Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95052
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾秀如zh_TW
dc.contributor.advisorShiou-Ru Tzengen
dc.contributor.author王紳zh_TW
dc.contributor.authorShen Wangen
dc.date.accessioned2024-08-26T16:27:19Z-
dc.date.available2024-08-27-
dc.date.copyright2024-08-26-
dc.date.issued2024-
dc.date.submitted2024-08-02-
dc.identifier.citation1. Weidel, W. & Pelzer, H. Bagshaped Macromolecules--a New Outlook on Bacterial Cell Walls. Adv Enzymol Relat Subj Biochem 26, 193-232 (1964).
2. Holtje, J.V. Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol Mol Biol Rev 62, 181-203 (1998).
3. den Blaauwen, T., de Pedro, M.A., Nguyen-Disteche, M. & Ayala, J.A. Morphogenesis of rod-shaped sacculi. FEMS Microbiol Rev 32, 321-344 (2008).
4. Vollmer, W., Blanot, D. & de Pedro, M.A. Peptidoglycan structure and architecture. FEMS Microbiol Rev 32, 149-67 (2008).
5. Vollmer, W. & Bertsche, U. Murein (peptidoglycan) structure, architecture and biosynthesis in Escherichia coli. Biochim Biophys Acta 1778, 1714-34 (2008).
6. Schleifer, K.H. & Kandler, O. Peptidoglycan Types of Bacterial Cell-Walls and Their Taxonomic Implications. Bacteriol Rev 36, 407-477 (1972).
7. Mainardi, J.L., Villet, R., Bugg, T.D., Mayer, C. & Arthur, M. Evolution of peptidoglycan biosynthesis under the selective pressure of antibiotics in Gram-positive bacteria. FEMS Microbiol Rev 32, 386-408 (2008).
8. Chodisetti, P.K. & Reddy, M. Peptidoglycan hydrolase of an unusual cross-link cleavage specificity contributes to bacterial cell wall synthesis. Proc Natl Acad Sci U S A 116, 7825-7830 (2019).
9. Magnet, S., Dubost, L., Marie, A., Arthur, M. & Gutmann, L. Identification of the L,D-transpeptidases for peptidoglycan cross-linking in Escherichia coli. J Bacteriol 190, 4782-5 (2008).
10. Pisabarro, A.G., de Pedro, M.A. & Vazquez, D. Structural modifications in the peptidoglycan of Escherichia coli associated with changes in the state of growth of the culture. J Bacteriol 161, 238-42 (1985).
11. Voedts, H. et al. Role of endopeptidases in peptidoglycan synthesis mediated by alternative cross-linking enzymes in Escherichia coli. EMBO J 40, e108126 (2021).
12. Typas, A. et al. Regulation of peptidoglycan synthesis by outer-membrane proteins. Cell 143, 1097-109 (2010).
13. Qiao, Y. et al. Lipid II overproduction allows direct assay of transpeptidase inhibition by beta-lactams. Nat Chem Biol 13, 793-798 (2017).
14. Ruiz, N. Bioinformatics identification of MurJ (MviN) as the peptidoglycan lipid II flippase in Escherichia coli. Proc Natl Acad Sci U S A 105, 15553-7 (2008).
15. Catalao, M.J., Filipe, S.R. & Pimentel, M. Revisiting Anti-tuberculosis Therapeutic Strategies That Target the Peptidoglycan Structure and Synthesis. Front Microbiol 10, 190 (2019).
16. Paradis-Bleau, C. et al. Lipoprotein cofactors located in the outer membrane activate bacterial cell wall polymerases. Cell 143, 1110-20 (2010).
17. Do, T., Page, J.E. & Walker, S. Uncovering the activities, biological roles, and regulation of bacterial cell wall hydrolases and tailoring enzymes. J Biol Chem 295, 3347-3361 (2020).
18. Vermassen, A. et al. Cell Wall Hydrolases in Bacteria: Insight on the Diversity of Cell Wall Amidases, Glycosidases and Peptidases Toward Peptidoglycan. Front Microbiol 10, 331 (2019).
19. Vollmer, W., Joris, B., Charlier, P. & Foster, S. Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol Rev 32, 259-86 (2008).
20. Uehara, T. & Bernhardt, T.G. More than just lysins: peptidoglycan hydrolases tailor the cell wall. Curr Opin Microbiol 14, 698-703 (2011).
21. Wyckoff, T.J., Taylor, J.A. & Salama, N.R. Beyond growth: novel functions for bacterial cell wall hydrolases. Trends Microbiol 20, 540-7 (2012).
22. Rice, K.C. & Bayles, K.W. Molecular control of bacterial death and lysis. Microbiol Mol Biol Rev 72, 85-109, table of contents (2008).
23. Young, R. Bacteriophage lysis: mechanism and regulation. Microbiol Rev 56, 430-81 (1992).
24. Heidrich, C. et al. Involvement of N-acetylmuramyl-L-alanine amidases in cell separation and antibiotic-induced autolysis of Escherichia coli. Mol Microbiol 41, 167-78 (2001).
25. Uehara, T. & Park, J.T. An anhydro-N-acetylmuramyl-L-alanine amidase with broad specificity tethered to the outer membrane of Escherichia coli. J Bacteriol 189, 5634-41 (2007).
26. Jacobs, C. et al. AmpD, essential for both beta-lactamase regulation and cell wall recycling, is a novel cytosolic N-acetylmuramyl-L-alanine amidase. Mol Microbiol 15, 553-9 (1995).
27. Irazoki, O., Hernandez, S.B. & Cava, F. Peptidoglycan Muropeptides: Release, Perception, and Functions as Signaling Molecules. Front Microbiol 10, 500 (2019).
28. Weaver, A., Taguchi, A. & Dörr, T. Masters of Misdirection: Peptidoglycan Glycosidases in Bacterial Growth. J Bacteriol 205(2023).
29. Callewaert, L. & Michiels, C.W. Lysozymes in the animal kingdom. J Biosci 35, 127-60 (2010).
30. Holtje, J.V. From growth to autolysis: the murein hydrolases in Escherichia coli. Arch Microbiol 164, 243-54 (1995).
31. Sauvage, E., Kerff, F., Terrak, M., Ayala, J.A. & Charlier, P. The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol Rev 32, 234-58 (2008).
32. Goffin, C. & Ghuysen, J.M. Multimodular penicillin-binding proteins: an enigmatic family of orthologs and paralogs. Microbiol Mol Biol Rev 62, 1079-93 (1998).
33. Goffin, C. & Ghuysen, J.M. Biochemistry and comparative genomics of SxxK superfamily acyltransferases offer a clue to the mycobacterial paradox: presence of penicillin-susceptible target proteins versus lack of efficiency of penicillin as therapeutic agent. Microbiol Mol Biol Rev 66, 702-38, table of contents (2002).
34. Macheboeuf, P., Contreras-Martel, C., Job, V., Dideberg, O. & Dessen, A. Penicillin binding proteins: key players in bacterial cell cycle and drug resistance processes. FEMS Microbiol Rev 30, 673-91 (2006).
35. Zapun, A., Contreras-Martel, C. & Vernet, T. Penicillin-binding proteins and beta-lactam resistance. FEMS Microbiol Rev 32, 361-85 (2008).
36. Gonzalez-Leiza, S.M., de Pedro, M.A. & Ayala, J.A. AmpH, a bifunctional DD-endopeptidase and DD-carboxypeptidase of Escherichia coli. J Bacteriol 193, 6887-94 (2011).
37. Firczuk, M. & Bochtler, M. Folds and activities of peptidoglycan amidases. FEMS Microbiol Rev 31, 676-91 (2007).
38. Keck, W. & Schwarz, U. Escherichia coli murein-DD-endopeptidase insensitive to beta-lactam antibiotics. J Bacteriol 139, 770-4 (1979).
39. Lessard, I.A. & Walsh, C.T. VanX, a bacterial D-alanyl-D-alanine dipeptidase: resistance, immunity, or survival function? Proc Natl Acad Sci U S A 96, 11028-32 (1999).
40. Bernhardt, T.G. & de Boer, P.A. Screening for synthetic lethal mutants in Escherichia coli and identification of EnvC (YibP) as a periplasmic septal ring factor with murein hydrolase activity. Mol Microbiol 52, 1255-69 (2004).
41. Keck, W., van Leeuwen, A.M., Huber, M. & Goodell, E.W. Cloning and characterization of mepA, the structural gene of the penicillin-insensitive murein endopeptidase from Escherichia coli. Mol Microbiol 4, 209-19 (1990).
42. Engel, H., van Leeuwen, A., Dijkstra, A. & Keck, W. Enzymatic preparation of 1,6-anhydro-muropeptides by immobilized murein hydrolases from Escherichia coli fused to staphylococcal protein A. Appl Microbiol Biotechnol 37, 772-83 (1992).
43. Firczuk, M. & Bochtler, M. Mutational analysis of peptidoglycan amidase MepA. Biochemistry 46, 120-8 (2007).
44. Odintsov, S.G., Sabala, I., Marcyjaniak, M. & Bochtler, M. Latent LytM at 1.3A resolution. J Mol Biol 335, 775-85 (2004).
45. Firczuk, M., Mucha, A. & Bochtler, M. Crystal structures of active LytM. J Mol Biol 354, 578-90 (2005).
46. Bochtler, M., Odintsov, S.G., Marcyjaniak, M. & Sabala, I. Similar active sites in lysostaphins and D-Ala-D-Ala metallopeptidases. Protein Sci 13, 854-61 (2004).
47. Singh, S.K., Parveen, S., SaiSree, L. & Reddy, M. Regulated proteolysis of a cross-link-specific peptidoglycan hydrolase contributes to bacterial morphogenesis. Proc Natl Acad Sci U S A 112, 10956-61 (2015).
48. Singh, S.K., SaiSree, L., Amrutha, R.N. & Reddy, M. Three redundant murein endopeptidases catalyse an essential cleavage step in peptidoglycan synthesis of Escherichia coli K12. Mol Microbiol 86, 1036-51 (2012).
49. Korat, B., Mottl, H. & Keck, W. Penicillin-binding protein 4 of Escherichia coli: molecular cloning of the dacB gene, controlled overexpression, and alterations in murein composition. Mol Microbiol 5, 675-84 (1991).
50. Romeis, T. & Holtje, J.V. Penicillin-binding protein 7/8 of Escherichia coli is a DD-endopeptidase. Eur J Biochem 224, 597-604 (1994).
51. van Heijenoort, J. Peptidoglycan hydrolases of Escherichia coli. Microbiol Mol Biol Rev 75, 636-63 (2011).
52. Matsuhashi, M. et al. Mutants of Escherichia coli lacking in highly penicillin-sensitive D-alanine carboxypeptidase activity. Proc Natl Acad Sci U S A 74, 2976-9 (1977).
53. Tamura, T., Imae, Y. & Strominger, J.L. Purification to homogeneity and properties of two D-alanine carboxypeptidases I From Escherichia coli. Journal of Biological Chemistry 251, 414-423 (1976).
54. Tomioka, S. & Matsuhashi, M. Purification of penicillin-insensitive DD-endopeptidase, a new cell wall peptidoglycan-hydrolyzing enzyme in Escherichia coli, and its inhibition by deoxyribonucleic acids. Biochem Biophys Res Commun 84, 978-84 (1978).
55. Typas, A., Banzhaf, M., Gross, C.A. & Vollmer, W. From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat Rev Microbiol 10, 123-36 (2011).
56. Vollmer, W. Bacterial growth does require peptidoglycan hydrolases. Mol Microbiol 86, 1031-5 (2012).
57. Jeon, W.J. & Cho, H. A Cell Wall Hydrolase MepH Is Negatively Regulated by Proteolysis Involving Prc and NlpI in Escherichia coli. Front Microbiol 13, 878049 (2022).
58. Vesto, K. et al. Muramyl Endopeptidase Spr Contributes to Intrinsic Vancomycin Resistance in Salmonella enterica Serovar Typhimurium. Front Microbiol 9, 2941 (2018).
59. Henderson, T.A., Young, K.D., Denome, S.A. & Elf, P.K. AmpC and AmpH, proteins related to the class C beta-lactamases, bind penicillin and contribute to the normal morphology of Escherichia coli. J Bacteriol 179, 6112-21 (1997).
60. Uehara, T., Dinh, T. & Bernhardt, T.G. LytM-domain factors are required for daughter cell separation and rapid ampicillin-induced lysis in Escherichia coli. J Bacteriol 191, 5094-107 (2009).
61. Anantharaman, V. & Aravind, L. Evolutionary history, structural features and biochemical diversity of the NlpC/P60 superfamily of enzymes. Genome Biol 4, R11 (2003).
62. Layec, S., Decaris, B. & Leblond-Bourget, N. Diversity of Firmicutes peptidoglycan hydrolases and specificities of those involved in daughter cell separation. Res Microbiol 159, 507-15 (2008).
63. Prigozhin, D.M., Mavrici, D., Huizar, J.P., Vansell, H.J. & Alber, T. Structural and biochemical analyses of Mycobacterium tuberculosis N-acetylmuramyl-L-alanine amidase Rv3717 point to a role in peptidoglycan fragment recycling. J Biol Chem 288, 31549-55 (2013).
64. Wilson, C.G., Kajander, T. & Regan, L. The crystal structure of NlpI. A prokaryotic tetratricopeptide repeat protein with a globular fold. FEBS J 272, 166-79 (2005).
65. Tao, J. et al. Heat shock proteins IbpA and IbpB are required for NlpI-participated cell division in Escherichia coli. Front Microbiol 6, 51 (2015).
66. Tseng, Y.T. et al. NlpI facilitates deposition of C4bp on Escherichia coli by blocking classical complement-mediated killing, which results in high-level bacteremia. Infect Immun 80, 3669-78 (2012).
67. Teng, C.H. et al. NlpI contributes to Escherichia coli K1 strain RS218 interaction with human brain microvascular endothelial cells. Infect Immun 78, 3090-6 (2010).
68. Barnich, N., Bringer, M.A., Claret, L. & Darfeuille-Michaud, A. Involvement of lipoprotein NlpI in the virulence of adherent invasive Escherichia coli strain LF82 isolated from a patient with Crohn's disease. Infect Immun 72, 2484-93 (2004).
69. Banzhaf, M. et al. Outer membrane lipoprotein NlpI scaffolds peptidoglycan hydrolases within multi-enzyme complexes in Escherichia coli. EMBO J 39, e102246 (2020).
70. Egan, A.J.F., Errington, J. & Vollmer, W. Regulation of peptidoglycan synthesis and remodelling. Nat Rev Microbiol 18, 446-460 (2020).
71. Schwechheimer, C., Rodriguez, D.L. & Kuehn, M.J. NlpI-mediated modulation of outer membrane vesicle production through peptidoglycan dynamics in Escherichia coli. Microbiologyopen 4, 375-89 (2015).
72. Su, M.Y. et al. Structural basis of adaptor-mediated protein degradation by the tail-specific PDZ-protease Prc. Nat Commun 8, 1516 (2017).
73. Aramini, J.M. et al. Solution NMR structure of the NlpC/P60 domain of lipoprotein Spr from Escherichia coli: structural evidence for a novel cysteine peptidase catalytic triad. Biochemistry 47, 9715-7 (2008).
74. Wang, C.Y. et al. Prc contributes to Escherichia coli evasion of classical complement-mediated serum killing. Infect Immun 80, 3399-409 (2012).
75. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6, 277-93 (1995).
76. Johnson, B.A. Using NMRView to visualize and analyze the NMR spectra of macromolecules. Methods Mol Biol 278, 313-52 (2004).
77. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Macromolecular Crystallography, Pt A 276, 307-326 (1997).
78. McCoy, A.J. et al. Phaser crystallographic software. J Appl Crystallogr 40, 658-674 (2007).
79. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 2126-32 (2004).
80. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53, 240-55 (1997).
81. Winn, M.D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67, 235-42 (2011).
82. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66, 213-21 (2010).
83. Shih, O. et al. Performance of the new biological small- and wide-angle X-ray scattering beamline 13A at the Taiwan Photon Source. J Appl Crystallogr 55, 340-352 (2022).
84. Liu, D.G. et al. Optical design and performance of the biological small-angle X-ray scattering beamline at the Taiwan Photon Source. J Synchrotron Radiat 28, 1954-1965 (2021).
85. Manalastas-Cantos, K. et al. ATSAS 3.0: expanded functionality and new tools for small-angle scattering data analysis. J Appl Crystallogr 54, 343-355 (2021).
86. Shih, O. et al. Membrane Charging and Swelling upon Calcium Adsorption as Revealed by Phospholipid Nanodiscs. J Phys Chem Lett 9, 4287-4293 (2018).
87. Lee, W.C., Jang, A., Lee, J.Y. & Kim, Y. Structural implication of substrate binding by peptidoglycan remodeling enzyme MepS. Biochem Biophys Res Commun 583, 178-183 (2021).
88. Camilloni, C., De Simone, A., Vranken, W.F. & Vendruscolo, M. Determination of secondary structure populations in disordered states of proteins using nuclear magnetic resonance chemical shifts. Biochemistry 51, 2224-31 (2012).
89. Farrow, N.A. et al. Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. Biochemistry 33, 5984-6003 (1994).
90. Choi, K.H. & Morais, M. Use of small-angle X-ray scattering to investigate the structure and function of dengue virus NS3 and NS5. Methods Mol Biol 1138, 241-52 (2014).
91. Graewert, M.A. et al. Adding Size Exclusion Chromatography (SEC) and Light Scattering (LS) Devices to Obtain High-Quality Small Angle X-Ray Scattering (SAXS) Data. Crystals 10(2020).
92. Chueh, C.K. et al. Structural Basis for the Differential Regulatory Roles of the PDZ Domain in C-Terminal Processing Proteases. mBio 10(2019).
93. Ohara, M., Wu, H.C., Sankaran, K. & Rick, P.D. Identification and characterization of a new lipoprotein, NlpI, in Escherichia coli K-12. J Bacteriol 181, 4318-25 (1999).
94. Paradis-Bleau, C., Kritikos, G., Orlova, K., Typas, A. & Bernhardt, T.G. A genome-wide screen for bacterial envelope biogenesis mutants identifies a novel factor involved in cell wall precursor metabolism. PLoS Genet 10, e1004056 (2014).
95. Arai, M., Sugase, K., Dyson, H.J. & Wright, P.E. Conformational propensities of intrinsically disordered proteins influence the mechanism of binding and folding. Proc Natl Acad Sci U S A 112, 9614-9 (2015).
96. Rohl, C.A., Fiori, W. & Baldwin, R.L. Alanine is helix-stabilizing in both template-nucleated and standard peptide helices. Proceedings of the National Academy of Sciences of the United States of America 96, 3682-3687 (1999).
97. Padmanabhan, S., Marqusee, S., Ridgeway, T., Laue, T.M. & Baldwin, R.L. Relative helix-forming tendencies of nonpolar amino acids. Nature 344, 268-70 (1990).
98. Matthews, B.W. X-Ray Crystallographic Studies of Proteins. Annual Review of Physical Chemistry 27, 493-523 (1976).
99. Matthews, B.W. Solvent content of protein crystals. J Mol Biol 33, 491-7 (1968).
100. Weichenberger, C.X., Afonine, P.V., Kantardjieff, K. & Rupp, B. The solvent component of macromolecular crystals. Acta Crystallogr D Biol Crystallogr 71, 1023-38 (2015).
101. Weichenberger, C.X. & Rupp, B. Ten years of probabilistic estimates of biocrystal solvent content: new insights via nonparametric kernel density estimate. Acta Crystallogr D Biol Crystallogr 70, 1579-88 (2014).
102. Lee, K.H., Xie, D., Freire, E. & Amzel, L.M. Estimation of changes in side chain configurational entropy in binding and folding: general methods and application to helix formation. Proteins 20, 68-84 (1994).
103. Blaber, M., Zhang, X.J. & Matthews, B.W. Structural basis of amino acid alpha helix propensity. Science 260, 1637-40 (1993).
104. Ishida, T. & Kinoshita, K. PrDOS: prediction of disordered protein regions from amino acid sequence. Nucleic Acids Res 35, W460-4 (2007).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95052-
dc.description.abstract肽聚醣是一個位於細菌細胞壁的外骨骼結構,其骨架由多糖鏈串連著短肽鏈所組成。肽聚醣囊袋的結構包括線性的多糖鏈串,其骨架是由兩種糖衍生物:N-乙醯葡萄糖胺 (NAG)和N-乙醯包壁酸(NAM),這些多醣鏈透過短肽鏈相互交聯形成肽聚醣。裂解肽聚醣的交聯網絡是細菌細胞增生時細胞壁擴展所必需的。NlpI是一種嵌和於外膜的脂質蛋白,在革蘭氏陰性細菌中廣泛存在並分佈在細胞外膜上。NlpI利用四肽重複序列(TPRs)促進蛋白質間的交互作用,使其參與各種細胞功能,如細胞分裂、細胞壁代謝、毒性以及與宿主細胞的相互作用。作為一個接合蛋白,NlpI會與各種肽聚醣水解酶進行交互作用,並與肽聚醣合成裝置協同作用。這種接合蛋白NlpI促進了多種肽聚醣內切酶(endopeptidase),如MepS、MepH、MepM、MepK、PBP4和PBP7, 的定位,同時也影響了MepM和MepS在體外的內切酶活性。此外,MepS在細胞生長的指數生長期表現量相當高,但在穩定期時急劇下降。MepS的蛋白表現量受到外膜蛋白PDZ-蛋白酶Prc以及接合蛋白NlpI的直接調控。過去的研究還顯示,在缺乏NlpI的情況下,Prc難以有效降解MepS,突顯了NlpI在MepS招募中的關鍵角色。然而,有關NlpI是如何調節並影響這些肽聚醣水解酶活性的相關機制,以及NlpI是如何與Prc蛋白酶調節特定PG水解酶的蛋白表現量仍有待進一步研究。在本研究中,我們揭示了包含MepS內切酶和Prc蛋白酶的兩個與接合蛋白結合的複合體晶體結構。我們發現了MepS內切酶的內生性無序區域(IDR)在異質複合體形成中的意外角色,以及此複合體在細菌形態生成中的生理意義。我們的生物物理實驗結果顯示,MepS 的IDR參與NlpI-MepS複合體的形成,缺乏IDR將會導致MepS無法與NlpI形成穩定的複合體。我們的NlpI-MepS結構顯示,MepS中的IDR在與NlpI結合時發生線團至螺旋的轉變(coil to helix transition),誘導MepS不對稱二聚體的形成。由NlpI引起的MepS的這種局部區域濃縮效應暗示NlpI對MepS活性的正向調節作用。此外,我們通過結構分析和功能突變完整地解釋MepS是如何被NlpI-Prc複合體所快速降解的機制。NlpI-Prc-MepS複合體的形成同樣倚仗於MepS IDR,而這也經歷了線團至螺旋的轉變,最終產生的成對MepS座落於由NlpI-Prc複合體形成的空間中。IDR的突變顯著影響了MepS與NlpI-Prc複合物之間的相互結合,並阻礙了有效的MepS降解。重要的是,在體內(in vivo)的定性和形態實驗顯示IDR短肽鏈足以影響NlpI-Prc-MepS的複合體形成,進而抑制MepS被NlpI-Prc降解的效率,最終導致細菌外觀異常並損害細菌外膜的完整性。總結,我們的研究結果顯示NlpI是如何促進MepS二聚體的共定位(co-localization)以執行有效率的肽聚醣水解以及MepS後續由Prc蛋白酶降解的複雜機制。我們期許本篇研究能成為革蘭氏陰性病原體的肽聚醣生合成調控進一步建立更完備的解釋模型。這些見解將對於針對細胞壁生合成過程的抗生素研發有著相當重要的影響。zh_TW
dc.description.abstractBacteria have a protective exoskeleton called peptidoglycan (PG), which is composed of glycan strands linked by short peptides. The structure of the PG sacculus consists of linear glycan strands alternating N-acetylglucosamine (NAG) and N-acetylmuramic acid (NAM) linked to short peptide chains. Cleavage peptide crosslinks are necessary for the expansion of PG during cell growth. NlpI, an outer membrane-anchored lipoprotein, is widely present in gram-negative bacteria and distributed across the cell envelope. It utilizes tetratricopeptide repeats (TPRs) to facilitate protein-protein interactions, enabling its involvement in various cellular functions, such as cellular division, cell wall metabolism, pathogenicity and host cell interaction. As an adaptor protein, NlpI interacts with various hydrolases and associates with peptidoglycan (PG) synthetic machinery. This adaptor, NlpI, facilitates the localization of several PG endopeptidases such as MepS, MepH, MepM, MepK, PBP4, and PBP7, while also influencing the endopeptidase activity of MepM and MepS in vitro. Furthermore, the protein level of MepS is highly ample during the logarithmic phase of cell growth. However, its level experience a significant decrease as the cells transition into the stationary phase. This decline in MepS protein concentration is closely regulated by the adaptor NlpI in complex with the periplasmic PDZ-protease Prc, known as tail-specific protease (tsp). Prior studies also suggest that, in the absence of NlpI, Prc struggles to efficiently degrade MepS, underscoring the crucial role of NlpI in MepS recruitment. However, the mechanism by which NlpI regulates these PG hydrolases potentially affects their activities and how NlpI modulates the protein levels of specific PG hydrolases in the presence of Prc protease remains unclear. In this study, we revealed the crystal structures of two adaptor complexes containing MepS endopeptidase and Prc protease. Our research revealed an unexpected function of the intrinsically disordered region (IDR) of MepS in the formation of heterocomplexes, highlighting its physiological significance in bacterial morphogenesis. Our biophysical analyses indicated the involvement of MepS IDR in the formation of the NlpI-MepS complex, with the absence of the IDR resulting in the inability to form a stable complex with NlpI, characterized by size exclusion chromatography (SEC) and pull-down assays. Our adaptor-endopeptidase structure revealed that IDR in MepS undergoes a coil-to-helix transition upon NlpI binding, inducing asymmetric MepS dimerization. This locally concentrated effect of MepS induced by NlpI implies a positive regulatory role of NlpI on MepS activity. Furthermore, we elucidated the mechanism about how MepS undergoes rapid proteolysis by the NlpI-Prc complex using structural analysis and functional mutagenesis. The formation of the adaptor-endopeptidase-protease complex relies on MepS IDR, which also undergoes a disorder-to-order transition, while the resulting paired MepS dock into the cradle formed by the NlpI-Prc complex. IDR mutations dramatically compromised the interaction between MepS and the NlpI-Prc complex and hindered efficient MepS degradation. Importantly, in vivo quantitative and morphological analyses shed light on how the IDR peptide competitively inhibits NlpI-enhanced proteolysis of MepS, which in turn results in abnormal bacterial appearance and impairs cell envelope integrity. In summary, our work unveils the complex mechanism through which NlpI facilitates the colocalization of dual MepS endopeptidases for efficient PG hydrolysis and subsequent degradation by the Prc protease. We anticipate that our research will pave the way for more sophisticated models of multi-enzyme complexes involved in PG biosynthesis regulation in gram-negative pathogens.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-26T16:27:19Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-26T16:27:19Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 I
謝誌 II
摘要 III
Abstract V
Table of Contents VII
List of Figures XIII
List of Tables XXI
1. Introduction 1
1.1 Bacterial cell wall components: peptidoglycan 2
1.2 Peptidoglycan expansion: synthesis and hydrolysis 3
1.3 Peptidoglycan hydrolases 5
1.3.1 Peptidoglycan amidases 6
1.3.2 Peptidoglycan glycosidases 7
1.3.3 Peptidoglycan peptidases 8
1.4 E. coli DD-endopeptidases 9
1.5 NIpC/P60 cysteine peptidase family 11
1.6 MepS endopeptidase (Spr) 12
1.7 NlpI adaptor protein 13
1.8 Prc protease 15
1.9 Protein structure of MepS, NlpI and Prc 16
1.9.1 Protein structure of MepS 16
1.9.2 Protein structure of NlpI-Prc complex 17
1.10 Specific aims 18
2. Materials and Methods 19
2.1 Materials 20
2.1.1 Escherichia coli (E coli) strains (Table 1) 20
2.1.2 List of recombinant plasmids for overexpression of MepS, NlpI and Prc proteins (Table 2-3) 20
2.1.3 List of primer sequences for mutagenesis and sequencing (Table 4) 20
2.1.4 Culture media (Table 5) 20
2.1.5 Antibiotics (Table 6) 20
2.1.6 Buffers (Table 7) 20
2.2 Methods 20
2.2.1 Gene cloning and mutagenesis 20
2.2.2 Protein expression 21
2.2.3 Protein purification 22
2.2.4 NMR spectroscopy 22
2.2.5 Size exclusion chromatography (SEC) analysis 24
2.2.6 Protein crystallization and data collection 24
2.2.7 Structure determination 25
2.2.8 Isothermal titration calorimetry 27
2.2.9 SAXS measurements and analysis 27
2.2.10 In-vitro Degradation assay 28
2.2.11 Pull down assay 29
2.2.12 NlpI antisera production 29
2.2.13 Western blot for intracellular MepS levels 30
2.2.14 Live cell imaging and cell morphology 30
2.2.15 CPRG assay for cell wall integrity 31
3. Results 32
3.1 The interactions of the endopeptidase MepS with adaptor NlpI 33
3.1.1 The intrinsically disordered N-terminal of the endopeptidase MepS 33
3.1.2 NMR characterization of the binding between mMepS and NlpI 34
3.1.3 The oligomeric state of mMepS 36
3.2 Structural analysis of NlpI-mMepS heterocomplex 37
3.2.1 X-ray crystallography reveals overall structure of NlpI-mMepS complex 37
3.2.2 SAXS analysis of NlpI-mMepS complex 39
3.2.3 ITC characterization of the binding interface between mMepS and NlpI 40
3.2.4 SEC validation of the binding interface between mMepS and NlpI 41
3.2.5 NMR characterization of the binding between mMepS mutants and NlpI 42
3.2.6 NMR characterization of the binding stoichiometry between mMepS and NlpI 43
3.3 Structural analysis of the PrcSK-NlpI-mMepS complex 44
3.3.1 NMR characterization of the interaction between mMepS and PrcSK 44
3.3.2 Overall structure of PrcSK-NlpI-mMepS complex determined by X-ray crystallography and SAXS analysis 45
3.3.3 Detailed structural analysis of PrcSK-NlpI-mMepS complex 47
3.3.4 Investigating the impact of N-terminal residues of mMepS on Prc-NlpI system efficiency 49
3.3.5 The N-terminal of MepS largely affects the proteolysis of mMepS in vivo 50
4. Discussion 52
4.1 Impact of N-terminal deletion and point mutations on NlpI-mMepS Interaction 53
4.2 Dynamic Regulation of MepS Degradation by NlpI and the PDZ Domain of Prc Protease 53
4.3 Challenges in enhancing crystal structure resolution due to elevated Matthew's coefficient and solvent content 54
4.4 Impact of deletion and substitutions in the N-terminal of MepS on NlpI-MepS interactions 56
4.5 Conserved structural similarities and implications of MepS and NlpI in gram-negative bacteria 57
4.6 Insight into the scaffolding function of NlpI for coordinating PG endopeptidases and PG synthetic machineries. 57
4.7 Factors affecting dimer formation in MepS protein 59
5. Figures 61
6. Tables 149
7. References 163
-
dc.language.isozh_TW-
dc.title探討細菌蛋白NlpI與肽聚醣水解酶MepS形成複合體之結構機轉zh_TW
dc.titleStructural basis of lipoprotein protein NlpI in complex with peptidoglycan endopeptidase MepSen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee蕭傳鐙;楊啓伸;徐駿森;黃駿翔zh_TW
dc.contributor.oralexamcommitteeChwan-Deng Hsiao;Chii-Shen Yang;Chun-Hua Hsu;Chun-Hsiang Huangen
dc.subject.keyword細菌細胞外膜,肽聚醣,內切酶,受質降解,Prc 蛋白酶,NlpI 接合蛋白,zh_TW
dc.subject.keywordBacterial cell envelope,Peptidoglycan,Endopeptidase,Substrate degradation,Prc protease,NlpI adaptor protein,en
dc.relation.page175-
dc.identifier.doi10.6342/NTU202403172-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-05-
dc.contributor.author-college醫學院-
dc.contributor.author-dept生物化學暨分子生物學研究所-
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf77.68 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved