請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95058
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳家揚 | zh_TW |
dc.contributor.advisor | Chia-Yang Chen | en |
dc.contributor.author | 胡宜倢 | zh_TW |
dc.contributor.author | I-Chieh Hu | en |
dc.date.accessioned | 2024-08-27T16:09:27Z | - |
dc.date.available | 2024-08-28 | - |
dc.date.copyright | 2024-08-27 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-11 | - |
dc.identifier.citation | 1. Prevedouros, K., I.T. Cousins, R.C. Buck, and S.H. Korzeniowski, Sources, fate and transport of perfluorocarboxylates. Environ Sci Technol, 2006. 40(1): p. 32-44.
2. Cordner, A., V.Y. De La Rosa, L.A. Schaider, R.A. Rudel, L. Richter, and P. Brown, Correction: Guideline levels for PFOA and PFOS in drinking water: the role of scientific uncertainty, risk assessment decisions, and social factors. J Expo Sci Environ Epidemiol, 2020. 30(3): p. 585-586. 3. Grandjean, P., E.W. Andersen, E. Budtz-Jorgensen, F. Nielsen, K. Molbak, P. Weihe, et al., Serum vaccine antibody concentrations in children exposed to perfluorinated compounds. JAMA, 2012. 307(4): p. 391-7. 4. Grandjean, P., C. Heilmann, P. Weihe, F. Nielsen, U.B. Mogensen, and E. Budtz-Jorgensen, Serum vaccine antibody concentrations in adolescents exposed to perfluorinated compounds. Environ Health Perspect, 2017. 125(7): p. 077018. 5. Abraham, K., H. Mielke, H. Fromme, W. Volkel, J. Menzel, M. Peiser, et al., Internal exposure to perfluoroalkyl substances (PFASs) and biological markers in 101 healthy 1-year-old children: associations between levels of perfluorooctanoic acid (PFOA) and vaccine response. Arch Toxicol, 2020. 94(6): p. 2131-2147. 6. Schlezinger, J.J., H. Puckett, J. Oliver, G. Nielsen, W. Heiger-Bernays, and T.F. Webster, Perfluorooctanoic acid activates multiple nuclear receptor pathways and skews expression of genes regulating cholesterol homeostasis in liver of humanized PPARalpha mice fed an American diet. Toxicol Appl Pharmacol, 2020. 405: p. 115204. 7. Yuan, Y., X. Ding, Y. Cheng, H. Kang, T. Luo, X. Zhang, et al., PFOA evokes extracellular Ca(2+) influx and compromises progesterone-induced response in human sperm. Chemosphere, 2020. 241: p. 125074. 8. Eryasa, B., P. Grandjean, F. Nielsen, D. Valvi, D. Zmirou-Navier, E. Sunderland, et al., Physico-chemical properties and gestational diabetes predict transplacental transfer and partitioning of perfluoroalkyl substances. Environ Int, 2019. 130: p. 104874. 9. Koshy, T.T., T.M. Attina, A. Ghassabian, J. Gilbert, L.K. Burdine, M. Marmor, et al., Serum perfluoroalkyl substances and cardiometabolic consequences in adolescents exposed to the World Trade Center disaster and a matched comparison group. Environ Int, 2017. 109: p. 128-135. 10. Stockholm Convention. At COP-4 in 2009, the Conference of the Parties decided to list perfluorooctane sulfonic acid (PFOS), its salts and perfluorooctane sulfonyl fluoride (PFOSF) in Annex B to the Stockholm Convention (decision SC-4/17). 2019. Available online: http://chm.pops.int/Implementation/IndustrialPOPs/PFOS/Overview/tabid/5221/Default.aspx (accessed on 15 October 2021). 11. ITRC. PFAS Technichal and Regulatory Guidanace Document and Fact Sheet PFAS-1; ITRC: Washington, DC, USA, 2020. . 12. Gluge, J., M. Scheringer, I.T. Cousins, J.C. DeWitt, G. Goldenman, D. Herzke, et al., An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environ Sci Process Impacts, 2020. 22(12): p. 2345-2373. 13. Zhao, L., L. Zhu, S. Zhao, and X. Ma, Sequestration and bioavailability of perfluoroalkyl acids (PFAAs) in soils: Implications for their underestimated risk. Sci Total Environ, 2016. 572: p. 169-176. 14. International Agency for Research on Cancer. Some Chemicals Used as Solvents and in Polymer Manufacture. Vol. 110. Lyon, IARC: 2017. PFOA. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans; pp. 37–110. . 15. Toxic and Chemical Substances Bureau. Toxic chemical substances. 2020; Available from: https://www.tcsb.gov.tw/cp-182-2398-96d9c-2.html. Accessed 16 June 2021. 16. Gomis, M.I., R. Vestergren, D. Borg, and I.T. Cousins, Comparing the toxic potency in vivo of long-chain perfluoroalkyl acids and fluorinated alternatives. Environ Int, 2018. 113: p. 1-9. 17. Blake, B.E., H.A. Cope, S.M. Hall, R.D. Keys, B.W. Mahler, J. McCord, et al., Evaluation of maternal, embryo, and placental effects in CD-1 mice following gestational exposure to perfluorooctanoic acid (PFOA) or hexafluoropropylene oxide dimer acid (HFPO-DA or GenX). Environ Health Perspect, 2020. 128(2): p. 27006. 18. Chappell, G.A., C.M. Thompson, J.C. Wolf, J.M. Cullen, J.E. Klaunig, and L.C. Haws, Assessment of the mode of action underlying the effects of genx in mouse liver and implications for assessing human health risks. Toxicol Pathol, 2020. 48(3): p. 494-508. 19. Coperchini, F., L. Croce, M. Denegri, P. Pignatti, M. Agozzino, G.S. Netti, et al., Adverse effects of in vitro GenX exposure on rat thyroid cell viability, DNA integrity and thyroid-related genes expression. Environ Pollut, 2020. 264: p. 114778. 20. European Chemicals Agency. Candidate List of substances of very high concern for Authorisation. 2019 July; Available from: https://echa.europa.eu/candidate-list-table/-/dislist/details/0b02361833efc3e. Accessed 16 June 2021. 21. Gebbink, W.A. and S.P.J. van Leeuwen, Environmental contamination and human exposure to PFASs near a fluorochemical production plant: Review of historic and current PFOA and GenX contamination in the Netherlands. Environ Int, 2020. 137: p. 105583. 22. Ramirez Carnero, A., A. Lestido-Cardama, P. Vazquez Loureiro, L. Barbosa-Pereira, A. Rodriguez Bernaldo de Quiros, and R. Sendon, Presence of perfluoroalkyl and polyfluoroalkyl substances (pfas) in food contact materials (FCM) and its migration to food. Foods, 2021. 10(7). 23. Still, M., M. Schlummer, L. Gruber, D. Fiedler, and G. Wolz, Impact of industrial production and packaging processes on the concentration of per- and polyfluorinated compounds in milk and dairy products. J Agric Food Chem, 2013. 61(38): p. 9052-62. 24. Susmann, H.P., L.A. Schaider, K.M. Rodgers, and R.A. Rudel, Dietary habits related to food packaging and population exposure to PFASs. Environ Health Perspect, 2019. 127(10): p. 107003. 25. Yuan, G., H. Peng, C. Huang, and J. Hu, Ubiquitous occurrence of fluorotelomer alcohols in eco-friendly paper-made food-contact materials and their implication for human exposure. Environ Sci Technol, 2016. 50(2): p. 942-50. 26. M.P. Elizalde, S.G.-L., A.M. Urtiaga, Migration of perfluorinated compounds from paperbag to Tenax and lyophilised milk at different temperatures. Int. J. Environ. Anal. Chem., 2018. 98: p. 1423-1433. 27. 曾聖哲, 以大氣壓氣相層析/串聯式質譜術定量血清及尿液中氟調聚合醇和全氟磺胺類化合物. 國立臺灣大學環境與職業健康科學研究所, 2021. Tseng, S.C., Determination of fluorotelomer alcohols and perfluorinated sulfonamides in serum and urine using atmosphere pressure gas chromatography/tandem mass spectrometry. 28. 陳則穎, 以固相萃取搭配極致液相層析/串聯式質譜儀分析水中全氟碳化合物、鄰苯二甲酸酯、壬基酚與雙酚A, 國立臺灣大學環境衛生研究所, 2017. Chen. Z.Y., Determination of perfluoroalkyl substances, phthalate esters, nonylphenol, and bisphenol a in water by solid-phase extraction and UPLC-MS/MS. 2017. 29. 廖士翔, 以即時直接分析質譜術與極致液相層析/串聯式質譜術定量血清及尿液中環境荷爾蒙. 國立臺灣大學環境與職業健康科學研究所, 2021. Liao, S.H., Determination of endocrine disruptors in serum and urine with direct analysis in real time/tandem mass spectrometry and ultra-performance liquid chromatography/ tandem mass spectrometry. 2021. 30. T.H. Begley, K. White, P. Honigfort, M.L. Twaroski, R. Neches, and R.A Walker, Perfluorochemicals: potential sources of and migration from food packaging. Food Additives & Contaminants, 2005. 22(10): p. 1023-31. 31. M.P. Martinez-Moral and M.T. Tena, Determination of perfluorocompounds in popcorn packaging by pressurised liquid extraction and ultra-performance liquid chromatography-tandem mass spectrometry. Talanta, 2012. 101: p. 104-9. 32. Monge Brenes, A. L., Curtzwiler, G., Dixon, P., Harrata, K., Talbert, J., & Vorst, K. (2019). PFOA and PFOS levels in microwave paper packaging between 2005 and 2018. Food Additives & Contaminants: Part B, 12(3), 191–198. 33. Cheng, Y., L. Mai, X. Lu, Z. Li, Y. Guo, D. Chen, et al., Occurrence and abundance of poly- and perfluoroalkyl substances (PFASs) on microplastics (MPs) in Pearl River Estuary (PRE) region: Spatial and temporal variations. Environ Pollut, 2021. 281: p. 117025. 34. Xie, S., T. Wang, S. Liu, K.C. Jones, A.J. Sweetman, and Y. Lu, Industrial source identification and emission estimation of perfluorooctane sulfonate in China. Environ Int, 2013. 52: p. 1-8. 35. Wang, Z., I.T. Cousins, M. Scheringer, R.C. Buck, and K. Hungerbuhler, Global emission inventories for C4-C14 perfluoroalkyl carboxylic acid (PFCA) homologues from 1951 to 2030, Part I: production and emissions from quantifiable sources. Environ Int, 2014. 70: p. 62-75. 36. I. Zabaleta, E. Bizkarguenaga, D. Bilbao, N. Etxebarria, A. Prieto, O. Zuloaga, Fast and simple determination of perfluorinated compounds and their potential precursors in different packaging materials., 2016. Talanta, 2016. 152: p. 353-363. 37. Moreta, C. and M.T. Tena, Fast determination of perfluorocompounds in packaging by focused ultrasound solid-liquid extraction and liquid chromatography coupled to quadrupole-time of flight mass spectrometry. J Chromatogr A, 2013. 1302: p. 88-94. 38. Poothong, S., S.K. Boontanon, and N. Boontanon, Determination of perfluorooctane sulfonate and perfluorooctanoic acid in food packaging using liquid chromatography coupled with tandem mass spectrometry. J Hazard Mater, 2012. 205-206: p. 139-43. 39. Elyson Keith Ponce Encarnacion, A.C.A., Harold Esplana Armario, Winnie Pagaduan Alejandro, Zhaoqi Zhan, Zhe Sun, Ng Lin, Preliminary Screening of per- and polyfluoroalkyl substances (PFAS) in Philippine fast food packaging using liquid chromatography–mass spectrometry (LC-MS). Nutr Food Sci., 2024, 12(1): p. 423-436. 40. Siao, P., S.H. Tseng, and C.Y. Chen, Determination of perfluoroalkyl substances in food packaging in Taiwan using ultrasonic extraction and ultra-performance liquid chromatography/tandem mass spectrometry. J Food Drug Anal, 2022. 30(1): p. 11-25. 41. María Jesús Dueñas-Mas, A.B.-G., Jacob de Boer, Determination of several PFAS groups in food packaging material from fast-food restaurants in France. Chemosphere, 2023. 339: p. 139734. 42. I. Zabaleta, N. Negreira, E. Bizkarguenaga, A. Prieto, A. Covaci, and O. Zuloaga, Screening and identification of per- and polyfluoroalkyl substances in microwave popcorn bags. Food Chem, 2017. 230: p. 497-506. 43. Zafeiraki, E., D. Costopoulou, I. Vassiliadou, E. Bakeas, and L. Leondiadis, Determination of perfluorinated compounds (PFCs) in various foodstuff packaging materials used in the Greek market. Chemosphere, 2014. 94: p. 169-76. 44. Fan, J.C., Q. Jin, H.L. He, R. Ren, and S.T. Wang, Detection of 20 Phthalate Esters in Different Kinds of Food Packaging Materials by GC-MS/MS with Five Internal Standards. J AOAC Int, 2018. 36(10): p. 1551-1558. 45. 賴怡潔,氣相層析與極致液相層析/串聯式質譜儀分析全氟碳化物之比較,國立臺灣大學環境衛生研究所2013,碩士論文. Lai, Y.C., Comparison of gas chromatography and ultra-performance liquid chromatography I coupled with tandem mass spectrometry for determining perfluorinated chemicals. 2013. 46. Bajic S. U.S. patent no. 8,809,777. Washington, DC: U.S. Patent and Trademark Office; 2014. 47. Portoles, T., L.E. Rosales, J.V. Sancho, F.J. Santos, and E. Moyano, Gas chromatography-tandem mass spectrometry with atmospheric pressure chemical ionization for fluorotelomer alcohols and perfluorinated sulfonamides determination. J Chromatogr A, 2015. 1413: p. 107-16. 48. Jing Fang, H.Z., Yanhao Zhang, Minghua Lu, Zongwei Cai Atmospheric pressure chemical ionization in gas chromatography-mass spectrometry for the analysis of persistent organic pollutants. Trends in Environmental Analytical Chemistry, 2020. 25. 49. I. Zabaleta, N. Negreira, E. Bizkarguenaga, A. Prieto, A. Covaci, O. Zuloaga, Screening and identification of per- and polyfluoroalkyl substances in microwave popcorn bags. 2017, Food Chemistry. p. 497-506. 50. E. Zafeiraki, D. Costopoulou, I. Vassiliadou, E. Bakeas, L. Leondiadis, Determination of perfluorinated compounds (PFCs) in various foodstuff packaging materials used in the Greek market, Chemosphere, 2014, 94, p. 169-176. 51. J. Straková, J.S., N. Cingotti, throwaway packaging, forever chemicals European wide survey of PFAS in disposable food packaging and tableware. 2021. p. 54. 52. Food chemical test method validation guide. 2019 [cited 2022 15 April]; Available from: https://www.fda.gov.tw/tc/includes/GetFile.ashx?id=f637713826789525112&type=2&cid=38868. 53. Taiwan Food and Drug Administration. 食品化學檢驗方法之確效規範. Available from: https://www.fda.gov.tw/tc/includes/GetFile.ashx?id=f637713826789525112&type=2&cid=38868. Accessed [02 August 2022]. 54. Genualdi, S., W. Young, L. DeJager, and T. Begley, Method development and validation of per- and polyfluoroalkyl substances in foods from FDA's total diet study program. J Agric Food Chem, 2021. 69(20): p. 5599-5606. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95058 | - |
dc.description.abstract | 全氟/多氟烷基化合物(PFAS),具備防油抗水的性質,廣泛使用於工業及民生 用品之中。過去已有研究指出全氟/多氟烷基化合物與肝臟、心血管、生殖、發育 及免疫系統等相關疾病有關連,部分長碳鏈的全氟/多氟烷基化合物已被列於持久 性有機汙染物之中,故越來越多新型替代物被研發並應用於食品包材的塗層;為 了維持與過往相同的效能,需要使用更大量的新型多氟烷基化合物。與食品包材中短碳鏈多氟烷基化合物相關的研究仍有限,故此篇研究的目的是利用極致液相層析串聯式質譜儀及大氣壓氣相層析串聯式質譜儀優化檢測食品包材中 31 種全氟/多氟烷基化合物的方法並配合全自動加壓流體萃取系統進行樣本前處理。
本研究對層析條件和串聯質譜儀的參數進行了優化。在極致液相層析儀中使用甲醇 和 5-mM 醋酸銨水溶液(pH 7.0,通過氫氧化銨調整 pH 值)的流動相搭配使用 Atlantis Premier BEH C18 AX管柱(50 × 2.1 mm, 1.7 μm)針對 26 種 PFAS 進行分析。多氟烷基磷酸酯 (PAP) 使用 Waters ACQUITY UPLC BEH C18 管柱(50 × 2.1 mm, 1.7 μm)搭配甲醇10-mM N-甲基嗎啡啉進行分析。層析管柱溫度均為 55℃,並在 UniSpray 負離子模式下進行游離。氟調聚物醇(FTOHs)在 Phenomenex Zebron ZB-WAX 氣相層析管柱分離(30 m × 0.25 mm,0.25 μm),並以 APGC 正電模式游離。 在樣本前處理步驟中,首先將100平方公分的樣品裁剪成碎片並使用均質機均質化,使用10毫升的甲醇在70℃下透過自動加壓流體萃取系統萃取 5 分鐘,並進行兩個循環。將萃取液濃縮至1毫升,並通過0.22 μm尼龍過濾盤過濾後上機分析。 方法確效部分,多數待測物於微波爆米花袋的基質效應因子為 91–179%,部分化合物超過180%;萃取效率為 61–124%。同日間與異日間之相對標準偏差大部分在20% 以內,而多數待測物的回收率高於 120%。待測物於微波爆米花袋的偵測極限範圍與定量極限範圍分別為 0.02 – 4.06 ng/dm2與0.03 – 4.06 ng/dm2。 已開發的方法可應用於食品包裝樣本檢測全氟/多氟烷基化合物,評估長鏈PFAS及其替代品對健康影響是一個新興議題。本方法有助於進一步評估將新替代品添加到食品包裝法規的適用性。 | zh_TW |
dc.description.abstract | Per- and polyfluoroalkyl substances (PFAS) are widely used in industrial and consumer products because of their amphoteric properties. Studies have reported their association with adverse health effects on hepatic, cardiovascular, reproductive, developmental, and immune systems. Some long-chain PFAS have been included in the list of Persistent Organic Pollutants (POPs); therefore, many emerging substitutes are applied to food packaging, and higher quantities of short-chain PFAS are needed to obtain similar performance to long-chain compounds.
There are limited reports about concentrations of short-chain PFAS in food packaging. The study objective is to develop and validate an analytical method for determining 31 PFAS in food packaging using an energized dispersive guided extraction (EDGE) automated system for extraction, and Waters ultra-performance liquid chromatography (UPLC) or atmospheric pressure gas chromatography (APGC) coupled with a tandem mass spectrometer (MS/MS) for determination. The analysis of 26 PFAS 31 was performed with a combined mobile phase of methanol and 5-mM ammonium acetate(aq) (pH 7.0, adjusted by ammonium hydroxide) in UPLC used an Atlantis Premier BEH C18 AX column (50 × 2.1 mm, 1.7 µm). Polyfluoroalkyl phosphate esters (PAPs) were analyzed by a Waters ACQUITY UPLC BEH C18 column (50 × 2.1 mm, 1.7 µm). Both column temperature was 55°C. The ionization was done at UniSpray negative mode. Perfluorotelomer alcohols (FTOHs) were separated on a Phenomenex Zebron ZB-WAX column (30 m × 0.25 mm, 0.25 µm) at APGC positive mode. In the sample preparation steps, 100 cm2 samples were cut into pieces and homogenized, and were extracted by EDGE extraction system at 70℃ for two cycles with 10 mL of methanol per cycle. The extracts of all samples were concentrated to 1 mL and filtered through a 0.22-µm nylon filter for further instrument analysis. In terms of method validation, the matrix effect factors of the analytes in microwave popcorn bags were 91-179%; those of perfluorotelomer unsaturated acids (FTUCAs) and polyfluoroalkyl phosphate diesters (diPAPs) were higher than 180%. The extraction efficiency of the analytes was 12 to 146%. The intra- and inter-day precision (%RSD) for most analytes were lower than 20%; the recoveries for most analytes were higher than 120%. The limits of detection (LODs) of the analytes were 0.02–4.06 ng/cm2, and the limits of quantification (LOQs) were 0.03–4.06 ng/cm2. The developed methods could be applied to analyze PFAS in food packaging samples for evaluating the health effects of the long-chain PFAS and their alternatives. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-27T16:09:27Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-27T16:09:27Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract iv Contents vii List of figures x List of tables xiii Chapter 1. Introduction 1 1.1 Per- and poly-fluoroalkyl substances (PFAS) 1 1.2 Analysis of PFAS in food packaging 4 1.3 Objectives 7 Chapter 2. Methods 9 2.1 Reagents and materials 9 2.2 Sample preparation 14 2.3 Instrumental analysis 15 2.3.1 Mass spectrometric conditions 15 2.3.2 Chromatographic conditions 17 2.4 Method validation 19 2.4.1 Matrix effect and extraction efficiency 19 2.4.2 Identification, quantitation, and data analysis 19 2.4.3 Accuracy and precision 20 Chapter 3. Results and discussion 23 3.1 UPLC-MS/MS and APGC-MS/MS parameters 23 3.1.1 Optimization of UPLC parameters 23 3.1.2 Optimization of GC parameters 26 3.2 Sample preparation 29 3.2.1 Optimization of extraction 29 3.2.2 Optimization of concentration steps 30 3.3 Identification and quantification 31 3.3.1 IDLs, IQLs and calibration ranges 31 3.3.2 LODs and LOQs 31 3.4 Method validation 33 3.4.1 Matrix effect and extraction efficiency 33 3.4.2 Intra-day and inter-day accuracy and precision 33 3.5 Limitations 34 Chapter 4. Conclusions 35 Reference 37 Figures 43 Tables 69 | - |
dc.language.iso | en | - |
dc.title | 以自動加壓流體萃取搭配極致液相層析和大氣壓氣相層析/ 串聯質譜術分析食品包材中的全氟及多氟烷基化合物 | zh_TW |
dc.title | Determination of Per- and Polyfluoroalkyl Substances in Food Packaging Using Energized Dispersive Guided Extraction and Ultra-Performance Liquid Chromatography and Atmosphere Pressure Gas Chromatography/Tandem Mass Spectrometry | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 蔡詩偉;蕭伊倫;陳鑫昌 | zh_TW |
dc.contributor.oralexamcommittee | Shih-Wei Tsai;I-Lun Hsiao;Hsin-Chang Chen | en |
dc.subject.keyword | 全氟/多氟烷基化合物,全自動加壓流體萃取系統,極致液相層析/串聯式質譜儀,大氣壓氣相層析/串聯式質譜儀, | zh_TW |
dc.subject.keyword | per- and polyfluoroalkyl substances,energized dispersive guided extraction system (EDGE),ultra-performance liquid chromatography/tandem mass spectrometry,atmosphere pressure gas chromatography/tandem mass spectrometry, | en |
dc.relation.page | 96 | - |
dc.identifier.doi | 10.6342/NTU202404044 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-08-12 | - |
dc.contributor.author-college | 公共衛生學院 | - |
dc.contributor.author-dept | 環境與職業健康科學研究所 | - |
dc.date.embargo-lift | 2026-08-31 | - |
顯示於系所單位: | 環境與職業健康科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 4.22 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。