Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95066
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇剛毅zh_TW
dc.contributor.advisorKang-Yi Suen
dc.contributor.author蕭承瀚zh_TW
dc.contributor.authorCheng-Han Hsiaoen
dc.date.accessioned2024-08-27T16:12:09Z-
dc.date.available2024-08-28-
dc.date.copyright2024-08-27-
dc.date.issued2024-
dc.date.submitted2024-08-04-
dc.identifier.citationCollet, J.P., et al., 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J, 2021. 42(14): p. 1289-1367.
Thygesen, K., et al., Fourth Universal Definition of Myocardial Infarction (2018). J Am Coll Cardiol, 2018. 72(18): p. 2231-2264.
Shah, A.S.V., et al., High-sensitivity troponin in the evaluation of patients with suspected acute coronary syndrome: a stepped-wedge, cluster-randomised controlled trial. Lancet, 2018. 392(10151): p. 919-928.
Reichlin, T., et al., Introduction of high-sensitivity troponin assays: impact on myocardial infarction incidence and prognosis. Am J Med, 2012. 125(12): p. 1205-1213.e1.
Möckel, M., et al., Editor's Choice-Rule-in of acute myocardial infarction: Focus on troponin. Eur Heart J Acute Cardiovasc Care, 2017. 6(3): p. 212-217.
Roffi, M., et al., 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: Task Force for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation of the European Society of Cardiology (ESC). Eur Heart J, 2016. 37(3): p. 267-315.
Wildi, K., et al., Safety and efficacy of the 0 h/3 h protocol for rapid rule out of myocardial infarction. Am Heart J, 2016. 181: p. 16-25.
Reichlin, T., et al., One-hour rule-out and rule-in of acute myocardial infarction using high-sensitivity cardiac troponin T. Arch Intern Med, 2012. 172(16): p. 1211-8.
Than, M., et al., Development and validation of the Emergency Department Assessment of Chest pain Score and 2 h accelerated diagnostic protocol. Emerg Med Australas, 2014. 26(1): p. 34-44.
Thygesen, K., et al., Third universal definition of myocardial infarction. Eur Heart J, 2012. 33(20): p. 2551-67.
Chapman, A.R., et al., Comparison of the Efficacy and Safety of Early Rule-Out Pathways for Acute Myocardial Infarction. Circulation, 2017. 135(17): p. 1586-1596.
Scirica, B.M., Acute coronary syndrome: emerging tools for diagnosis and risk assessment. J Am Coll Cardiol, 2010. 55(14): p. 1403-15.
Möckel, M., et al., Early discharge using single cardiac troponin and copeptin testing in patients with suspected acute coronary syndrome (ACS): a randomized, controlled clinical process study. Eur Heart J, 2015. 36(6): p. 369-76.
Fox, K.A., et al., The Global Registry of Acute Coronary Events, 1999 to 2009--GRACE. Heart, 2010. 96(14): p. 1095-101.
Monteiro Júnior, J.G.M., et al., Prognostic value of hematological parameters in patients with acute myocardial infarction: Intrahospital outcomes. PLoS One, 2018. 13(4): p. e0194897.
Budzianowski, J., et al., The Role of Hematological Indices in Patients with Acute Coronary Syndrome. Dis Markers, 2017. 2017: p. 3041565.
Tomašev, N., et al., A clinically applicable approach to continuous prediction of future acute kidney injury. Nature, 2019. 572(7767): p. 116-119.
Liang, H., et al., Evaluation and accurate diagnoses of pediatric diseases using artificial intelligence. Nat Med, 2019. 25(3): p. 433-438.
Gill, E.L. and S.R. Master, Hidden in Plain Sight: Machine Learning in Acute Kidney Injury. Clin Chem, 2020. 66(4): p. 509-511.
Arnaout, R., Machine Learning in Clinical Pathology: Seeing the Forest for the Trees. Clin Chem, 2018. 64(11): p. 1553-1554.
Mei, X., et al., Artificial intelligence-enabled rapid diagnosis of patients with COVID-19. Nat Med, 2020. 26(8): p. 1224-1228.
Yang, H.S., et al., Routine Laboratory Blood Tests Predict SARS-CoV-2 Infection Using Machine Learning. Clin Chem, 2020. 66(11): p. 1396-1404.
Gould, M.K., et al., Machine Learning for Early Lung Cancer Identification Using Routine Clinical and Laboratory Data. Am J Respir Crit Care Med, 2021. 204(4): p. 445-453.
Than, M.P., et al., Machine Learning to Predict the Likelihood of Acute Myocardial Infarction. Circulation, 2019. 140(11): p. 899-909.
Doudesis, D., et al., Validation of the myocardial-ischaemic-injury-index machine learning algorithm to guide the diagnosis of myocardial infarction in a heterogenous population: a prespecified exploratory analysis. Lancet Digit Health, 2022. 4(5): p. e300-e308.
Baggerly, K.A., Probability binning and testing agreement between multivariate immunofluorescence histograms: extending the chi-squared test. Cytometry, 2001. 45(2): p. 141-50.
Garlits, J., et al., Statistical Approaches for Establishing Appropriate Immunogenicity Assay Cut Points: Impact of Sample Distribution, Sample Size, and Outlier Removal. Aaps j, 2023. 25(3): p. 37.
Coucke, W., et al., Comparison of different approaches to evaluate External Quality Assessment Data. Clin Chim Acta, 2012. 413(5-6): p. 582-6.
Blagus, R. and L. Lusa, SMOTE for high-dimensional class-imbalanced data. BMC Bioinformatics, 2013. 14: p. 106.
Shahriari, B., et al., Taking the Human Out of the Loop: A Review of Bayesian Optimization. Proceedings of the IEEE, 2016. 104(1): p. 148-175.
Niculescu-Mizil, A. and R. Caruana, Predicting good probabilities with supervised learning. 2005. 625-632.
Efron, B., & Tibshirani, R.J., An Introduction to the Bootstrap. 1994.
Lundberg, S.M. and S.-I. Lee, A Unified Approach to Interpreting Model Predictions. 2017.
Núñez, J., et al., Low lymphocyte count in acute phase of ST-segment elevation myocardial infarction predicts long-term recurrent myocardial infarction. Coron Artery Dis, 2010. 21(1): p. 1-7.
Gagnon, D.R., et al., Hematocrit and the risk of cardiovascular disease--the Framingham study: a 34-year follow-up. Am Heart J, 1994. 127(3): p. 674-82.
Greenberg, G., et al., Hematocrit level as a marker of outcome in ST-segment elevation myocardial infarction. Am J Cardiol, 2010. 105(4): p. 435-40.
Timóteo, A.T., et al., Predictive impact on medium-term mortality of hematological parameters in Acute Coronary Syndromes: added value on top of GRACE risk score. Eur Heart J Acute Cardiovasc Care, 2015. 4(2): p. 172-9.
Liu, L., et al., The association between prothrombin time-international normalized ratio and long-term mortality in patients with coronary artery disease: a large cohort retrospective study with 44,662 patients. BMC Cardiovasc Disord, 2022. 22(1): p. 297.
Khan, H.A., et al., Alterations in prothrombin time and activated partial thromboplastin time in patients with acute myocardial infarction. Int J Clin Exp Med, 2013. 6(4): p. 294-7.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95066-
dc.description.abstract背景:
為了診斷患有非ST區段上升急性心肌梗塞的患者,心臟肌鈣蛋白的測量具有重要價值,然而約三分之一的患者在檢測第二次心臟肌鈣蛋白值之後始得確診。在本研究中,我們引入了一些機器學習算法,結合初始高敏感度心肌鈣蛋白T的測量以及人口特徵和常規實驗室檢查,這些檢查通常在一小時內產生結果。我們的目標是評估常規實驗室檢查是否通過機器學習,從而對於預測心肌梗塞(AMI)有額外的診斷價值。這種方法旨在促進臨床實踐中快速的診斷決策。
方法:
這項回顧性研究利用了來自台灣大學醫學院附設醫院急診科的44,000名患者的初始高敏感度心肌鈣蛋白T數據來訓練非ST區段上升急性心肌梗塞機器學習模型。10,636名來自台大新竹分院的患者則被視為獨立的測試數據集。排除標準包括患有ST區段上升急性心肌梗塞的患者、缺乏至少兩次高敏感度心肌鈣蛋白T以及缺乏完整血球計數數據的患者。機器學習模型整合了23項常規實驗室檢查,藉以計算非ST區段上升急性心肌梗塞的可能性。比較了包括極端梯度提升、隨機森林和羅吉斯回歸在內的3種不同算法的性能,並評估包括受試者操作特徵曲線下面積(area under the receiver-operating-characteristic curve , AUC)和精確召回曲線的平均精度(average precision , AP)在內的診斷性能指標。為了提高模型的解釋性,分析了SHAP (Shapley Additive Explanations) 值,藉以解釋特定常規實驗室特徵對模型的影響。通過由風險分數的敏感性、陰性預測值、特異性或陽性預測值確定的閾值,將患者分為低、中、高風險組。
結果:
在2016年5月1日至2021年12月31日期間,共納入了15,096名患者,其中690名患者(4.6%)被診斷為非ST區段上升急性心肌梗塞。在獨立的引導抽樣測試數據集中,極端梯度提升模型的AUC值為0.862 (0.848-0.877),而單獨使用初始高敏感度心肌鈣蛋白T時的AUC值為0.711 (0.691-0.730)。風險分數低於2.0者,在被歸類為低風險的患者中,有51.0%被有效排除具非ST區段上升急性心肌梗塞,此時陰性預測率為98.7。相反地,風險分數高於37.5者,在被歸類為高風險的患者中,有2.9%被確訂為非ST區段上升急性心肌梗塞,此時陽性預測率為73.3。
結論:
我們建立機器學習算法,結合了常規實驗室檢查,成功預測了疑似非ST區段上升急性心肌梗塞患者的風險。這種方法提供早期、快速且精確的心肌梗塞分診一種臨床可行的解決方案。
zh_TW
dc.description.abstractBackground
To diagnose patients with non-ST-segment elevation acute myocardial infarction (NSTEMI), cardiac troponin measurements play an important role, while about one-third of the patients remain undetermined until the second cardiac troponin values are assessed. In this study, we introduce some machine learning (ML) algorithms incorporating the initial measurement of high-sensitivity cardiac troponin T (0 h hs-cTnT) along with demographic features and routine laboratory tests that usually release data within an hour. Our aim is to evaluate whether routine laboratory tests provide additional diagnosis value to 0 h hs-cTnT by machine learning for AMI prediction. This approach could facilitate rapid rule-in and rule-out decisions in clinical practice.
Method
The retrospective study recruited 44,000 patients with 0 h hs-cTnT from the National Taiwan University Hospital (NTUH) emergency department for training NSTEMI machine learning models. Additional 10,636 patients from the NTUH Hsin-Chu Branch were recruited as an independent cohort. Exclusion criteria involved patients with ST-segment elevation myocardial infarction (STEMI) and those lacking serial hs-cTnT and complete blood count data. The efficacy of 3 algorithms, including eXtreme Gradient Boosting (XGBoost, XGB), Random Forest (RF), and Logistic Regression (LR), were compared to each other. The diagnostic performance metrics were examined, based on the area under the receiver-operating-characteristic curve (AUC) and the average precisions (AP) of the precision-recall curve. To evaluate the feasibility of this model, Shapley Additive Explanations (SHAP) values were analyzed to find out the impacts of specific routine laboratory feature. Low-, middle- and high-risk groups are defined based on the low and high thresholds of risk scores which were determined by sensitivity, negative predictive value (NPV), specificity, or positive predictive value (PPV).
Findings
The cohort of 15,096 patients was recruited from May 1, 2016, to December 31, 2021. Among them, 690 patients (4.6%) were diagnosed with NSTEMI. In an independent testing dataset with bootstrapping, the AUC value for XGBoost was 0.862 (0.848-0.877), compared to the AUC of 0.711 (0.691-0.730) when using 0 h hs-cTnT alone. When individuals with a risk score below 2.0 were classified as low-risk, 51.0% of patients were effectively excluded, given an NPV of 98.7. In contrast, when a risk score above 37.5 was defined as high-risk, 2.9% of patients were identified as high-risk, with a PPV of 73.3.
Interpretation
When incorporating with routine laboratory tests, our established machine learning algorithm could accurately predict the risk for patients with suspected NSTEMI. This approach offers a clinically valuable strategy for early, rapid, and precise triage of myocardial infarction.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-27T16:12:09Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-27T16:12:09Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 I
中文摘要 IV
Abstract VI
Abbreviation VIII
List of Figures XIII
List of Tables XV
1. Introduction 1
1.1 Acute Myocardial Infarction 1
1.2 Artificial Intelligent 3
2. Specific Aim 4
3. Methods 5
3.1 Study Design 5
3.2 Data Collection 5
3.3 Routine Laboratory Tests 6
3.4 Data Preprocessing 6
3.4.1 Binary classification 7
3.4.2 Feature selection 7
3.4.3 Outlier removal 7
3.4.4 Imputation 8
3.4.5 Encoding 8
3.4.6 Feature scaling 8
3.4.7 Balancing 9
3.4.8 Preprocessing parameter tuning 10
3.5 Model Construction 10
3.5.1 Hyperparameter tuning 10
3.5.2 Calibration 11
3.6 Model Evaluation 12
4. Results 13
4.1 Data Collection 13
4.2 Parameter Tuning 13
4.2.1 Feature selection 13
4.2.2 Outlier removal 14
4.2.3 Feature scaling 14
4.2.4 Balancing 14
4.2.5 Hyperparameter 15
4.3 Model Evaluation 15
4.3.1 5-fold cross-validation on the training dataset 15
4.3.2 Model calibration 15
4.3.3 Bootstrapping on the independent testing dataset 16
4.3.4 Feature importance 17
4.3.5 Risk score 17
4.3.6 Clinical application 18
5. Conclusion and Discussion 21
6. Figures 24
7. Tables 48
Reference 64
-
dc.language.isoen-
dc.subject機器學習zh_TW
dc.subject人工智慧zh_TW
dc.subject心肌梗塞zh_TW
dc.subject常規實驗室檢驗zh_TW
dc.subject肌鈣蛋白zh_TW
dc.subjectartificial intelligenceen
dc.subjectmachine learningen
dc.subjectmyocardial infarctionen
dc.subjecttroponinen
dc.subjectroutine laboratory testsen
dc.title運用人工智慧管理心肌梗塞患者:利用初期緊急例行實驗室血液測試zh_TW
dc.titleManagement of patients with acute myocardial infarction by artificial intelligence: using initial emergency routine laboratory blood testsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林亮音;郭靜穎;楊雅倩;洪啟盛zh_TW
dc.contributor.oralexamcommitteeLiang-In Lin;Ching-Ying Kuo;Ya-Chien Yang;Chi-Sheng Hungen
dc.subject.keyword人工智慧,機器學習,心肌梗塞,肌鈣蛋白,常規實驗室檢驗,zh_TW
dc.subject.keywordartificial intelligence,machine learning,myocardial infarction,troponin,routine laboratory tests,en
dc.relation.page68-
dc.identifier.doi10.6342/NTU202402607-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-05-
dc.contributor.author-college醫學院-
dc.contributor.author-dept醫學檢驗暨生物技術學系-
dc.date.embargo-lift2026-08-04-
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
3.62 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved