Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 基因體暨蛋白體醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95063
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許書睿zh_TW
dc.contributor.advisorShu-Jui Hsuen
dc.contributor.author周庭暄zh_TW
dc.contributor.authorTing-Hsuan Chouen
dc.date.accessioned2024-08-27T16:11:08Z-
dc.date.available2024-08-28-
dc.date.copyright2024-08-27-
dc.date.issued2024-
dc.date.submitted2024-08-05-
dc.identifier.citation1000 Genomes Project Consortium, Auton, A., Brooks, L. D., Durbin, R. M., Garrison, E. P., Kang, H. M., Korbel, J. O., Marchini, J. L., McCarthy, S., McVean, G. A., & Abecasis, G. R. (2015). A global reference for human genetic variation. Nature, 526(7571), 68–74. https://doi.org/10.1038/nature15393
Andrews, R. M., Kubacka, I., Chinnery, P. F., Lightowlers, R. N., Turnbull, D. M., & Howell, N. (1999). Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nature Genetics, 23(2), 147–147. https://doi.org/10.1038/13779
Arbustini, E., Fasani, R., Morbini, P., Diegoli, M., Grasso, M., Bello, B. D., Marangoni, E., Banfi, P., Banchieri, N., Bellini, O., Comi, G., Narula, J., Campana, C., Gavazzi, A., Danesino, C., & Viganò, M. (1998). Coexistence of mitochondrial DNA and β myosin heavy chain mutations in hypertrophic cardiomyopathy with late congestive heart failure. Heart, 80(6), 548–558. https://doi.org/10.1136/hrt.80.6.548
Bhargava, P., & Schnellmann, R. G. (2017). Mitochondrial energetics in the kidney. Nature Reviews Nephrology, 13(10), 629–646. https://doi.org/10.1038/nrneph.2017.107
Brown, M. D., Torroni, A., Reckord, C. L., & Wallace, D. C. (1995). Phylogenetic analysis of Leber’s hereditary optic neuropathy mitochondrial DNA’s indicates multiple independent occurrences of the common mutations. Human Mutation, 6(4), 311–325. https://doi.org/10.1002/humu.1380060405
Brown, M. D., Zhadanov, S., Allen, J. C., Hosseini, S., Newman, N. J., Atamonov, V. V., Mikhailovskaya, I. E., Sukernik, R. I., & Wallace, D. C. (2001). Novel mtDNA mutations and oxidative phosphorylation dysfunction in Russian LHON families. Human Genetics, 109(1), 33–39. https://doi.org/10.1007/s004390100538
Cai, N., Gomez-Duran, A., Yonova-Doing, E., Kundu, K., Burgess, A. I., Golder, Z. J., Calabrese, C., Bonder, M. J., Camacho, M., Lawson, R. A., Li, L., Williams-Gray, C. H., Di Angelantonio, E., Roberts, D. J., Watkins, N. A., Ouwehand, W. H., Butterworth, A. S., Stewart, I. D., Pietzner, M., … Soranzo, N. (2021). Mitochondrial DNA variants modulate N-formylmethionine, proteostasis and risk of late-onset human diseases. Nature Medicine, 27(9), 1564–1575. https://doi.org/10.1038/s41591-021-01441-3
Casali, C., d’Amati, G., Bernucci, P., DeBiase, L., Autore, C., Santorelli, F. M., Coviello, D., & Gallo, P. (1999). Maternally inherited cardiomyopathy: Clinical and molecular characterization of a large kindred harboring the A4300G point mutation in mitochondrial deoxyribonucleic acid. Journal of the American College of Cardiology, 33(6), 1584–1589. https://doi.org/10.1016/S0735-1097(99)00079-0
Casali, C., Santorelli, F. M., Damati, G., Bernucci, P., Debiase, L., & Dimauro, S. (1995). A Novel mtDNA Point Mutation in Maternally Inherited Cardiomyopathy. Biochemical and Biophysical Research Communications, 213(2), 588–593. https://doi.org/10.1006/bbrc.1995.2172
Chinnery, P. F. (2022). Precision mitochondrial medicine. Cambridge Prisms: Precision Medicine, 1, e6. https://doi.org/10.1017/pcm.2022.8
Copeland, W. C. (2010). The Mitochondrial DNA Polymerase in Health and Disease. Sub-Cellular Biochemistry, 50, 211–222. https://doi.org/10.1007/978-90-481-3471-7_11
Craven, L., Alston, C. L., Taylor, R. W., & Turnbull, D. M. (2017). Recent Advances in Mitochondrial Disease. Annual Review of Genomics and Human Genetics, 18, 257–275. https://doi.org/10.1146/annurev-genom-091416-035426
Cree, L. M., Samuels, D. C., de Sousa Lopes, S. C., Rajasimha, H. K., Wonnapinij, P., Mann, J. R., Dahl, H.-H. M., & Chinnery, P. F. (2008). A reduction of mitochondrial DNA molecules during embryogenesis explains the rapid segregation of genotypes. Nature Genetics, 40(2), 249–254. https://doi.org/10.1038/ng.2007.63
Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. O., Whitwham, A., Keane, T., McCarthy, S. A., Davies, R. M., & Li, H. (2021). Twelve years of SAMtools and BCFtools. GigaScience, 10(2), giab008. https://doi.org/10.1093/gigascience/giab008
Delaneau, O., Marchini, J., & Zagury, J.-F. (2012). A linear complexity phasing method for thousands of genomes. Nature Methods, 9(2), 179–181. https://doi.org/10.1038/nmeth.1785
Dermaut, B., Seneca, S., Dom, L., Smets, K., Ceulemans, L., Smet, J., De Paepe, B., Tousseyn, S., Weckhuysen, S., Gewillig, M., Pals, P., Parizel, P., De Bleecker, J. L., Boon, P., De Meirleir, L., De Jonghe, P., Van Coster, R., Van Paesschen, W., & Santens, P. (2010). Progressive myoclonic epilepsy as an adult-onset manifestation of Leigh syndrome due to m.14487T>C. Journal of Neurology, Neurosurgery, and Psychiatry, 81(1), 90–93. https://doi.org/10.1136/jnnp.2008.157354
Ding, J., Sidore, C., Butler, T., Wing, M., Qian, Y., Meirelles, O., Busonero, F., Tsoi, L., Maschio, A., Angius, A., Kang, H., Nagaraja, R., Cucca, F., Abecasis, G., & Schlessinger, D. (2015). Assessing Mitochondrial DNA Variation and Copy Number in Lymphocytes of ~2,000 Sardinians Using Tailored Sequencing Analysis Tools. PLoS Genetics, 11, e1005306. https://doi.org/10.1371/journal.pgen.1005306
Dobson, P. F., Dennis, E. P., Hipps, D., Reeve, A., Laude, A., Bradshaw, C., Stamp, C., Smith, A., Deehan, D. J., Turnbull, D. M., & Greaves, L. C. (2020). Mitochondrial dysfunction impairs osteogenesis, increases osteoclast activity, and accelerates age related bone loss. Scientific Reports, 10(1), 11643. https://doi.org/10.1038/s41598-020-68566-2
Dür, A., Huber, N., & Parson, W. (2021). Fine-Tuning Phylogenetic Alignment and Haplogrouping of mtDNA Sequences. International Journal of Molecular Sciences, 22(11), Article 11. https://doi.org/10.3390/ijms22115747
Eirin, A., Lerman, A., & Lerman, L. O. (2017). The Emerging Role of Mitochondrial Targeting in Kidney Disease. Handbook of Experimental Pharmacology, 240, 229–250. https://doi.org/10.1007/164_2016_6
Feng, Y.-C. A., Chen, C.-Y., Chen, T.-T., Kuo, P.-H., Hsu, Y.-H., Yang, H.-I., Chen, W. J., Su, M.-W., Chu, H.-W., Shen, C.-Y., Ge, T., Huang, H., & Lin, Y.-F. (2022). Taiwan Biobank: A rich biomedical research database of the Taiwanese population. Cell Genomics, 2(11), 100197. https://doi.org/10.1016/j.xgen.2022.100197
Gorman, G. S., Chinnery, P. F., DiMauro, S., Hirano, M., Koga, Y., McFarland, R., Suomalainen, A., Thorburn, D. R., Zeviani, M., & Turnbull, D. M. (2016). Mitochondrial diseases. Nature Reviews Disease Primers, 2(1), Article 1. https://doi.org/10.1038/nrdp.2016.80
Gray, M. W. (2012). Mitochondrial Evolution. Cold Spring Harbor Perspectives in Biology, 4(9), a011403. https://doi.org/10.1101/cshperspect.a011403
Guo, Y., Yang, T.-L., Liu, Y.-Z., Shen, H., Lei, S.-F., Yu, N., Chen, J., Xu, T., Cheng, Y., Tian, Q., Yu, P., & Deng, H.-W. (2011). Mitochondria-wide association study of common variants in osteoporosis. Annals of Human Genetics, 75(5), 569–574. https://doi.org/10.1111/j.1469-1809.2011.00663.x
Gupta, R., Kanai, M., Durham, T. J., Tsuo, K., McCoy, J. G., Kotrys, A. V., Zhou, W., Chinnery, P. F., Karczewski, K. J., Calvo, S. E., Neale, B. M., & Mootha, V. K. (2023). Nuclear genetic control of mtDNA copy number and heteroplasmy in humans. Nature, 620(7975), Article 7975. https://doi.org/10.1038/s41586-023-06426-5
Hage, R., & Vignal-Clermont, C. (2021). Leber Hereditary Optic Neuropathy: Review of Treatment and Management. Frontiers in Neurology, 12, 651639. https://doi.org/10.3389/fneur.2021.651639
Hail Team. Hail 0.2.119-ca0ff87b1687. https://github.com/hail-is/hail/commit/ca0ff87b1687. (n.d.). Hail [Computer software].
Hanna, M. G., Nelson, I., Sweeney, M. G., Cooper, J. M., Watkins, P. J., Morgan-Hughes, J. A., & Harding, A. E. (1995). Congenital encephalomyopathy and adult-onset myopathy and diabetes mellitus: Different phenotypic associations of a new heteroplasmic mtDNA tRNA glutamic acid mutation. American Journal of Human Genetics, 56(5), 1026–1033.
Holt, I. J., Harding, A. E., & Morgan-Hughes, J. A. (1988). Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature, 331(6158), 717–719. https://doi.org/10.1038/331717a0
Howie, B. N., Donnelly, P., & Marchini, J. (2009). A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies. PLOS Genetics, 5(6), e1000529. https://doi.org/10.1371/journal.pgen.1000529
Hsu, J. S., Wu, D.-C., Shih, S.-H., Liu, J.-F., Tsai, Y.-C., Lee, T.-L., Chen, W.-A., Tseng, Y.-H., Lo, Y.-C., Lin, H.-Y., Chen, Y.-C., Chen, J.-Y., Chou, T.-H., Chang, D. T.-H., Su, M. W., Guo, W.-H., Mao, H.-H., Chen, C.-Y., & Chen, P.-L. (2023). Complete genomic profiles of 1496 Taiwanese reveal curated medical insights. Journal of Advanced Research. https://doi.org/10.1016/j.jare.2023.12.018
Hudson, G., Gomez-Duran, A., Wilson, I. J., & Chinnery, P. F. (2014). Recent Mitochondrial DNA Mutations Increase the Risk of Developing Common Late-Onset Human Diseases. PLOS Genetics, 10(5), e1004369. https://doi.org/10.1371/journal.pgen.1004369
Hunt Ryan C. & Kimchi-Sarfaty Chava. (2022). When Silence Disrupts. New England Journal of Medicine, 387(8), 753–756. https://doi.org/10.1056/NEJMcibr2207405
Inker, L. A., Schmid, C. H., Tighiouart, H., Eckfeldt, J. H., Feldman, H. I., Greene, T., Kusek, J. W., Manzi, J., Van Lente, F., Zhang, Y. L., Coresh, J., Levey, A. S., & CKD-EPI Investigators. (2012). Estimating glomerular filtration rate from serum creatinine and cystatin C. The New England Journal of Medicine, 367(1), 20–29. https://doi.org/10.1056/NEJMoa1114248
Kelly, R. D. W., Mahmud, A., McKenzie, M., Trounce, I. A., & St John, J. C. (2012). Mitochondrial DNA copy number is regulated in a tissue specific manner by DNA methylation of the nuclear-encoded DNA polymerase gamma A. Nucleic Acids Research, 40(20), 10124–10138. https://doi.org/10.1093/nar/gks770
Kokotas, H., Petersen, M. B., & Willems, P. J. (2007). Mitochondrial deafness. Clinical Genetics, 71(5), 379–391. https://doi.org/10.1111/j.1399-0004.2007.00800.x
Laricchia, K. M., Lake, N. J., Watts, N. A., Shand, M., Haessly, A., Gauthier, L., Benjamin, D., Banks, E., Soto, J., Garimella, K., Emery, J., Rehm, H. L., MacArthur, D. G., Tiao, G., Lek, M., Mootha, V. K., & Calvo, S. E. (2022). Mitochondrial DNA variation across 56,434 individuals in gnomAD. Genome Research, 32(3), 569–582. https://doi.org/10.1101/gr.276013.121
Lott, M. T., Leipzig, J. N., Derbeneva, O., Xie, H. M., Chalkia, D., Sarmady, M., Procaccio, V., & Wallace, D. C. (2013). mtDNA Variation and Analysis Using Mitomap and Mitomaster. Current Protocols in Bioinformatics, 44(123), 1.23.1-26. https://doi.org/10.1002/0471250953.bi0123s44
Manichaikul, A., Mychaleckyj, J. C., Rich, S. S., Daly, K., Sale, M., & Chen, W.-M. (2010). Robust relationship inference in genome-wide association studies. Bioinformatics, 26(22), 2867–2873. https://doi.org/10.1093/bioinformatics/btq559
Marcelino, L. A., & Thilly, W. G. (1999). Mitochondrial mutagenesis in human cells and tissues. Mutation Research/DNA Repair, 434(3), 177–203. https://doi.org/10.1016/S0921-8777(99)00028-2
Mbatchou, J., Barnard, L., Backman, J., Marcketta, A., Kosmicki, J. A., Ziyatdinov, A., Benner, C., O’Dushlaine, C., Barber, M., Boutkov, B., Habegger, L., Ferreira, M., Baras, A., Reid, J., Abecasis, G., Maxwell, E., & Marchini, J. (2021). Computationally efficient whole-genome regression for quantitative and binary traits. Nature Genetics, 53(7), Article 7. https://doi.org/10.1038/s41588-021-00870-7
McLaren, W., Gil, L., Hunt, S. E., Riat, H. S., Ritchie, G. R. S., Thormann, A., Flicek, P., & Cunningham, F. (2016). The Ensembl Variant Effect Predictor. Genome Biology, 17(1), 122. https://doi.org/10.1186/s13059-016-0974-4
Nicholls, T. J., & Minczuk, M. (2014). In D-loop: 40 years of mitochondrial 7S DNA. Experimental Gerontology, 56, 175–181. https://doi.org/10.1016/j.exger.2014.03.027
Poulton, J., Luan, J., Macaulay, V., Hennings, S., Mitchell, J., & Wareham, N. J. (2002). Type 2 diabetes is associated with a common mitochondrial variant: Evidence from a population-based case-control study. Human Molecular Genetics, 11(13), 1581–1583. https://doi.org/10.1093/hmg/11.13.1581
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., Maller, J., Sklar, P., de Bakker, P. I. W., Daly, M. J., & Sham, P. C. (2007). PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. American Journal of Human Genetics, 81(3), 559–575.
Rath, S., Sharma, R., Gupta, R., Ast, T., Chan, C., Durham, T. J., Goodman, R. P., Grabarek, Z., Haas, M. E., Hung, W. H. W., Joshi, P. R., Jourdain, A. A., Kim, S. H., Kotrys, A. V., Lam, S. S., McCoy, J. G., Meisel, J. D., Miranda, M., Panda, A., … Mootha, V. K. (2021). MitoCarta3.0: An updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Research, 49(D1), D1541–D1547. https://doi.org/10.1093/nar/gkaa1011
Sheu, A., & Diamond, T. (2016). Bone mineral density: Testing for osteoporosis. Australian Prescriber, 39(2), 35–39. https://doi.org/10.18773/austprescr.2016.020
Speed, D., Cai, N., Johnson, M. R., Nejentsev, S., & Balding, D. J. (2017). Reevaluation of SNP heritability in complex human traits. Nature Genetics, 49(7), 986–992. https://doi.org/10.1038/ng.3865
Stewart, J. B., & Chinnery, P. F. (2015). The dynamics of mitochondrial DNA heteroplasmy: Implications for human health and disease. Nature Reviews Genetics, 16(9), Article 9. https://doi.org/10.1038/nrg3966
Stewart, J. B., & Chinnery, P. F. (2021). Extreme heterogeneity of human mitochondrial DNA from organelles to populations. Nature Reviews Genetics, 22(2), Article 2. https://doi.org/10.1038/s41576-020-00284-x
Ugalde, C., Triepels, R. H., Coenen, M. J. H., Van Den Heuvel, L. P., Smeets, R., Uusimaa, J., Briones, P., Campistol, J., Majamaa, K., Smeitink, J. A. M., & Nijtmans, L. G. J. (2003). Impaired complex I assembly in a Leigh syndrome patient with a novel missense mutation in the ND6 gene. Annals of Neurology, 54(5), 665–669. https://doi.org/10.1002/ana.10734
van Oven, M., & Kayser, M. (2009). Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Human Mutation, 30(2), E386–E394. https://doi.org/10.1002/humu.20921
Varanasi, S. S., Francis, R. M., Berger, C. E., Papiha, S. S., & Datta, H. K. (1999). Mitochondrial DNA deletion associated oxidative stress and severe male osteoporosis. Osteoporosis International: A Journal Established as Result of Cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA, 10(2), 143–149. https://doi.org/10.1007/s001980050209
Wallace, D. C. (2013). A mitochondrial bioenergetic etiology of disease. The Journal of Clinical Investigation, 123(4), 1405–1412. https://doi.org/10.1172/JCI61398
Wallace, D. C. (2015). Mitochondrial DNA variation in human radiation and disease. Cell, 163(1), 33–38. https://doi.org/10.1016/j.cell.2015.08.067
Wallace, D. C. (2018). Mitochondrial genetic medicine. Nature Genetics, 50(12), Article 12. https://doi.org/10.1038/s41588-018-0264-z
Wallace, D. C., Singh, G., Lott, M. T., Hodge, J. A., Schurr, T. G., Lezza, A. M. S., Elsas, L. J., & Nikoskelainen, E. K. (1988). Mitochondrial DNA Mutation Associated with Leber’s Hereditary Optic Neuropathy. Science, 242(4884), 1427–1430. https://doi.org/10.1126/science.3201231
Wang, S., Wu, S., Zheng, T., Yang, Z., Ma, X., Jia, W., & Xiang, K. (2013). Mitochondrial DNA mutations in diabetes mellitus patients in Chinese Han population. Gene, 531(2), 472–475. https://doi.org/10.1016/j.gene.2013.09.019
Wei, W., Tuna, S., Keogh, M. J., Smith, K. R., Aitman, T. J., Beales, P. L., Bennett, D. L., Gale, D. P., Bitner-Glindzicz, M. A. K., Black, G. C., Brennan, P., Elliott, P., Flinter, F. A., Floto, R. A., Houlden, H., Irving, M., Koziell, A., Maher, E. R., Markus, H. S., … Chinnery, P. F. (2019). Germline selection shapes human mitochondrial DNA diversity. Science, 364(6442), eaau6520. https://doi.org/10.1126/science.aau6520
Weissensteiner, H., Forer, L., Fendt, L., Kheirkhah, A., Salas, A., Kronenberg, F., & Schoenherr, S. (2021). Contamination detection in sequencing studies using the mitochondrial phylogeny. Genome Research, 31(2), 309–316. https://doi.org/10.1101/gr.256545.119
Weissensteiner, H., Pacher, D., Kloss-Brandstätter, A., Forer, L., Specht, G., Bandelt, H.-J., Kronenberg, F., Salas, A., & Schönherr, S. (2016). HaploGrep 2: Mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Research, 44(W1), W58-63. https://doi.org/10.1093/nar/gkw233
Xing, S., Jiang, S., Wang, S., Lin, P., Sun, H., Peng, H., Yang, J., Kong, H., Wang, S., Bai, Q., Qiu, R., Dai, W., Yuan, J., Ma, Y., Yu, X., Yao, Y., Su, J., & Myopia Associated Genetics and Intervention Consortium. (2023). Association of mitochondrial DNA variation with high myopia in a Han Chinese population. Molecular Genetics and Genomics, 298(5), 1059–1071. https://doi.org/10.1007/s00438-023-02036-y
Yamamoto, K., Sakaue, S., Matsuda, K., Murakami, Y., Kamatani, Y., Ozono, K., Momozawa, Y., & Okada, Y. (2020). Genetic and phenotypic landscape of the mitochondrial genome in the Japanese population. Communications Biology, 3(1), Article 1. https://doi.org/10.1038/s42003-020-0812-9
Yonova-Doing, E., Calabrese, C., Gomez-Duran, A., Schon, K., Wei, W., Karthikeyan, S., Chinnery, P. F., & Howson, J. M. M. (2021). An atlas of mitochondrial DNA genotype–phenotype associations in the UK Biobank. Nature Genetics, 53(7), Article 7. https://doi.org/10.1038/s41588-021-00868-1
Zheng, W., Khrapko, K., Coller, H. A., Thilly, W. G., & Copeland, W. C. (2006). Origins of human mitochondrial point mutations as DNA polymerase gamma-mediated errors. Mutation Research, 599(1–2), 11–20. https://doi.org/10.1016/j.mrfmmm.2005.12.012
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95063-
dc.description.abstract粒線體在細胞能量代謝中具有重要的功用,因此粒線體DNA (mtDNA) 的變異在許多疾病的發病機制中扮演著重要的角色。然而,非歐洲族群的粒線體DNA多樣性仍未被充分探索,並且需要更全面的分析與探究。本研究使用臺灣人體生物資料庫 (Taiwan Biobank, TWB) 中基因體資料,探討粒線體DNA上的變異及其與複雜性狀之間的相關性。本研究使用GATK Mutect2分析流程進行粒線體DNA變異檢測,包含單核苷酸變異 (single nucleotide variant, SNV) 與小片段插入與缺失 (insertion and deletion, Indel),並分析這些變異屬於同質性 (homoplasmy) 或是異質性 (heteroplasmy)。
透過重新分析1,492個全基因體定序資料 (whole-genome sequencing, WGS),找到了2,361個粒線體DNA變異,其中包括77個在gnomAD database v3.1中未曾報導的新變異。此外,本研究分析了臺灣人體生物資料庫中參與者的粒線體單倍群 (haplogroup),發現多數人屬於M、D及F單倍群,而這些單倍群在分類上也確實都屬於亞洲的分支。
為了進一步探索粒線體DNA變異對複雜性狀的潛在影響,本研究使用120,163筆全基因體定型資料 (whole-genome genotyping) 對多種性狀進行了粒線體基因組的關聯性分析。首先,我們從WGS資料構建了專為臺灣人群建立的mtDNA基因型差補方法 (imputation panel),並確認了進行粒線體DNA基因型差補的可行性。隨後利用全基因體定型資料進行關聯分析,發現了粒線體DNA變異和複雜性狀的相關性。首先,我們發現MT-ND2上的基因變異與高度近視相關;另一個位於粒線體DNA上調控複製的重要區域D-loop上的變異則與骨質密度分數相關,表明這個變異可能與骨質疏鬆症的風險有關。此外,本研究還發現了14個與腎功能指標相關的粒線體DNA變異。這些與腎功能相關的變異可以依照關聯性進一步被分為兩組,第一組是在M和N單倍群中的常見變異,屬於演化樹較上游的單倍群標誌 (haplogroup marker),這些變異位點廣泛分佈在其下游分支中,並顯示了與腎功能惡化的風險相關。另一組變異則散佈在演化數中較下游的B4b單倍群分支中,顯示了與保護腎功能相關。這項研究補足了臺灣人體生物資料庫中對於粒線體DNA分析的不足,也拓展了對臺灣人群中粒線體DNA多樣性的理解。
zh_TW
dc.description.abstractThe genetic variations on mitochondrial DNA (mtDNA) play a significant role in the pathogenesis of various diseases due to their influence on cellular energy metabolism. However, the diversity in mitochondrial genetics among non-European populations remains insufficiently explored and requires more comprehensive genetic insights. This study leverages the extensive genomic data from the Taiwan Biobank (TWB), encompassing over 200,000 individuals, to explore mtDNA variations and their phenotypic associations.
This study employed the GATK Mutect2 analysis workflow for mitochondrial single nucleotide variant (SNV), insertion/deletion (Indel) calling to detect both homoplasmy and heteroplasmy. By reanalyzing 1,492 whole-genome sequences (WGS), this study identified 2,361 mtDNA variants, including 77 novel variants not previously reported in the gnomAD v3.1 database. Additionally, the mitochondrial haplogroup analysis underscored the predominance of haplogroups M, D, and F, demonstrating the distribution of Asian lineage mitochondrial haplogroups within the Taiwanese population.
To further explore the potential implications of mtDNA variants on complex traits, this study conducted mitochondrial-wide association analyses with a wide range of phenotypes using genotyping array data from 120,163 participants. First, a Taiwanese population-specific mtDNA imputation panel based on 1,492 WGS data has been established, and the feasibility of mtDNA imputation has been evaluated. Subsequently, we performed the association analyses to discover relationships between mtDNA variants and complex traits. We identified variants in the MT-ND2 gene associated with high myopia. A variant in the mitochondrial control region was associated with bone mineral density score, suggesting a potential risk for osteoporosis.
Additionally, this study discovered 14 mtDNA variants correlated with renal function biomarkers, including serum creatinine and eGFR. These variants can be divided into two independent sets. The first set includes ancestral variants in haplogroups M and N, which are broadly distributed in their downstream haplogroups. These markers are associated with decreased eGFR levels, indicating a potential risk correlation with renal dysfunction. The other set contained variants in lineage B4b and was associated with elevated eGFR and reduced creatinine, suggesting a protective correlation with renal function.
This study significantly enriches our understanding of mtDNA diversity in the Taiwanese population and underscores the importance of including diverse genetic backgrounds in mitochondrial research to uncover relevant genetic insights that may be masked in predominantly European studies.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-27T16:11:08Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-27T16:11:08Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
英文摘要 iv
縮寫對照表 vi
目次 vii
圖次 x
表次 xi
Chapter 1 Introduction 1
1.1 Mitochondrial biogenesis 1
1.2 Mitochondrial genome (mtDNA) 1
1.3 Heteroplasmy and the mitochondrial genetic bottleneck effect 2
1.4 Tracing human migration and evolution through mitochondrial haplogroups 3
1.5 mtDNA variants in disease etiology 4
1.5.1 Introduction to MITOMAP 5
1.5.2 mtDNA variants and common diseases 5
1.6 Population based mtDNA association studies 6
Chapter 2 Materials and Methods 9
2.1 Study population 9
2.2 Mitochondrial DNA variant calling and filtering using the WGS data 9
2.3 Haplogroup assignment 11
2.4 Mitochondrial DNA variant annotations 11
2.5 Allele frequencies with gnomAD and MITOMAP 11
2.6 Principal Component Analysis (PCA) on the nuclear DNA (nDNA) and mitochondrial DNA variant 12
2.7 Ancestries classification in the TWB 12
2.8 Quality control of mitochondrial variants from the microarray data 13
2.9 Impute Mitochondrial variant and Accuracy Evaluation 14
2.10 Imputation of mtDNA using genotyping array data 15
2.11 Preparation of phenotypic traits 15
2.12 Mitochondrial genome-wide association analysis 16
2.13 Association of haplogroups and renal markers 17
Chapter 3 Results 19
3.1 Profiling mtDNA across 1,492 individuals using Taiwan Biobank 19
3.1.1 Mitochondrial sequencing depth across the 16,569-bp genome 19
3.1.2 Mitochondrial copy number and mtDNA variant statistics 20
3.2 Allele frequency comparison with gnomAD and MITOMAP 20
3.3 Analysis of mtDNA variant per sample across age groups 21
3.4 Mitochondrial DNA variant annotations 21
3.5 Prevalence of confirmed pathogenic mtDNA variants in TWB 22
3.6 Mitochondrial haplogroups in TWB 24
3.7 Capability of mtDNA and nuclear genetic structure in reflecting ancestral information 25
3.8 Distinct characteristics of mtDNA variant structure 26
3.9 Imputation of mtDNA variants 27
3.10 Mitochondrial genome-wide association study 28
3.10.1 mtDNA variants associated with high myopia 29
3.10.2 mtDNA variants associated with bone mineral density 29
3.10.3 mtDNA variants associated with renal function 30
3.10.4 Haplogroup B4b and mtDNA variants independently associated with renal function 31
3.11 The release of mtDNA call set and association summary statistics 32
Discussion 34
Discussion 1. Prevalence and implications of pathogenic mtDNA variants in the Taiwanese population 34
Discussion 2. Correlation between nuclear genetic structure and mitochondrial genetic structure 36
Discussion 3. Association of common mtDNA variants with complex traits in the Taiwan Biobank 37
3.1 High myopia and MT-ND2 gene variants 37
3.2 Bone health and the m.16145G>A variant 38
3.3 Association of renal function with mtDNA variants and B4b haplogroups 39
Figures 44
Tables 63
References 71
附錄 79
-
dc.language.isoen-
dc.subject粒線體基因組zh_TW
dc.subject關聯性分析zh_TW
dc.subject人群基因體學zh_TW
dc.subject粒線體變異zh_TW
dc.subject臺灣人體生物資料庫zh_TW
dc.subjectmitochondrial genomeen
dc.subjectTaiwan Biobanken
dc.subjectassociation studyen
dc.subjectpopulation geneticsen
dc.subjectmitochondrial variantsen
dc.title利用臺灣人體生物資料庫分析族群粒線體DNA變異與表型關聯研究zh_TW
dc.titleMitochondrial Genome Variations and Phenotypic Associations in the Taiwan Biobanken
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳沛隆;王弘毅;李妮鍾zh_TW
dc.contributor.oralexamcommitteePei-Lung Chen;Hurng-Yi Wang;Ni-Chung Leeen
dc.subject.keyword粒線體基因組,粒線體變異,人群基因體學,關聯性分析,臺灣人體生物資料庫,zh_TW
dc.subject.keywordmitochondrial genome,mitochondrial variants,population genetics,association study,Taiwan Biobank,en
dc.relation.page80-
dc.identifier.doi10.6342/NTU202402351-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-05-
dc.contributor.author-college醫學院-
dc.contributor.author-dept基因體暨蛋白體醫學研究所-
dc.date.embargo-lift2029-07-26-
顯示於系所單位:基因體暨蛋白體醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
8.47 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved