請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95050
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊宗傑 | zh_TW |
dc.contributor.advisor | Tsung-Chieh Yang | en |
dc.contributor.author | 鄧翊廷 | zh_TW |
dc.contributor.author | Yi-Ting Teng | en |
dc.date.accessioned | 2024-08-26T16:26:40Z | - |
dc.date.available | 2024-08-27 | - |
dc.date.copyright | 2024-08-26 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-05 | - |
dc.identifier.citation | 1. Jung RE, Zembic A, Pjetursson BE, Zwahlen M, Thoma DS. Systematic review of the survival rate and the incidence of biological, technical, and aesthetic complications of single crowns on implants reported in longitudinal studies with a mean follow-up of 5 years. Clin Oral Implants Res. 2012 Oct;23 Suppl 6:2–21.
2. Pjetursson BE, Thoma D, Jung R, Zwahlen M, Zembic A. A systematic review of the survival and complication rates of implant-supported fixed dental prostheses (FDPs) after a mean observation period of at least 5 years. Clin Oral Implants Res. 2012 Oct;23 Suppl 6:22–38. 3. Bompolaki D, Edmondson SA, Katancik JA, Kamposiora P, Papavasiliou G. Clinical and Patient-Reported Outcomes of Single Posterior Implant-Supported Restorations Completed by Predoctoral Students: A Retrospective Study with Up to 10 Years of Follow Up. J Prosthodont. 2021 Feb;30(2):111–8. 4. Sailer I, Mühlemann S, Zwahlen M, Hämmerle CHF, Schneider D. Cemented and screw-retained implant reconstructions: a systematic review of the survival and complication rates. Clin Oral Implants Res. 2012 Oct;23 Suppl 6:163–201. 5. Schwarz F, Derks J, Monje A, Wang HL. Peri-implantitis. J Clin Periodontol. 2018 Jun;45 Suppl 20:S246–66. 6. Schwarz F, Alcoforado G, Guerrero A, Jönsson D, Klinge B, Lang N, et al. Peri-implantitis: Summary and consensus statements of group 3. The 6th EAO Consensus Conference 2021. Clin Oral Implants Res. 2021 Oct;32 Suppl 21:245–53. 7. Kraus RD, Espuelas C, Hämmerle CHF, Jung RE, Sailer I, Thoma DS. Five-year randomized controlled clinical study comparing cemented and screw-retained zirconia-based implant-supported single crowns. Clin Oral Implants Res. 2022 May;33(5):537–47. 8. Lamperti ST, Wolleb K, Hämmerle CHF, Jung RE, Hüsler J, Thoma DS. Cemented versus screw-retained zirconia-based single-implant restorations: 5-year results of a randomized controlled clinical trial. Clin Oral Implants Res. 2022 Apr;33(4):353–61. 9. Andersson B, Bergenblock S, Fürst B, Jemt T. Long-term function of single-implant restorations: a 17- to 19-year follow-up study on implant infraposition related to the shape of the face and patients’ satisfaction. Clin Implant Dent Relat Res. 2013 Aug;15(4):471–80. 10. Varthis S, Randi A, Tarnow DP. Prevalence of interproximal open contacts between single-implant restorations and adjacent teeth. Int J Oral Maxillofac Implants. 2016;31(5):1089–92. 11. Mijiritsky E, Badran M, Kleinman S, Manor Y, Peleg O. Continuous tooth eruption adjacent to single-implant restorations in the anterior maxilla: aetiology, mechanism and outcomes - A review of the literature. Int Dent J. 2020 Jun;70(3):155–60. 12. Bento VAA, Gomes JML, Lemos CAA, Limirio JPJO, Rosa CDDRD, Pellizzer EP. Prevalence of proximal contact loss between implant-supported prostheses and adjacent natural teeth: A systematic review and meta-analysis. J Prosthet Dent. 2023 Mar;129(3):404–12. 13. Galindo-Moreno P, León-Cano A, Ortega-Oller I, Monje A, Suárez F, ÓValle F, et al. Prosthetic abutment height is a key factor in peri-implant marginal bone loss. J Dent Res. 2014 Jul;93(7 Suppl):80S-85S. 14. Pelekos G, Chin B, Wu X, Fok MR, Shi J, Tonetti MS. Association of crown emergence angle and profile with dental plaque and inflammation at dental implants. Clin Oral Implants Res. 2023 Oct;34(10):1047–57. 15. Siegenthaler M, Strauss FJ, Gamper F, Hämmerle CHF, Jung RE, Thoma DS. Anterior implant restorations with a convex emergence profile increase the frequency of recession: 12-month results of a randomized controlled clinical trial. J Clin Periodontol. 2022 Nov;49(11):1145–57. 16. Afrashtehfar KI, Weber A, Abou-Ayash S. Titanium-base abutments may have similar long-term peri-implant effects as non-bonded one-piece abutments. Evid Based Dent. 2022 Dec;23(4):134–5. 17. Katafuchi M, Weinstein BF, Leroux BG, Chen YW, Daubert DM. Restoration contour is a risk indicator for peri-implantitis: A cross-sectional radiographic analysis. J Clin Periodontol. 2018 Feb;45(2):225–32. 18. Yi Y, Koo KT, Schwarz F, Ben Amara H, Heo SJ. Association of prosthetic features and peri-implantitis: A cross-sectional study. J Clin Periodontol. 2020 Mar;47(3):392–403. 19. Osman RB, Swain MV. A Critical Review of Dental Implant Materials with an Emphasis on Titanium versus Zirconia. Mater Basel Switz. 2015 Mar 5;8(3):932–58. 20. Zembic A, Sailer I, Jung RE, Hämmerle CHF. Randomized-controlled clinical trial of customized zirconia and titanium implant abutments for single-tooth implants in canine and posterior regions: 3-year results. Clin Oral Implants Res. 2009 Aug;20(8):802–8. 21. Depprich R, Zipprich H, Ommerborn M, Naujoks C, Wiesmann HP, Kiattavorncharoen S, et al. Osseointegration of zirconia implants compared with titanium: an in vivo study. Head Face Med. 2008 Dec 11;4:30. 22. Dunn DB. The use of a zirconia custom implant-supported fixed partial denture prosthesis to treat implant failure in the anterior maxilla: a clinical report. J Prosthet Dent. 2008 Dec;100(6):415–21. 23. Elsayed A, Wille S, Al-Akhali M, Kern M. Effect of fatigue loading on the fracture strength and failure mode of lithium disilicate and zirconia implant abutments. Clin Oral Implants Res. 2018 Jan;29(1):20–7. 24. Truninger TC, Stawarczyk B, Leutert CR, Sailer TR, Hämmerle CHF, Sailer I. Bending moments of zirconia and titanium abutments with internal and external implant-abutment connections after aging and chewing simulation. Clin Oral Implants Res. 2012 Jan;23(1):12–8. 25. de Torres EM, Rodrigues RCS, de Mattos M da GC, Ribeiro RF. The effect of commercially pure titanium and alternative dental alloys on the marginal fit of one-piece cast implant frameworks. J Dent. 2007 Oct;35(10):800–5. 26. Berejuk HM, Shimizu RH, de Mattias Sartori IA, Valgas L, Tiossi R. Vertical microgap and passivity of fit of three-unit implant-supported frameworks fabricated using different techniques. Int J Oral Maxillofac Implants. 2014;29(5):1064–70. 27. de Araújo GM, de França DGB, Silva Neto JP, Barbosa GAS. Passivity of conventional and CAD/CAM fabricated implant frameworks. Braz Dent J. 2015;26(3):277–83. 28. Hamilton A, Judge RB, Palamara JE, Evans C. Evaluation of the fit of CAD/CAM abutments. Int J Prosthodont. 2013;26(4):370–80. 29. Lalithamma JJ, Mallan SA, Murukan PA, Zarina R. A comparative study on microgap of premade abutments and abutments cast in base metal alloys. J Oral Implantol. 2014 Jun;40(3):239–49. 30. Saidin S, Abdul Kadir MR, Sulaiman E, Abu Kasim NH. Effects of different implant-abutment connections on micromotion and stress distribution: prediction of microgap formation. J Dent. 2012 Jun;40(6):467–74. 31. Stimmelmayr M, Edelhoff D, Güth JF, Erdelt K, Happe A, Beuer F. Wear at the titanium-titanium and the titanium-zirconia implant-abutment interface: a comparative in vitro study. Dent Mater. 2012 Dec;28(12):1215–20. 32. Gil FJ, Herrero-Climent M, Lázaro P, Rios JV. Implant-abutment connections: influence of the design on the microgap and their fatigue and fracture behavior of dental implants. J Mater Sci Mater Med. 2014 Jul;25(7):1825–30. 33. Baldassarri M, Hjerppe J, Romeo D, Fickl S, Thompson VP, Stappert CFJ. Marginal accuracy of three implant-ceramic abutment configurations. Int J Oral Maxillofac Implants. 2012;27(3):537–43. 34. Pinheiro Tannure AL, Cunha AG, Borges Junior LA, da Silva Concílio LR, Claro Neves AC. Wear at the implant-abutment interface of zirconia abutments manufactured by three CAD/CAM Systems. Int J Oral Maxillofac Implants. 2017;32(6):1241–50. 35. Pereira PH de S, Amaral M, Baroudi K, Vitti RP, Nassani MZ, Silva-Concílio LR da. Effect of implant platform connection and abutment material on removal torque and implant hexagon plastic deformation. Eur J Dent. 2019 Jul;13(3):349–53. 36. Zembic A, Bösch A, Jung RE, Hämmerle CHF, Sailer I. Five-year results of a randomized controlled clinical trial comparing zirconia and titanium abutments supporting single-implant crowns in canine and posterior regions. Clin Oral Implants Res. 2013 Apr;24(4):384–90. 37. Lops D, Bressan E, Parpaiola A, Sbricoli L, Cecchinato D, Romeo E. Soft tissues stability of cad-cam and stock abutments in anterior regions: 2-year prospective multicentric cohort study. Clin Oral Implants Res. 2015 Dec;26(12):1436–42. 38. Barwacz CA, Shah KC, Bittner N, Parker W, Neumeier TT, Thalji GN, et al. A retrospective, multicenter, cross-sectional case series study evaluating outcomes of CAD/CAM abutments on implants from four manufacturers: 4-year mean follow-up. Int J Oral Maxillofac Implants. 2021;36(5):966–76. 39. Humm VL, Sailer I, Thoma DS, Hämmerle CHF, Jung RE, Zembic A. 13-year follow-up of a randomized controlled study on zirconia and titanium abutments. Clin Oral Implants Res. 2023 Sep;34(9):911–9. 40. Saleh MH, Galli M, Siqueira R, Vera M, Wang HL, Ravida A. The prosthetic-biologic connection and its influence on peri-implant health: an overview of the current evidence. Int J Oral Maxillofac Implants. 2022;37(4):690–9. 41. de Holanda Cavalcanti Pereira AK, de Oliveira Limirio JPJ, Cavalcanti do Egito Vasconcelos B, Pellizzer EP, Dantas de Moraes SL. Mechanical behavior of titanium and zirconia abutments at the implant-abutment interface: A systematic review. J Prosthet Dent. 2024 Mar;131(3):420–6. 42. Smeets R, Stadlinger B, Schwarz F, Beck-Broichsitter B, Jung O, Precht C, et al. Impact of dental implant surface modifications on osseointegration. BioMed Res Int. 2016;2016:6285620. 43. Buser D, Janner SFM, Wittneben JG, Brägger U, Ramseier CA, Salvi GE. 10-year survival and success rates of 511 titanium implants with a sandblasted and acid-etched surface: a retrospective study in 303 partially edentulous patients. Clin Implant Dent Relat Res. 2012 Dec;14(6):839–51. 44. Esposito M, Grusovin MG, Maghaireh H, Worthington HV. Interventions for replacing missing teeth: different times for loading dental implants. Cochrane Database Syst Rev. 2013 Mar 28;2013(3):CD003878. 45. Esposito M, Hirsch JM, Lekholm U, Thomsen P. Biological factors contributing to failures of osseointegrated oral implants. (II). Etiopathogenesis. Eur J Oral Sci. 1998 Jun;106(3):721–64. 46. Block MS. Dental Implants: The Last 100 Years. J Oral Maxillofac Surg. 2018 Jan;76(1):11–26. 47. Abduo J, Bennani V, Waddell N, Lyons K, Swain M. Assessing the fit of implant fixed prostheses: a critical review. Int J Oral Maxillofac Implants. 2010;25(3):506–15. 48. Jemt T. Failures and complications in 391 consecutively inserted fixed prostheses supported by Brånemark implants in edentulous jaws: a study of treatment from the time of prosthesis placement to the first annual checkup. Int J Oral Maxillofac Implants. 1991;6(3):270–6. 49. Brånemark PI. Osseointegration and its experimental background. J Prosthet Dent. 1983 Sep;50(3):399–410. 50. Gehrke P, Johannson D, Fischer C, Stawarczyk B, Beuer F. In vitro fatigue and fracture resistance of one- and two-piece CAD/CAM zirconia implant abutments. Int J Oral Maxillofac Implants. 2015;30(3):546–54. 51. Mizumoto RM, Malamis D, Mascarenhas F, Tatakis DN, Lee DJ. Titanium implant wear from a zirconia custom abutment: A clinical report. J Prosthet Dent. 2020 Feb;123(2):201–5. 52. Queiroz DA, Hagee N, Lee DJ, Zheng F. The behavior of a zirconia or metal abutment on the implant-abutment interface during cyclic loading. J Prosthet Dent. 2020 Aug;124(2):211–6. 53. Schwarz F, Langer M, Hagena T, Hartig B, Sader R, Becker J. Cytotoxicity and proinflammatory effects of titanium and zirconia particles. Int J Implant Dent. 2019 Jul 9;5(1):25. 54. Apaza-Bedoya K, Tarce M, Benfatti C a. M, Henriques B, Mathew MT, Teughels W, et al. Synergistic interactions between corrosion and wear at titanium-based dental implant connections: A scoping review. J Periodontal Res. 2017 Dec;52(6):946–54. 55. Han JW, Han JW, Pyo SW, Kim S. Impact of profile angle of CAD-CAM abutment on the marginal bone loss of implant-supported single-tooth posterior restorations. J Prosthet Dent. 2023 Dec 21;S0022-3913(23)00780-1. 56. Karlsson S. The fit of Procera titanium crowns. An in vitro and clinical study. Acta Odontol Scand. 1993 Jun;51(3):129–34. 57. Christensen GJ. Will digital impressions eliminate the current problems with conventional impressions? J Am Dent Assoc 1939. 2008 Jun;139(6):761–3. 58. Olivera AB, Saito T. The effect of die spacer on retention and fitting of complete cast crowns. J Prosthodont. 2006;15(4):243–9. 59. Gavelis JR, Morency JD, Riley ED, Sozio RB. The effect of various finish line preparations on the marginal seal and occlusal seat of full crown preparations. 1981. J Prosthet Dent. 2004 Jul;92(1):1–7. 60. Bedi A, Michalakis KX, Hirayama H, Stark PC. The effect of different investment techniques on the surface roughness and irregularities of gold palladium alloy castings. J Prosthet Dent. 2008 Apr;99(4):282–6. 61. Fonseca JC, Henriques GEP, Sobrinho LC, de Góes MF. Stress-relieving and porcelain firing cycle influence on marginal fit of commercially pure titanium and titanium-aluminum-vanadium copings. Dent Mater. 2003 Nov;19(7):686–91. 62. Anusavice KJ, Carroll JE. Effect of incompatibility stress on the fit of metal-ceramic crowns. J Dent Res. 1987 Aug;66(8):1341–5. 63. Mazza LC, Lemos CAA, Pesqueira AA, Pellizzer EP. Survival and complications of monolithic ceramic for tooth-supported fixed dental prostheses: A systematic review and meta-analysis. J Prosthet Dent. 2022 Oct;128(4):566–74. 64. Gracis S, Thompson VP, Ferencz JL, Silva NRFA, Bonfante EA. A new classification system for all-ceramic and ceramic-like restorative materials. Int J Prosthodont. 2015;28(3):227–35. 65. A R, A S, O S, S H. Material selection for tooth-supported single crowns-a survey among dentists in Germany. Clin Oral Investig [Internet]. 2021 Jan [cited 2024 Jun 30];25(1). Available from: https://pubmed.ncbi.nlm.nih.gov/32556660/ 66. Beyer C, Schwahn C, Meyer G, Söhnel A. What German dentists choose for their teeth: A Web-based survey of molar restorations and their longevity. J Prosthet Dent. 2021 May;125(5):805–14. 67. Poggio CE, Ercoli C, Rispoli L, Maiorana C, Esposito M. Metal-free materials for fixed prosthodontic restorations. Cochrane Database Syst Rev. 2017 Dec 20;12(12):CD009606. 68. Habibi Y, Dawid MT, Waldecker M, Rammelsberg P, Bömicke W. Three-year clinical performance of monolithic and partially veneered zirconia ceramic fixed partial dentures. J Esthet Restor Dent. 2020 Jun;32(4):395–402. 69. Koenig V, Wulfman C, Bekaert S, Dupont N, Le Goff S, Eldafrawy M, et al. Clinical behavior of second-generation zirconia monolithic posterior restorations: Two-year results of a prospective study with Ex vivo analyses including patients with clinical signs of bruxism. J Dent. 2019 Dec;91:103229. 70. Bankoğlu Güngör M, Karakoca Nemli S. Fracture resistance of CAD-CAM monolithic ceramic and veneered zirconia molar crowns after aging in a mastication simulator. J Prosthet Dent. 2018 Mar;119(3):473–80. 71. López-Suárez C, Castillo-Oyagüe R, Rodríguez-Alonso V, Lynch CD, Suárez-García MJ. Fracture load of metal-ceramic, monolithic, and bi-layered zirconia-based posterior fixed dental prostheses after thermo-mechanical cycling. J Dent. 2018 Jun;73:97–104. 72. Batson ER, Cooper LF, Duqum I, Mendonça G. Clinical outcomes of three different crown systems with CAD/CAM technology. J Prosthet Dent. 2014 Oct;112(4):770–7. 73. Jung RE, Sailer I, Hämmerle CHF, Attin T, Schmidlin P. In vitro color changes of soft tissues caused by restorative materials. Int J Periodontics Restorative Dent. 2007 Jun;27(3):251–7. 74. Cosgarea R, Gasparik C, Dudea D, Culic B, Dannewitz B, Sculean A. Peri-implant soft tissue colour around titanium and zirconia abutments: a prospective randomized controlled clinical study. Clin Oral Implants Res. 2015 May;26(5):537–44. 75. Linkevicius T, Vaitelis J. The effect of zirconia or titanium as abutment material on soft peri-implant tissues: a systematic review and meta-analysis. Clin Oral Implants Res. 2015 Sep;26 Suppl 11:139–47. 76. Gil MS, Ishikawa-Nagai S, Elani HW, Da Silva JD, Kim DM, Tarnow D, et al. Comparison of the color appearance of peri-implant soft tissue with natural gingiva ssing anodized pink-neck implants and pink abutments: A prospective clinical trial. Int J Oral Maxillofac Implants. 2019;34(3):752–8. 77. Atsuta I, Ayukawa Y, Furuhashi A, Narimatsu I, Kondo R, Oshiro W, et al. Epithelial sealing effectiveness against titanium or zirconia implants surface. J Biomed Mater Res A. 2019 Jul;107(7):1379–85. 78. de Avila ED, Avila-Campos MJ, Vergani CE, Spolidório DMP, Mollo F de A. Structural and quantitative analysis of a mature anaerobic biofilm on different implant abutment surfaces. J Prosthet Dent. 2016 Apr;115(4):428–36. 79. Roehling S, Astasov-Frauenhoffer M, Hauser-Gerspach I, Braissant O, Woelfler H, Waltimo T, et al. In vitro biofilm formation on titanium and zirconia implant surfaces. J Periodontol. 2017 Mar;88(3):298–307. 80. Trajtenberg CP, Caram SJ, Kiat-amnuay S. Microleakage of all-ceramic crowns using self-etching resin luting agents. Oper Dent. 2008;33(4):392–9. 81. Rossetti PHO, do Valle AL, de Carvalho RM, De Goes MF, Pegoraro LF. Correlation between margin fit and microleakage in complete crowns cemented with three luting agents. J Appl Oral Sci Rev FOB. 2008;16(1):64–9. 82. Thompson VP, Rekow DE. Dental ceramics and the molar crown testing ground. J Appl Oral Sci Rev FOB. 2004;12(spe):26–36. 83. McLean JW, von Fraunhofer JA. The estimation of cement film thickness by an in vivo technique. Br Dent J. 1971 Aug 3;131(3):107–11. 84. Christensen GJ. Marginal fit of gold inlay castings. J Prosthet Dent. 1966;16(2):297–305. 85. Mitchell CA, Pintado MR, Douglas WH. Nondestructive, in vitro quantification of crown margins. J Prosthet Dent. 2001 Jun;85(6):575–84. 86. Weaver JD, Johnson GH, Bales DJ. Marginal adaptation of castable ceramic crowns. J Prosthet Dent. 1991 Dec;66(6):747–53. 87. Belser UC, MacEntee MI, Richter WA. Fit of three porcelain-fused-to-metal marginal designs in vivo: a scanning electron microscope study. J Prosthet Dent. 1985 Jan;53(1):24–9. 88. Molin MK, Karlsson SL, Kristiansen MS. Influence of film thickness on joint bend strength of a ceramic/resin composite joint. Dent Mater. 1996 Jul;12(4):245–9. 89. Association AD. Guide to dental materials and devices: Including information on the use, properties and/or characteristics of dental materials, and a broad listing of quality products. 90. Papadiochou S, Pissiotis AL. Marginal adaptation and CAD-CAM technology: A systematic review of restorative material and fabrication techniques. J Prosthet Dent. 2018 Apr;119(4):545–51. 91. Boitelle P, Mawussi B, Tapie L, Fromentin O. A systematic review of CAD/CAM fit restoration evaluations. J Oral Rehabil. 2014 Nov;41(11):853–74. 92. Wataha JC, Messer RL. Casting alloys. Dent Clin North Am. 2004 Apr;48(2):vii–viii, 499–512. 93. Sadan A, Blatz MB, Lang B. Clinical considerations for densely sintered alumina and zirconia restorations: Part 1. Int J Periodontics Restorative Dent. 2005 Jun;25(3):213–9. 94. Abduo J, Lyons K, Bennamoun M. Trends in computer-aided manufacturing in prosthodontics: a review of the available streams. Int J Dent. 2014;2014:783948. 95. Davis GR, Tayeb RA, Seymour KG, Cherukara GP. Quantification of residual dentine thickness following crown preparation. J Dent. 2012 Jul;40(7):571–6. 96. Rekow ED, Erdman AG, Riley DR, Klamecki B. CAD/CAM for dental restorations--some of the curious challenges. IEEE Trans Biomed Eng. 1991 Apr;38(4):314–8. 97. Miyazaki T, Hotta Y. CAD/CAM systems available for the fabrication of crown and bridge restorations. Aust Dent J. 2011 Jun;56 Suppl 1:97–106. 98. Beuer F, Schweiger J, Edelhoff D. Digital dentistry: an overview of recent developments for CAD/CAM generated restorations. Br Dent J. 2008 May 10;204(9):505–11. 99. Duret F, Preston JD. CAD/CAM imaging in dentistry. Curr Opin Dent. 1991 Apr;1(2):150–4. 100. Mörmann WH, Brandestini M, Lutz F, Barbakow F. Chairside computer-aided direct ceramic inlays. Quintessence Int. 1989 May;20(5):329–39. 101. Andersson M, Carlsson L, Persson M, Bergman B. Accuracy of machine milling and spark erosion with a CAD/CAM system. J Prosthet Dent. 1996 Aug;76(2):187–93. 102. van Noort R. The future of dental devices is digital. Dent Mater. 2012 Jan;28(1):3–12. 103. Abduo J, Lyons K. Rationale for the use of CAD/CAM technology in implant prosthodontics. Int J Dent. 2013;2013:768121. 104. Denry I, Kelly JR. State of the art of zirconia for dental applications. Dent Mater. 2008 Mar;24(3):299–307. 105. Miyazaki T, Hotta Y, Kunii J, Kuriyama S, Tamaki Y. A review of dental CAD/CAM: current status and future perspectives from 20 years of experience. Dent Mater J. 2009 Jan;28(1):44–56. 106. Andersson M, Razzoog ME, Odén A, Hegenbarth EA, Lang BR. Procera: a new way to achieve an all-ceramic crown. Quintessence Int Berl Ger 1985. 1998 May;29(5):285–96. 107. Kollar A, Huber S, Mericske E, Mericske-Stern R. Zirconia for teeth and implants: a case series. Int J Periodontics Restorative Dent. 2008 Oct;28(5):479–87. 108. Song XF, Ren HT, Yin L. Machinability of lithium disilicate glass ceramic in in vitro dental diamond bur adjusting process. J Mech Behav Biomed Mater. 2016 Jan;53:78–92. 109. Chavali R, Nejat AH, Lawson NC. Machinability of CAD-CAM materials. J Prosthet Dent. 2017 Aug;118(2):194–9. 110. Schmitt de Andrade G, Diniz V, Datte CE, Pereira GKR, Venturini AB, Campos TMB, et al. Newer vs. older CAD/CAM burs: Influence of bur experience on the fatigue behavior of adhesively cemented simplified lithium-disilicate glass-ceramic restorations. J Mech Behav Biomed Mater. 2019 Jul;95:172–9. 111. Tomita S, Shin-Ya A, Gomi H, Matsuda T, Katagiri S, Shin-Ya A, et al. Machining accuracy of CAD/CAM ceramic crowns fabricated with repeated machining using the same diamond bur. Dent Mater J. 2005 Mar;24(1):123–33. 112. Corazza PH, de Castro HL, Feitosa SA, Kimpara ET, Della Bona A. Influence of CAD-CAM diamond bur deterioration on surface roughness and maximum failure load of Y-TZP-based restorations. Am J Dent. 2015 Apr;28(2):95–9. 113. Wang H, Aboushelib MN, Feilzer AJ. Strength influencing variables on CAD/CAM zirconia frameworks. Dent Mater. 2008 May;24(5):633–8. 114. Sailer I, Fehér A, Filser F, Gauckler LJ, Lüthy H, Hämmerle CHF. Five-year clinical results of zirconia frameworks for posterior fixed partial dentures. Int J Prosthodont. 2007;20(4):383–8. 115. Kohorst P, Brinkmann H, Li J, Borchers L, Stiesch M. Marginal accuracy of four-unit zirconia fixed dental prostheses fabricated using different computer-aided design/computer-aided manufacturing systems. Eur J Oral Sci. 2009 Jun;117(3):319–25. 116. Att W, Komine F, Gerds T, Strub JR. Marginal adaptation of three different zirconium dioxide three-unit fixed dental prostheses. J Prosthet Dent. 2009 Apr;101(4):239–47. 117. Roperto RC, Lopes FC, Porto TS, Teich S, Rizzante FAP, Gutmacher Z, et al. CAD/CAM diamond tool wear. Quintessence Int Berl Ger 1985. 2018;49(10):781–6. 118. Lebon N, Tapie L, Vennat E, Mawussi B. Influence of CAD/CAM tool and material on tool wear and roughness of dental prostheses after milling. J Prosthet Dent. 2015 Aug;114(2):236–47. 119. Pradíes G, Zarauz C, Valverde A, Ferreiroa A, Martínez-Rus F. Clinical evaluation comparing the fit of all-ceramic crowns obtained from silicone and digital intraoral impressions based on wavefront sampling technology. J Dent. 2015 Feb;43(2):201–8. 120. Ng J, Ruse D, Wyatt C. A comparison of the marginal fit of crowns fabricated with digital and conventional methods. J Prosthet Dent. 2014 Sep;112(3):555–60. 121. Al Hamad KQ, Al Rashdan BA, Al Omari WM, Baba NZ. Comparison of the fit of lithium disilicate crowns made from conventional, digital, or conventional/digital techniques. J Prosthodont. 2019 Feb;28(2):e580–6. 122. ISO 9693:2019 [Internet]. ISO. Available from: https://www.iso.org/standard/75855.html 123. Latham J, Ludlow M, Mennito A, Kelly A, Evans Z, Renne W. Effect of scan pattern on complete-arch scans with 4 digital scanners. J Prosthet Dent. 2020 Jan;123(1):85–95. 124. Cho JH, Yoon HI, Han JS, Kim DJ. Trueness of the Inner Surface of Monolithic Crowns Fabricated by Milling of a Fully Sintered (Y, Nb)-TZP Block in Chairside CAD-CAM System for Single-visit Dentistry. Mater Basel Switz. 2019 Oct 5;12(19):3253. 125. Kim CM, Kim SR, Kim JH, Kim HY, Kim WC. Trueness of milled prostheses according to number of ball-end mill burs. J Prosthet Dent. 2016 May;115(5):624–9. 126. Edwards Rezende CE, Sanches Borges AF, Macedo RM, Rubo JH, Griggs JA. Dimensional changes from the sintering process and fit of Y-TZP copings: Micro-CT analysis. Dent Mater. 2017 Nov;33(11):e405–13. 127. Tapie L, Lebon N, Mawussi B, Fron-Chabouis H, Duret F, Attal JP. Understanding dental CAD/CAM for restorations--accuracy from a mechanical engineering viewpoint. Int J Comput Dent. 2015;18(4):343–67. 128. Peters MC, Delong R, Pintado MR, Pallesen U, Qvist V, Douglas WH. Comparison of two measurement techniques for clinical wear. J Dent. 1999 Sep;27(7):479–85. 129. Al Hamad KQ, Al Rashdan RB, Al Rashdan BA, Al Quran FA. Effect of CAD-CAM tool deterioration on the trueness of ceramic restorations. J Prosthet Dent. 2022 Apr;127(4):635–44. 130. Yara A, Ogura H, Shinya A, Tomita S, Miyazaki T, Sugai Y, et al. Durability of diamond burs for the fabrication of ceramic crowns using dental CAD/CAM. Dent Mater J. 2005 Mar;24(1):134–9. 131. Al Hamad KQ, Al Quran FA, Jwaied SZ, Al-Dwairi ZN, Al-Rashdan BA, Baba NZ. Effect of CAD/CAM bur deterioration on the surface roughness of ceramic crowns. J Prosthodont. 2022 Apr;31(4):320–5. 132. Al Hamad KQ, Al-Rashdan RB, Al-Rashdan BA, Baba NZ. Effect of Milling Protocols on Trueness and Precision of Ceramic Crowns. J Prosthodont. 2021 Feb;30(2):171–6. 133. Michelinakis G, Apostolakis D, Tsagarakis A, Kourakis G, Pavlakis E. A comparison of accuracy of 3 intraoral scanners: A single-blinded in vitro study. J Prosthet Dent. 2020 Nov;124(5):581–8. 134. Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. New York: Routledge; 1988. 567 p. 135. Örtorp A, Jönsson D, Mouhsen A, Vult von Steyern P. The fit of cobalt-chromium three-unit fixed dental prostheses fabricated with four different techniques: a comparative in vitro study. Dent Mater. 2011 Apr;27(4):356–63. 136. Bornemann G, Lemelson S, Luthardt R. Innovative method for the analysis of the internal 3D fitting accuracy of Cerec-3 crowns. Int J Comput Dent. 2002;5(2–3):177–82. 137. Tinschert J, Natt G, Hassenpflug S, Spiekermann H. Status of current CAD/CAM technology in dental medicine. Int J Comput Dent. 2004 Jan;7(1):25–45. 138. Baig MR, Al-Tarakemah Y, Kasim NHA, Omar R. Evaluation of the marginal fit of a CAD/CAM zirconia-based ceramic crown system. Int J Prosthodont. 2022;35(3):319–29. 139. Hentenaar DF, De Waal YC, Van Winkelhoff AJ, Raghoebar GM, Meijer HJ. Influence of cervical crown contour on marginal bone loss around platform-switched bone-level implants: a 5-year cross-sectional study. Int J Prosthodont. 2020;33(4):373–9. 140. Markarian RA, Vasconcelos E, Kim JH, Attard NJ, Cortes ARG. Effect of different milling devices on marginal fit of CAD-CAM zirconia copings on implant stock abutments. Int J Prosthodont. 2022;35(4):420–4. 141. Mounajjed R, M Layton D, Azar B. The marginal fit of E.max Press and E.max CAD lithium disilicate restorations: A critical review. Dent Mater J. 2016 Dec 1;35(6):835–44. 142. Kim SB, Kim NH, Kim JH, Moon HS. Evaluation of the fit of metal copings fabricated using stereolithography. J Prosthet Dent. 2018 Nov;120(5):693–8. 143. Azarbal A, Azarbal M, Engelmeier RL, Kunkel TC. Marginal fit comparison of CAD/CAM crowns milled from two different materials. J Prosthodont. 2018 Jun;27(5):421–8. 144. Lövgren N, Roxner R, Klemendz S, Larsson C. Effect of production method on surface roughness, marginal and internal fit, and retention of cobalt-chromium single crowns. J Prosthet Dent. 2017 Jul;118(1):95–101. 145. Conrad HJ, Seong WJ, Pesun IJ. Current ceramic materials and systems with clinical recommendations: a systematic review. J Prosthet Dent. 2007 Nov;98(5):389–404. 146. Abdulrahman M, Al-Adel S. Evaluation of the marginal and internal fitness of full-contour CAD/CAM crowns made from zirconia, lithium disilicate, zirconia-reinforced lithium silicate and hybrid dental ceramic using silicone replica technique (A comparative in vitro study). J Genet Environ Resour Conserv. 2016 Jan 1;10–20. 147. Park JY, Bae SY, Lee JJ, Kim JH, Kim HY, Kim WC. Evaluation of the marginal and internal gaps of three different dental prostheses: comparison of the silicone replica technique and three-dimensional superimposition analysis. J Adv Prosthodont. 2017 Jun;9(3):159–69. 148. Passon C, Lambert RH, Lambert RL, Newman S. The effect of multiple layers of die-spacer on crown retention. Oper Dent. 1992;17(2):42–9. 149. Campbell SD. Comparison of conventional paint-on die spacers and those used with the all-ceramic restorations. J Prosthet Dent. 1990 Feb;63(2):151–5. 150. Emtiaz S, Goldstein G. Effect of die spacers on precementation space of complete-coverage restorations. Int J Prosthodont. 1997;10(2):131–5. 151. Webb EL, Murray HV, Holland GA, Taylor DF. Effects of preparation relief and flow channels on seating full coverage castings during cementation. J Prosthet Dent. 1983 Jun;49(6):777–80. 152. Psillakis JJ, McAlarney ME, Wright RF, Urquiola J, MacDonald DE. Effect of evaporation and mixing technique on die spacer thickness: a preliminary study. J Prosthet Dent. 2001 Jan;85(1):82–7. 153. Abbo B, Razzoog ME, Vivas J, Sierraalta M. Resistance to dislodgement of zirconia copings cemented onto titanium abutments of different heights. J Prosthet Dent. 2008 Jan;99(1):25–9. 154. Strub JR, Rekow ED, Witkowski S. Computer-aided design and fabrication of dental restorations: current systems and future possibilities. J Am Dent Assoc 1939. 2006 Sep;137(9):1289–96. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95050 | - |
dc.description.abstract | 問題陳述:牙科陶瓷材料的電腦輔助設計製造是一個切削和研磨的過程,會伴隨著切削工具表面的磨耗和材料碎屑的產生。切削工具的壽命會受到切削機台的種類、材料的硬度和大小等因素的影響。然而,切削工具隨著重複使用所產生的磨損,以及這些損耗對人工植體氧化鋯牙冠型態準確度的影響,仍有許多未知之處需要進一步評估。
研究目的:探討切削工具隨重複使用而產生的磨損情況,以及這些損耗對電腦輔助設計製造的人工植體氧化鋯牙冠準確度的影響。 研究方法與材料:製作一個左下第一小臼齒模擬人工植體的模型。使用五軸切削機台 (Coritec 250i; imes-icore GmbH) 和直徑1.0毫米的切削工具來製作氧化鋯牙冠 (3M Lava Esthetic; 3M ESPE)。每支切削工具製作26個成品,共重複五次 (N = 130)。每完成一次加工後,對切削工具進行影像拍攝與後處理,計算最大刀側值。氧化鋯牙冠成品的準確度通過以下方法測量:(1) 迭代最近點算法 (iterative closest point algorithm)、(2) 成品邊緣密合度測試、(3) 成品內面密合度測試、(4) x光放射影像評估。測量結果使用皮爾森積動差相關係數 (Pearson correlation coefficient, r) 評估工具切削時間與準確度之間的關係,組間及組內差異性比較將使用克拉斯卡-瓦立斯檢定 (Kruskal-Wallis test) 進行評估,事後檢定 (post hoc test) 為杜納檢定 (Dunn's test)。顯著水準 (significance level, α) 設定為 0.05。 結果:切削深度為0.15毫米的最大刀側值相關係數為0.248,具低度正相關性,數值從680.0 ± 8.4微米增加至684.8 ± 10.5 微米。迭代最近點算法中,外側面方均根值的相關係數為0.534,具高度正相關性,數值從35.4 ± 1.1微米增加至39.8 ± 2.0微米;內側面的相關係數為0.801,具高度正相關性,數值從33.0 ± 1.9微米增加至41.6 ± 3.3微米。邊緣密合度中,頰側面水平差異的相關係數為0.717,具高度正相關性,數值從17.9 ± 7.6 微米增加至52.3 ± 7.2 微米;垂直差異的相關係數為0.063,無明顯相關性,數值從7.1 ± 3.8 微米變化至8.7 ± 4.8 微米。遠心側水平差異的相關係數為0.401,具中度正相關性,數值從8.3 ± 5.6 微米增加至19.8 ± 11.3 微米;垂直差異的相關係數為 -0.011,無明顯相關性,數值從8.2 ± 5.9微米變化至9.6 ± 5.4 微米。舌側面水平差異的相關係數為0.696,具高度正相關性,數值從6.3 ± 4.5微米增加至26.0 ± 7.0微米;垂直差異的相關係數為0.241,具低度正相關性,數值從9.1 ± 5.2 微米稍微增加至12.6 ± 6.0 微米。近心側水平差異的相關係數為0.421,具中度正相關性,數值從6.4 ± 5.4 微米增加至15.8 ± 8.8 微米;垂直差異的相關係數為0.211,具低度正相關性,數值從8.6 ± 5.1 微米稍微增加至12.6 ± 7.0 微米。內面密合度中,薄膜厚度的相關係數為0.465,具中度正相關性,數值從24.6 ± 4.7 微米增加至32.4 ± 6.1微米。 結論:隨著不鏽鋼碳化鎢切削工具在切削氧化鋯的使用時間增加,工具的磨損顯著,對氧化鋯牙冠的加工型態準確度產生明顯影響。具體來說,外側面的加工正確度在切削工具使用約20% 後明顯變差,而內側面則在使用40% 後變差更為明顯。在水平方向上,邊緣密合度顯示出不同區域的變化,尤其是頰側面在使用切削工具20% 後密合度顯著變差;然而,在垂直方向上則沒有觀察到顯著的變化。在內面密合度方面,雖然在切削工具使用80% 後密合度有明顯變差,但測量結果仍在臨床上可接受的範圍內。 | zh_TW |
dc.description.abstract | Statement of problem. The computer-aided design and manufacturing (CAD-CAM) of dental ceramic materials is a cutting and grinding process that involves wear on the cutting tool surfaces and the generation of material debris. The lifespan of the cutting tools is influenced by factors such as the type of milling machine, the hardness and size of the material. However, the wear of cutting tools with repeated use and the impact of this wear on the accuracy of zirconia crowns for dental implants still require further evaluation.
Purpose. Investigate the wear of cutting tools with repeated use and the impact of this wear on the accuracy of zirconia crowns for dental implants manufactured using computer-aided design and manufacturing. Material and methods. A model simulating a mandibular left first premolar implant was created. A five-axis milling machine (Coritec 250i; imes-icore GmbH) and a 1.0 mm diameter cutting tool were used to fabricate zirconia crowns (3M Lava Esthetic; 3M ESPE). Each cutting tool could produce 26 finished products, and the process was repeated five times (N = 130). After each batch, the cutting tool was imaged and processed to calculate the maximum flank wear value. The accuracy of the zirconia crowns was measured through the following methods: (1) iterative closest point algorithm, (2) marginal fit test, (3) internal fit test, (4) x-ray radiographic image evaluation. The measurement results were evaluated for the relationship between tool cutting time and accuracy using the Pearson correlation coefficient (r). Differences between and within groups were assessed using the Kruskal-Wallis test, with Dunn's test as the post hoc test. The significance level (α) was set at 0.05. Results. The correlation coefficient for the maximum cutting width at a cutting depth of 0.15 mm was 0.248, indicating a low positive correlation, with values increasing from 680.0 ± 8.4 µm to 684.8 ± 10.5 µm. In the iterative closest point algorithm, the correlation coefficient for the root mean square value of the outer surface was 0.534, indicating a high positive correlation, with values increasing from 35.4 ± 1.1 µm to 39.8 ± 2.0 µm; the correlation coefficient for the inner surface was 0.801, indicating a high positive correlation, with values increasing from 33.0 ± 1.9 µm to 41.6 ± 3.3 µm. In the marginal fit test, the correlation coefficient for the horizontal discrepancy of the buccal surface was 0.716, indicating a high positive correlation, with values increasing from 17.9 ± 7.6 µm to 52.3 ± 7.2 µm; the correlation coefficient for the vertical discrepancy was 0.063, showing no significant correlation, with values changing from 7.1 ± 3.8 µm to 8.7 ± 4.8 µm. The correlation coefficient for the horizontal discrepancy of the distal surface was 0.401, indicating a moderate positive correlation, with values increasing from 8.3 ± 5.6 µm to 19.8 ± 11.3 µm; the correlation coefficient for the vertical discrepancy was -0.011, showing no significant correlation, with values changing from 8.2 ± 5.9 µm to 9.6 ± 5.4 µm. The correlation coefficient for the horizontal discrepancy of the lingual surface was 0.696, indicating a high positive correlation, with values increasing from 6.3 ± 4.5 µm to 26.0 ± 7.0 µm; the correlation coefficient for the vertical discrepancy was 0.241, indicating a low positive correlation, with values slightly increasing from 9.1 ± 5.2 µm to 12.6 ± 6.0 µm. The correlation coefficient for the horizontal discrepancy of the mesial surface was 0.421, indicating a moderate positive correlation, with values increasing from 6.4 ± 5.4 µm to 15.8 ± 8.8 µm; the correlation coefficient for the vertical discrepancy was 0.211, indicating a low positive correlation, with values slightly increasing from 8.6 ± 5.1 µm to 12.6 ± 7.0 µm. In the internal fit test, the correlation coefficient for the film thickness was 0.465, indicating a moderate positive correlation, with values increasing from 24.6 ± 4.7 µm to 32.4 ± 6.1 µm. Conclusion. With increased usage time of stainless steel tungsten carbide cutting tools in milling zirconia, significant tool wear occurs, markedly affecting the dimensional accuracy of zirconia crowns. Specifically, the trueness on the external surface significantly deteriorates after approximately 20% of tool usage, while the deterioration on the internal surface becomes more pronounced after 40% of usage. In the horizontal direction, variations in the marginal fit across different areas are evident, particularly the buccal surface, where the fit significantly worsens after 20% of tool use; however, no significant changes are observed in the vertical direction. Regarding the internal fit, although there is a noticeable decline after 80% of tool usage, the measurement results still remain within clinically acceptable limits. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-26T16:26:40Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-26T16:26:40Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 論文口試委員會審定書 i
謝辭 ii 中文摘要 iii 英文摘要 v 目次 vii 圖次 ix 表次 xii 壹、 文獻回顧 1 一、 人工植體 1 二、 二氧化鋯 2 三、 電腦輔助設計、製造 3 四、 臨床情境與問題 8 貳、 研究動機與目的 9 一、 研究動機與目的 9 二、 虛無假設 9 參、 材料與方法 10 一、 實驗材料 10 1. 模型建立 10 2. 電腦輔助設計 (CAD) 10 3. 電腦輔助製造 (CAM) 10 4. 成品後處理 11 二、 實驗方法與分組 11 三、 實驗結果與分析 12 1. 切削工具磨耗檢測 12 2. 迭代最近點算法 13 3. 成品邊緣密合度測試 14 4. 成品內面密合度測試 15 5. x光放射線影像評估 15 四、 統計分析 16 肆、 實驗結果 17 一、 電腦輔助製造結果 17 二、 切削工具 18 三、 氧化鋯牙冠成品 19 四、 樣本數估計 27 伍、 討論 28 一、 虛無假設 28 二、 電腦輔助製造 29 1. 電腦輔助製造結果 29 2. 切削工具型態 29 3. 切削工具最大刀側值 30 三、 氧化鋯牙冠成品 32 1. 成品外觀型態 32 2. 迭代最近點算法 33 3. 成品邊緣密合度 40 4. 成品內面密合度 44 四、 實驗限制 46 1. 電腦輔助製造 46 2. 氧化鋯牙冠成品 47 陸、 結論 49 柒、 未來展望 50 圖片 51 表格 92 參考文獻 96 附錄 113 | - |
dc.language.iso | zh_TW | - |
dc.title | CAD-CAM 切削工具損耗對鈦金屬植體支台上氧化鋯牙冠準確度的影響 | zh_TW |
dc.title | Influence of CAD-CAM tool wear on the accuracy of zirconia crowns over implant-supported titanium abutments | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 林立德;李維楨 | zh_TW |
dc.contributor.oralexamcommittee | Li-Deh Lin;Wei-Zhen Li | en |
dc.subject.keyword | 人工植體,氧化鋯,牙冠,電腦輔助設計製造,切削工具損耗, | zh_TW |
dc.subject.keyword | dental implant,zirconia,crown,CAD-CAM,tool deterioration, | en |
dc.relation.page | 132 | - |
dc.identifier.doi | 10.6342/NTU202403204 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-08-06 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 臨床牙醫學研究所 | - |
dc.date.embargo-lift | 2029-08-01 | - |
顯示於系所單位: | 臨床牙醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 53.93 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。