surg. 1988 Mar;81(3):378-85. Korioth TW, Hannam AG. Deformation of the human mandible during simulated tooth clenching. J Dent Res. 1994 Jan;73(1):56-66. Korioth TW, Johann AR. Influence of mandibular superstructure shape on implant stresses during simulated posterior biting. J Prosthet Dent. 1999 Jul;82(1):67-72. Korioth TW, Romilly DP, Hannam AG. Three‐dimensional finite element stress analysis of the dentate human mandible. Am J Phys Anthropol. 1992 May;88(1):69-96. Koshy JC, Feldman EM, Chike-Obi CJ, Bullocks JM. Pearls of mandibular trauma management. Semin Plast Surg. 2010 Nov;24(4):357-74. Kundu J, Pati F, Shim JH, Cho DW. Rapid prototyping technology for bone regeneration. Rapid Prototyping of Biomaterials. 2014:289-314. Lan YH, Yang HY, Chang HH, Lin LD, Wang TM. Resolution of excessive interocclusal restoration space post‐mandibulectomy using a two‐layer retrievable fixed implant‐supported prosthesis: A case report. J Prosthodont. 2022 Jun;31(5):367-73. Lee YW, You HJ, Jung JA, Kim DW. Mandibular reconstruction using customized three-dimensional titanium implant. Arch Craniofac Surg. 2018 Jun;19(2):152-6. Li X, Jiang C, Gao H, Wang C, Wang C, Ji P. Biomechanical analysis of various reconstructive methods for the mandibular body and ramus defect using a free vascularized fibula flap. Biomed Res Int. 2020;2020:8797493. Möhlhenrich SC, Kniha K, Elvers D, Ayoub N, Goloborodko E, Hölzle F, et al. Intraosseous stability of dental implants in free revascularized fibula and iliac crest bone flaps. J Craniomaxillofac Surg. 2016 Dec;44(12):1935-9. Martin RB, Burr DB, Sharkey NA, Fyhrie DP. Skeletal tissue mechanics. New York: springer; 1998 Oct 9. Marx RE, Sawatari Y, Fortin M, Broumand V. Bisphosphonate-induced exposed bone (osteonecrosis/osteopetrosis) of the jaws: risk factors, recognition, prevention, and treatment. J Oral Maxillofac Surg. 2005 Nov;63(11):1567-75. Meijer HJ, Starmans FJ, Steen WH, Bosman F. A three-dimensional, finite-element analysis of bone around dental implants in an edentulous human mandible. Arch Oral Biol. 1993 Jun;38(6):491-6. Melugin MB, Oyen OJ, Indresano AT. The effect of rim mandibulectomy configuration and residual segment size on postoperative fracture risk: an in vitro study. J Oral Maxillofac Surg. 2001 Apr;59(4):409-13; discussion 413-4. Mijiritsky E, Shacham M, Meilik Y, Dekel-Steinkeller M. Clinical influence of mandibular flexure on oral rehabilitation: narrative review. Int J Environ Res Public Health. 2022 Dec 13;19(24):16748. Militsakh ON, Wallace DI, Kriet JD, Tsue TT, Girod DA. The role of the osteocutaneous radial forearm free flap in the treatment of mandibular osteoradionecrosis. Otolaryngol Head Neck Surg. 2005 Jul;133(1):80-3. Miloro M, Ghali G, Larsen PE, Waite PD. Peterson's principles of oral and maxillofacial surgery (Vol. 1). Springer. 2004. Murakami K, Sugiura T, Yamamoto K, Kawakami M, Kang YB, Tsutsumi S, et al. Biomechanical analysis of the strength of the mandible after marginal resection. J Oral Maxillofac Surg. 2011 Jun;69(6):1798-806. Murakami K, Yamamoto K, Tsuyuki M, Sugiura T, Tsutsumi S, Kirita T. Theoretical efficacy of preventive measures for pathologic fracture after surgical removal of mandibular lesions based on a three-dimensional finite element analysis. J Oral Maxillofac Surg. 2014 Apr;72(4):833.e1-18. Nagasao T, Kobayashi M, Tsuchiya Y, Kaneko T, Nakajima T. Finite element analysis of the stresses around endosseous implants in various reconstructed mandibular models. J Craniomaxillofac Surg. 2002 Jun;30(3):170-77. Nelson GJ. Three dimensional computer modeling of human mandibular biomechanics University of British Columbia, Vancouver. 1986. Nkenke E, Vairaktaris E, Stelzle F, Neukam FW, Stockmann P, Linke R. Osteocutaneous free flap including medial and lateral scapular crests: technical aspects, viability, and donor site morbidity. J Reconstr Microsurg. 2009 Nov;25(9):545-53. Nocini PF, Wangerin K, Albanese M, Kretschmer W, Cortelazzi R. Vertical distraction of a free vascularized fibula flap in a reconstructed hemimandible: case report. J Craniomaxillofac Surg. 2000 Feb;28(1):20-4. Ntounis A, Patras M, Pelekanos S, Polyzois G. Treatment of Hemi‐Mandibulectomy Defect with Implant‐Supported Telescopic Removable Prosthesis: A Clinical Report. J Prosthodont. 2013 Aug;22(6):501-5. O'Mahony AM, Williams JL, Spencer P. Anisotropic elasticity of cortical and cancellous bone in the posterior mandible increases peri‐implant stress and strain under oblique loading. Clin Oral Implants Res. 2001 Dec;12(6):648-57. Okuyama K, Michi Y, Mizutani M, Yamashiro M, Kaida A, Harada K. Clinical study on mandibular fracture after marginal resection of the mandible. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016 May;121(5):461-7. Panchal H, Shamsunder MG, Petrovic I, Rosen EB, Allen RJ, Hernandez M, et al. Dental implant survival in vascularized bone flaps: a systematic review and meta-analysis. Plast Reconstr Surg. 2020 Sep;146(3):637-48. Park H. Surgical margins for the extirpation of oral cancer. J Korean Assoc Oral Maxillofac Surg. 2016 Dec;42(6):325-6.. Persson G, Åstrand P, Lundgren A, Stenström S. Mandibular reconstruction with bone grafts. Int J Oral Surg. 1978;7(6):512-522. Petrovic I, Ahmed ZU, Huryn JM, Nelson J, Allen RJ, Matros E, et al. Oral rehabilitation for patients with marginal and segmental mandibulectomy: A retrospective review of 111 mandibular resection prostheses. J Prosthet Dent. 2019 Jul;122(1):82-7. Ritschl LM, Mücke T, Hart D, Unterhuber T, Kehl V, Wolff KD, et al. Retrospective analysis of complications in 190 mandibular resections and simultaneous reconstructions with free fibula flap, iliac crest flap or reconstruction plate: a comparative single centre study. Clin Oral Investig. 2021 May;25(5):2905-14. Salman SO, Fernandes RP, Rawal SR. Immediate reconstruction and dental rehabilitation of segmental mandibular defects: description of a novel technique. J Oral Maxillofac Surg. 2017 Oct;75(10):2270.e1-2270.e8. Sieg P, Zieron JO, Bierwolf S, Hakim SG. Defect-related variations in mandibular reconstruction using fibula grafts: A review of 96 cases. Br J Oral Maxillofac Surg. 2002 Aug;40(4):322-9. Sivam S, Chen P. Anatomy, occlusal contact relations and mandibular movements. In: StatPearls, Treasure Island (FL); 2021. Sukegawa S, Saika M, Tamamura R, Yamamoto N, Nakano K, Nagatsuka H, et al. Risk factors for mandibular fracture after marginal mandibular resection. J Craniofac Surg. 2020;31(5):1430-3. Tamai N, Hirota M, Iwai T, Kioi M, Mitsudo K, Tohnai I. Evaluation of influence factors to reduce mechanical stress on the marginally resected mandibular bone against dental implant-supported occlusion. J Hard Tissue Biology. 2018;27(1):11-6. Tarsitano A, Battaglia S, Crimi S, Ciocca L, Scotti R, Marchetti C. Is a computer-assisted design and computer-assisted manufacturing method for mandibular reconstruction economically viable? J Craniomaxillofac Surg. 2016 Jul;44(7):795-9. Taylor GI, Miller GD, Ham FJ. The free vascularized bone graft: a clinical extension of microvascular techniques. Plast Reconstr Surg. 1975 May;55(5):533-44. Vayvada H, Mola F, Menderes A, Yilmaz M. Surgical management of ameloblastoma in the mandible: segmental mandibulectomy and immediate reconstruction with free fibula or deep circumflex iliac artery flap (evaluation of the long-term esthetic and functional results). J Oral Maxillofac Surg. 2006 Oct;64(10):1532-9. Virgin FW, Iseli TA, Iseli CE, Sunde J, Carroll WR, Magnuson JS, et al. Functional outcomes of fibula and osteocutaneous forearm free flap reconstruction for segmental mandibular defects. Laryngoscope. 2010 Apr;120(4):663-7 Wei FC, Chen HC, Chuang CC, Noordhoff MS. Fibular osteoseptocutaneous flap: anatomic study and clinical application. Plast Reconstr Surg. 1986 Aug;78(2):191-200. Weyh AM, Fernandes RP. Narrative review: fibula free flap, indications, tips, and pitfalls. Front Oral Maxillofac Med. 2021 Mar;3:4. Woelfel JB, Scheid RC. Dental Anatomy: Its Relevance to Dentistry; 1990. Tie Y, Wang DM, Ji T, Wang CT, Zhang CP. Three-dimensional finite-element analysis investigating the biomechanical effects of human mandibular reconstruction with autogenous bone grafts. J Craniomaxillofac Surg. 2006 Jul;34(5):290-8. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95069 | - |
| dc.description.abstract | 研究背景與動機
臨床上,部分下顎骨切除術(partial mandibulectomy)中的邊緣下顎骨切除術(marginal mandibulectomy)與整段式下顎骨切除術(segmental mandibulectomy)一直是以10公釐 (mm)的剩餘骨脊高度為選擇術式的判斷標準。在下顎骨進行邊緣切除手術後,會造成應力集中在缺損處造成發生骨折風險提高;在整段式下顎骨切除後,理想上也會為了美觀及功能使用腓骨皮瓣重建下顎骨;而為了患者生活品質,常利用牙科植體贋復物重建上述缺損區域,由於術後下顎骨剩餘骨脊高度減少植體固定贋復物增加,形成不良的植體長度/贋復物高度比例,可能會加劇應力集中,也有可能進而使下顎骨骨體應力、應變分布產生改變,影響我們對於下顎骨切除手術後風險的評估。 研究目的 以三維有限元素分析探討不同殘餘骨脊高度以及不同腓骨皮瓣重建時對於重建區域最大應變值、最大應力值的影響程度、相關性,藉以探討邊緣下顎骨切除手術以及腓骨皮瓣重建整段式下顎骨切除時以植體固定贋復物重建之後影響術後骨折風險的評估標準。 研究方法 本研究分為兩個部分,第一個部分利用三維有限元素模型分析下顎骨大範圍邊緣切除術後,模擬不同的剩餘骨脊高度加上固定植體贋復物,觀察經過邊緣切除術下顎骨在植體贋復物受力下,應變及應力分佈的情形,並用以評估手術後的骨折風險。而第二部分是模擬整段式下顎骨切除術後以單層腓骨皮瓣或雙層腓骨皮瓣重建,並放上固定植體贋復物,測試在植體贋復物受力下,下顎骨重建區應變及應力分佈的情形。實驗將電腦斷層掃描影像輸入ABAQUS 6.14-1建立下顎骨模型,模擬右側小臼齒至大臼齒區域(48 mm)被切除區,設定三種殘餘下顎骨脊高度(12mm、10mm、8mm)並在其上放置3隻直徑為4公釐 (mm)的植體,設定不同的骨內植體長度(6mm、8mm、10mm)和植體贋復物高度(20mm、18mm、16mm),並以長48 mm、寬度及高度皆為5 mm的金屬桿相連。將下顎骨模型的海綿骨以及植體贋復物以十節點之四面體元素(C3D10)、皮質骨以三節點之三角形殼元素(S3R)網格化之後,探討在右側大臼齒咬合時,右側邊緣切除重建區,所受之最大拉應變(MTS)與最大壓應變(MCS)的位置及數值大小,並分別以3000 microstrain(MTS)與4000 microstrain(MCS)的應變門檻探討其發生骨折的風險。同時探討最大等效應力值(von Mises stress)的位置及數值,以120 MPa為突發性骨折(sudden mandible fracture)門檻探討其骨折風險。第二部分同樣是利用三維有限元素模型分析下顎骨邊緣切除術後以單層腓骨皮瓣和雙層腓骨皮瓣重建,並以相同大小的植體(直徑4mm)及植體金屬桿(5*5*48mm)作為贋復物,探討最大拉應變(MTS)、最大壓應變(MCS)以及最大等效應力值(von Mises stress)的位置及數值。 研究結果 第一部分的結果顯示殘餘骨脊越高時,拉應變、壓應變和應力會較小,最大拉應變以及壓應變都超過發生骨折風險的閾值,顯示雖然應力集中的位置雖然力量不足以發生下顎骨折,但是發生的應變仍有產生骨折的風險;而植體周圍骨的應變顯示有骨吸收風險。 第二部分的實驗結果顯示,在雙層腓骨皮瓣的重建中,應變及應力的大小較單層腓骨皮瓣重建低,而應力最大值亦低於發生骨折風險的閾值,但是發生的應變數值來看仍是有發生骨折的風險。在雙層腓骨皮瓣重建組別植體周圍骨應力和應變則皆為安全範圍。 研究結論 不論是在殘餘骨脊8公釐、10公釐、12公釐組別中的下顎骨重建,皆有發生骨頭微損傷的可能,並且有發生骨折的風險。其中10公釐和12公釐組別和8公釐組別相比應變及應力皆較低。植體周圍骨的應變皆大於骨頭屈服點的閾值,顯示未來有發生骨吸收的風險。總結以上結果顯示不能低估在邊緣性下顎骨切除後以植體贋復物重建的骨折以及植體周圍骨吸收的風險。單層腓骨皮瓣組別微應變的觀察中可以發現拉應變及壓應變都超過發生骨折風險的閾值,有引發骨頭機械性疲勞及骨頭微損傷的可能。雙層腓骨皮瓣重建組別中觀察到的應力大小皆小於骨頭的屈服點但是有一處應變仍大於屈服點。兩者組別中植體周圍骨應力及應變皆在骨頭屈服點的閾值之下因此植體重建是安全可行的重建方式。總結以上結果顯示,單層腓骨皮瓣重建仍有發生骨折風險,雙層腓骨皮瓣重建下顎骨以及其上的植體周圍骨內的應力及應變分布較單層腓骨皮瓣重建理想。 | zh_TW |
| dc.description.abstract | Background
Clinically, partial mandibulectomy, including marginal mandibulectomy and segmental mandibulectomy, have used a residual bone ridge height of 10 mm as the criterion for selecting the surgical method. After marginal mandibulectomy, stress concentration at the defect site can increase the risk of fractures. In segmental mandibulectomy, fibula flaps are ideally used for mandibular reconstruction to restore aesthetics and function. For better quality of life, dental implant prostheses are commonly used to reconstruct the defect areas mentioned above. However, the decreased residual bone ridge height combined with the increased implant-supported prostheses, creates a poor crown/ implant ratio. This can exacerbate stress concentration and alter the stress and strain distribution in the mandible, affecting the risk of mandible fracture. Objective The objective of this study is to use three-dimensional finite element analysis (FEA) to explore the impact and correlation of different residual bone ridge heights and various fibula flap reconstructions on the maximum strain and stress values in the reconstructed area. The study aims to establish risk assessment criteria for post-operative fractures following marginal mandibulectomy and segmental mandibulectomy reconstructed with implant-supported prostheses. Materials and methods The first part utilizes three-dimensional finite element models to analyze the stress and strain distribution in the mandible after marginal resection, with different heights of residual bone and fixed implant-supported prostheses. This is used to evaluate the risk of mandibular fractures. The second part simulates segmental mandibulectomy followed by reconstruction with single-barreled or double-barreled fibula flaps, with fixed implant-supported prostheses, to investigate the strain and stress distribution in the reconstructed mandible. The models were established using CT scan images input into ABAQUS 6.14-1 to create the mandibular models, simulating the resected area from the premolars to the molars (48 mm). Three residual mandibular bone ridge heights (12 mm, 10 mm, 8 mm) were set, with three implants of 4 mm diameter placed on each, varying the intraosseous implant lengths (6 mm, 8 mm, 10 mm) and the implant prosthesis heights (20 mm, 18 mm, 16 mm). A metal bar (48 mm long, 5 mm wide, and 5 mm high) connected these components. Under a biting force applied to the right molars, the study investigated the location and magnitude of the maximum tensile strain (MTS) and maximum compressive strain (MCS), using thresholds of 3000 microstrain (MTS) and 4000 microstrain (MCS) to assess fracture risk. The study also explored the location and magnitude of the maximum von Mises stress, using 120 MPa as the threshold for sudden mandibular fracture risk. The second part of the study similarly used three-dimensional finite element models to analyze mandible reconstructed with single-barreled and double-barreled fibula flaps, using identical implants (4 mm in diameter) and implant metal rods (5*5*48 mm) for prostheses. The study examined the location and magnitude of maximum tensile strain (MTS), maximum compressive strain (MCS), and maximum von Mises stress. Results The first part of the study indicated that higher residual bone ridges resulted in lower tensile strain, compressive strain, and stress. The maximum tensile and compressive strains exceeded the fracture risk thresholds, indicating a risk of fractures despite stress concentration being insufficient to cause mandibular fractures directly. The strain around the implants suggested a risk of bone resorption. The second part showed that the strain and stress levels in double-barreled fibula flap reconstructions were lower than those in single-barreled reconstructions, with stress values below the fracture risk thresholds. However, strain values still indicated a risk of fractures. The stress and strain around the implants in double-barreled fibula reconstructions were within safe limits. Conclusion In mandible with residual bone ridges of 8 mm, 10 mm, and 12 mm, there is a risk of microdamage and fractures. The 10 mm and 12 mm groups had lower strain and stress compared to the 8 mm group. The strain around the implants exceeded the bone yield point, indicating a future risk of bone resorption. These findings underscore the potential risk of fractures and bone resorption around implants in mandible status post marginal mandibulectomy. In single-barreled fibula flap reconstructions, MTS and MCS exceeded the fracture risk thresholds, suggesting potential mechanical fatigue and microdamage to the bone. In double- barreled fibula flap reconstructions, stress levels were below the bone yield point, though one strain location exceeded the threshold. Stress and strain around the implants in both groups were within the bone yield point, making implant reconstructions a viable and safe option. Overall, double- barreled fibula flap reconstructions provided better stress and strain distribution in the mandible and surrounding implant bone compared to single-barreled reconstructions. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-27T16:13:05Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-27T16:13:05Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
謝辭 ii 摘要 iii Abstract vi 目次 ix 圖次 xi 表次 xii 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 4 1-2-1 下顎骨切除術(Mandibulectomy) 4 1-2-2 游離腓骨皮瓣(free fibula flap) 7 1-2-3 雙層腓骨皮瓣(double-barrel fibula flap) 8 1-2-4有限元素分析在人體下顎骨中的應用 9 1-2-5有限元素分析中的荷載(Load)設定 10 1-2-6 邊界條件(Boundary condition) 13 1-2-7 有限元素分析中模型的驗證(Verification) 14 1-2-8 有限元素分析中對於骨折(Bone fracture)的定義 16 1-3 研究動機與目的(Objective) 18 1-4 虛無假說(Null Hypothesis) 20 第二章 實驗:在下顎骨切除後使用固定植體贋復物重建之應力分析 22 2-1 實驗目的 22 2-2 實驗硬軟體設備 22 2-3 建立主模型的流程 23 2-3-1 影像處理 23 2-3-2 切除區設定 24 2-3-3 設定材料性質 25 2-3-4 設定荷載(Load) 26 2-3-5設定邊界條件(Boundary condition) 28 2-3-6 網格(Mesh)化處理 30 2-3-7 有限元素分析(Job)及參數(Parameters) 30 第三章 研究結果 31 3-1 結果(Results) 31 第四章 討論 33 4-1 討論(Discussion) 33 第五章 結論 37 5-1 結論(Conclusion) 37 5-2 未來展望(Future prospect) 37 參考文獻 70 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 下顎骨切除術 | zh_TW |
| dc.subject | 剩餘骨脊高度 | zh_TW |
| dc.subject | 有限元素分析 | zh_TW |
| dc.subject | 單層腓骨皮瓣 | zh_TW |
| dc.subject | 雙層腓骨皮瓣 | zh_TW |
| dc.subject | 骨折風險 | zh_TW |
| dc.subject | Finite element analysis | en |
| dc.subject | Mandibulectomy | en |
| dc.subject | Risk of bone fracture | en |
| dc.subject | Double-barrel fibula flap | en |
| dc.subject | Single-barrel fibula flap | en |
| dc.subject | Height of residual mandibular ridge | en |
| dc.title | 在下顎骨切除後使用固定植體贋復物重建之應力分析 | zh_TW |
| dc.title | Finite Element Analysis of Stress Distribution within Post-Mandibulectomy Mandible Reconstructed by Fixed Implant-Supported Prosthesis | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 章浩宏;藍鼎勛 | zh_TW |
| dc.contributor.oralexamcommittee | Hao-Hueng Chang;Ting-Hsun Lan | en |
| dc.subject.keyword | 下顎骨切除術,剩餘骨脊高度,有限元素分析,單層腓骨皮瓣,雙層腓骨皮瓣,骨折風險, | zh_TW |
| dc.subject.keyword | Mandibulectomy,Height of residual mandibular ridge,Finite element analysis,Single-barrel fibula flap,Double-barrel fibula flap,Risk of bone fracture, | en |
| dc.relation.page | 76 | - |
| dc.identifier.doi | 10.6342/NTU202403288 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-05 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 臨床牙醫學研究所 | - |
| 顯示於系所單位: | 臨床牙醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 5.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
