請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95048完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周涵怡 | zh_TW |
| dc.contributor.advisor | HAN-YI E. CHOU | en |
| dc.contributor.author | 蘇暄潔 | zh_TW |
| dc.contributor.author | Xuan-Jie Su | en |
| dc.date.accessioned | 2024-08-26T16:26:04Z | - |
| dc.date.available | 2024-08-27 | - |
| dc.date.copyright | 2024-08-26 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-09 | - |
| dc.identifier.citation | 1. Cheng, F.-C., et al., Morbidity and mortality of oral cancer in Taiwan: Trends from 2000 to 2021. Journal of Dental Sciences, 2023. 18(3): p. 1338-1346.
2. Chou, C.W., et al., Epidemiology of Oral Cancer in Taiwan: A PopulaAon-Based Cancer Registry Study. Cancers (Basel), 2023. 15(7). 3. Bray, F., et al., Global cancer staAsAcs 2018: GLOBOCAN esAmates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 2018. 68(6): p. 394-424. 4. Tsai, Y.-S., et al., Incidence trends of oral cavity, oropharyngeal, hypopharyngeal and laryngeal cancers among males in Taiwan, 1980–2019: a populaAon-based cancer registry study. BMC Cancer, 2023. 23(1): p. 213. 5. Liu, C., et al., Tumor microenvironment and immunotherapy of oral cancer. European Journal of Medical Research, 2022. 27(1): p. 198. 6. Xu, Q., et al., EGF induces epithelial-mesenchymal transiAon and cancer stem- like cell properAes in human oral cancer cells via promoAng Warburg effect. Oncotarget, 2017. 8(6): p. 9557-9571. 7. Corbet, C. and O. Feron, Tumour acidosis: from the passenger to the driver's seat. Nature Reviews Cancer, 2017. 17(10): p. 577-593. 8. van Niel, G., G. D'Angelo, and G. Raposo, Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol, 2018. 19(4): p. 213-228. 9. Liu, H., et al., Current Status, OpportuniAes, and Challenges of Exosomes in Oral Cancer Diagnosis and Treatment. Int J Nanomedicine, 2022. 17: p. 2679-2705. 10. Peinado, H., et al., Pre-metastaAc niches: organ-specific homes for metastases. Nature Reviews Cancer, 2017. 17(5): p. 302-317. 11. Hoshino, A., et al., Tumour exosome integrins determine organotropic metastasis. Nature, 2015. 527(7578): p. 329-35. 12. Jiang, Y., Y. Li, and B. Zhu, T-cell exhausAon in the tumor microenvironment. Cell Death Dis, 2015. 6(6): p. e1792. 13. Jiao, S., et al., PARP Inhibitor Upregulates PD-L1 Expression and Enhances Cancer-Associated Immunosuppression. Clin Cancer Res, 2017. 23(14): p. 3711-3720. 14. Li, C.W., et al., GlycosylaAon and stabilizaAon of programmed death ligand-1 suppresses T-cell acAvity. Nat Commun, 2016. 7: p. 12632. 15. Samuel, S.R., et al., EffecAveness of exercise-based rehabilitaAon on funcAonal capacity and quality of life in head and neck cancer paAents receiving chemo- radiotherapy. Suppor_ve Care in Cancer, 2019. 27(10): p. 3913-3920. 16. Chang, C.C., et al., Clinical CharacterisAcs and Treatment Outcomes of Oral Cancers Using Transoral RoboAc Surgery in an Endemic Region. Cancers (Basel), 2023. 15(19). 17. Marcazzan, S., et al., Nanomedicine, an emerging therapeuAc strategy for oral cancer therapy. Oral Oncology, 2018. 76: p. 1-7. 18. Cnossen, I.C., et al., MulAmodal guided self-help exercise program to prevent speech, swallowing, and shoulder problems among head and neck cancer paAents: a feasibility study. J Med Internet Res, 2014. 16(3): p. e74. 19. Liu, F.-H., et al., Suicide risk a^er head and neck cancer diagnosis in Taiwan: A retrospecAve cohort study. Journal of Affec_ve Disorders, 2023. 320: p. 610- 615. 20. Damasio, M.P.S., et al., The role of T-cells in head and neck squamous cell carcinoma: From immunity to immunotherapy. Front Oncol, 2022. 12: p. 1021609. 21. Shibata, H., S. Saito, and R. Uppaluri, Immunotherapy for Head and Neck Cancer: A Paradigm Shi^ From InducAon Chemotherapy to Neoadjuvant Immunotherapy. Front Oncol, 2021. 11: p. 727433. 22. Pereira, D., D. Mar_ns, and F. Mendes, Immunotherapy in Head and Neck Cancer When, How, and Why? Biomedicines, 2022. 10(9). 23. Fasano, M., et al., Immunotherapy for head and neck cancer: Present and future. Cri_cal Reviews in Oncology/Hematology, 2022. 174: p. 103679. 24. Hosonuma, M. and K. Yoshimura, AssociaAon between pH regulaAon of the tumor microenvironment and immunological state. Front Oncol, 2023. 13: p. 1175563. 25. Shie, W.Y., et al., Acidosis promotes the metastatic colonization of lung cancer via remodeling of the extracellular matrix and vasculogenic mimicry. Int J Oncol, 2023. 63(6). 26. Sonbhadra, S., Mehak, and L.M. Pandey, Biogenesis, IsolaAon, and DetecAon of Exosomes and Their PotenAal in TherapeuAcs and DiagnosAcs. Biosensors, 2023. 13(8): p. 802. 27. Kumar, M.A., et al., Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduc_on and Targeted Therapy, 2024. 9(1): p. 27. 28. Saba, R., D.L. Sorensen, and S.A. Booth, MicroRNA-146a: A Dominant, NegaAve Regulator of the Innate Immune Response. Front Immunol, 2014. 5: p. 578. 29. Wang, H., et al., MulAple roles of microRNA-146a in immune responses and hepatocellular carcinoma. Oncol Lef, 2019. 18(5): p. 5033-5042. 30. Steleka_, E., et al., MicroRNA-29a acenuates CD8 T cell exhausAon and induces memory-like CD8 T cells during chronic infecAon. Proceedings of the Na_onal Academy of Sciences, 2022. 119(17): p. e2106083119. 31. Steleka_, E., et al., MicroRNA-29a acenuates CD8 T cell exhausAon and induces memory-like CD8 T cells during chronic infecAon. Proc Natl Acad Sci U S A, 2022. 119(17): p. e2106083119. 32. Tang, W.W., et al., miR-aculous new avenues for cancer immunotherapy. Front Immunol, 2022. 13: p. 929677. 33. Mokmued, K., et al., miR-200c-3p regulates α4 integrin-mediated T cell adhesion and migraAon. Experimental Cell Research, 2024. 440(2): p. 114146. 34. Cloonan, N., et al., The miR-17-5p microRNA is a key regulator of the G1/S phase cell cycle transiAon. Genome Biol, 2008. 9(8): p. R127. 35. Yin, C., et al., SALL4-mediated upregulaAon of exosomal miR-146a-5p drives T- cell exhausAon by M2 tumor-associated macrophages in HCC. OncoImmunology, 2019. 8(7): p. e1601479. 36. Rodríguez-Galán, A., L. Fernández-Messina, and F. Sánchez-Madrid, Control of Immunoregulatory Molecules by miRNAs in T Cell AcAvaAon. Front Immunol, 2018. 9: p. 2148. 37. de Jong, R., et al., RegulaAon of T-cell differenAaAon by CD2 and CD28 accessory molecules. Immunology, 1991. 74(2): p. 175-82. 38. Bachmann, M.F. and A. Oxenius, Interleukin 2: from immunosAmulaAon to immunoregulaAon and back again. EMBO Rep, 2007. 8(12): p. 1142-8. 39. Ross, S.H. and D.A. Cantrell, Signaling and FuncAon of Interleukin-2 in T Lymphocytes. Annu Rev Immunol, 2018. 36: p. 411-433. 40. Du, H., et al., The co-expression characterisAcs of LAG3 and PD-1 on the T cells of paAents with breast cancer reveal a new therapeuAc strategy. Int Immunopharmacol, 2020. 78: p. 106113. 41. Zhang, X., et al., Crystal structure of the receptor-binding domain of human B7- 2: insights into organizaAon and signaling. Proc Natl Acad Sci U S A, 2003. 100(5): p. 2586-91. 42. Pentcheva-Hoang, T., et al., B7-1 and B7-2 selecAvely recruit CTLA-4 and CD28 to the immunological synapse. Immunity, 2004. 21(3): p. 401-13. 43. Sun, Q., et al., STAT3 regulates CD8+ T cell differenAaAon and funcAons in cancer and acute infecAon. J Exp Med, 2023. 220(4). 44. Huang, L., et al., TargeAng STAT3 Abrogates Tim-3 UpregulaAon of AdapAve Resistance to PD-1 Blockade on Regulatory T Cells of Melanoma. Front Immunol, 2021. 12: p. 654749. 45. Somma, D., et al., Defining the Role of Nuclear Factor (NF)-κB p105 Subunit in Human Macrophage by Transcriptomic Analysis of NFKB1 Knockout THP1 Cells. Front Immunol, 2021. 12: p. 669906. 46. Barnabei, L., et al., NF-κB: At the Borders of Autoimmunity and InflammaAon. Front Immunol, 2021. 12: p. 716469. 47. Van Der Byl, W., et al., The CD8(+) T cell tolerance checkpoint triggers a disAnct differenAaAon state defined by protein translaAon defects. Immunity, 2024. 57(6): p. 1324-1344.e8. 48. Katagiri, T., et al., RegulaAon of T cell differenAaAon by the AP-1 transcripAon factor JunB. Immunol Med, 2021. 44(3): p. 197-203. 49. Shi, J., et al., Establishment and validaAon of exhausted CD8+ T cell feature as a prognosAc model of HCC. Front Immunol, 2023. 14: p. 1166052. 50. Ma, N., et al., PES1 reduces CD8(+) T cell infiltraAon and immunotherapy sensiAvity via interrupAng ILF3-IL15 complex in esophageal squamous cell carcinoma. J Biomed Sci, 2023. 30(1): p. 20. 51. Liu, S.C., et al., PDCD5 inhibits progression of renal cell carcinoma by promoAng T cell immunity: with the involvement of the HDAC3/microRNA-195-5p/SGK1. Clin Epigene_cs, 2022. 14(1): p. 131. 52. Valen_no, M., E. Dejana, and M. Malinverno, The mulAfaceted PDCD10/CCM3 gene. Genes Dis, 2021. 8(6): p. 798-813. 53. Hashemi, M., et al., AssociaAon between Programmed Cell Death 6 InteracAng Protein InserAon/DeleAon Polymorphism and the Risk of Breast Cancer in a Sample of Iranian PopulaAon. Dis Markers, 2015. 2015: p. 854621. 54. Lebaron, S., et al., Rrp5 binding at mulAple sites coordinates pre-rRNA processing and assembly. Mol Cell, 2013. 52(5): p. 707-19. 55. Zhang, J., et al., IdenAficaAon of TYR, TYRP1, DCT and LARP7 as related biomarkers and immune infiltraAon characterisAcs of viAligo via comprehensive strategies. Bioengineered, 2021. 12(1): p. 2214-2227. 56. Kapoor, R., et al., The Role of ARID1a in T Cell DifferenAaAon & Lymphomagenesis. Blood, 2022. 140(Supplement 1): p. 9310-9311. 57. Belk, J.A., et al., Genome-wide CRISPR screens of T cell exhausAon idenAfy chromaAn remodeling factors that limit T cell persistence. Cancer Cell, 2022. 40(7): p. 768-786.e7. 58. Li, Y., et al., Impact of ARID1A and TP53 mutaAons in pediatric refractory or relapsed mature B-Cell lymphoma treated with CAR-T cell therapy. Cancer Cell Int, 2023. 23(1): p. 281. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95048 | - |
| dc.description.abstract | 口腔癌是全球常見的癌症之一,由於病變部位容易轉移到淋巴結,導致患者 預後不良,五年存活率極低。實驗室先前研究顯示,口腔癌微環境的酸化與腫瘤轉 移密切相關。腫瘤微環境通過不同因子影響腫瘤轉移及免疫系統,其中胞外體作為 生物體內訊息傳遞的工具,參與腫瘤和免疫調節之間的交互作用。然而,目前對酸 化微環境中胞外體對 T 細胞的影響尚未充分了解。
本研究旨在探討酸化微環境中之口腔癌細胞所釋放的胞外體對免疫 T 細胞 的影響。我們使用蛋白質體學和轉錄體學技術分析口腔癌細胞在酸化環境中釋放 的胞外體載物,並將胞外體添加至 T 細胞進行刺激,觀察 T 細胞活性是否受到影 響,並測試 T 細胞的毒殺功能。實驗結果顯示,酸化微環境會導致口腔癌細胞釋 放出含有不同蛋白質和 miRNA 的胞外體,這些胞外體能夠誘導 T 細胞向耗竭狀態 發展,削弱其免疫毒殺功能。這些發現揭示了口腔癌酸化微環境中的胞外體在免疫 調節中的重要作用,並提示酸化微環境可能是口腔癌免疫治療的一大障礙。 這些研究結果有助於更好地理解酸化微環境對口腔癌免疫治療的影響,並 為改進免疫治療策略提供新的思路。我們希望能夠利用這些發現,進一步評估和優 化口腔癌患者的免疫治療方案,最終改善患者的臨床預後。 | zh_TW |
| dc.description.abstract | Oral cancer is a very prevalent cancer worldwide, particularly prone to metastasizing to lymph nodes, and a low five-year survival rate. Previously our laboratory studies have indicated that acidosis of the oral cancer microenvironment is closely associated with tumor metastasis. The tumor microenvironment influences tumor metastasis and the immune system through various factors, among which EVs serve as crucial mediators of intercellular communication, participating in the interplay between tumors and immune regulation. However, the impact of EVs in an acidified microenvironment on T cells in oral cancer remains insufficiently understood.
This study aims to investigate the effects of an EVs derived from acidotic oral cancer cells on the cancer cytotoxicity of immune T cell. We employ proteomics and transcriptomics techniques to analyze the contents of EVs released by acidotic oral cancer cells. Furthermore, we stimulate T cells by adding these EVs to the T cell culture and assess their impact using enzyme-linked immunosorbent assay (ELISA) and proteomics. Additionally, microscopy time lapse acquisitions is utilized to evaluate the cytotoxic function of T cells. Experimental results have shown that an acidotic microenvironment induces oral cancer cells to release EVs containing distinct proteins and miRNAs, which can drive T cells towards an exhausted state, thereby impairing their cancer cytotoxic function. These findings reveal the significant role of EVs in one cover immune regulation and suggest that an acidotic microenvironment could be a major barrier to effective immunotherapy for oral cancer. These research outcomes contribute to a better understanding of the impact of an acidified microenvironment on oral cancer immunotherapy and provide new insights for improving immunotherapeutic strategies. We hope to leverage these findings to further evaluate and optimize immunotherapy regimens for oral cancer patients, ultimately enhancing their clinical prognosis. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-26T16:26:04Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-26T16:26:04Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 I
中文摘要 II ABSTRACT III CONTENTS V LIST OF FIGURES VIII CHAPTER 1 INTRODUCTION - 1 - 1.1 Oral cancer - 1 - 1.2 Tumor microenvironment acidosis - 1 - 1.3 Extracellular vesicles - 2 - 1.4 The impact of acidic tumor microenvironment on T cell exhaustion and tumor progression - 2 - 1.5 Treatment modalities for oral cancer - 3 - 1.6 Immunotherapy - 4 - 1.7 Hypothesis - 5 - 1.8 Experimental design - 5 - CHAPTER 2 MATERIAL AND METHODS - 6 - 2.1. Oral squamous cell carcinoma cell culture - 6 - 2.2. Isolation of PBMCs from whole blood - 6 - 2.3 In vitro T cell exhaustion - 7 - 2.4 Extracellular vesicles solation - 7 - 2.4.1 Tangential Flow Filtration (TFF) - 7 - 2.5 Characteristics of extracellular vesicles - 8 - 2.5.1 Nanoparticles Tracking Analysis (NTA) - 8 - 2.5.2 Transmission Electron Microscope (TEM) - 8 - 2.5.3 Proteomics analysis - 9 - 2.5.4 miRNA extraction, RNA library construction and sequencing - 11 - 2.5.5 microRNA-seq data analysis - 11 - 2.6 T cell functional assay - 12 - 2.6.1 Extracellular vesicles labeling - 12 - 2.6.2 Cytokine assays - 13 - 2.6.3 Proteomic analysis - 13 - 2.6.4 Label-free live cell imaging - 14 - 2.7 Statistical analysis - 15 - CHAPTER 3 RESULTS - 16 - 3.1 Acidosis of tumor microenvironment and extracellular vesicle collection. - 16 - 3.2 Collection and characterization of SAS EVs by tangential flow filtration - 16 - 3.3 Acidosis affects on the protein composition of SAS EVs. - 17 - 3.4 Regulation of immune system and T cell exhaustion through acidified EVs loaded with miRNA - 19 - 3.5 Establishment of a chronic induction model of T cell exhaustion by EV released from oral cancer cells - 21 - 3.6 Impact of different pH values on SAS release and its effect on T cell function. - 22 - 3.7 EVs released by oral cancer cells impact the proteome of chronically stimulated T cells. - 24 - CHAPTER 4 CONCLUSION AND DISCUSSION - 29 - REFERENCE - 31 - LIST OF FIGURES Figure 1. Cell culture and collection of EVs from SAS Cells. - 36 - Figure 2. Collection and characteristics of SAS-derived EVs isolated by TFF. - 37 - Figure 3. Acidosis induces SAS to release the EVs analysis with GSEA. - 38 - Figure 4. Differential expression of proteins in EVs proteomics analysis - 39 - Figure 5. Proteomic Gene Set Enrichment Analysis (GSEA) of EVs. - 40 - Figure 6. Differential miRNA expression is observed under induction at pH 7.4 and pH 6.6. - 42 - Figure 7. miRNAs involved in immune regulation. - 43 - Figure 8. A long-term T cell exhaustion model was established by stimulating T cells with EVs released by oral cancer cells. - 44 - Figure 9. The morphology of T cells stimulated by EVs. - 45 - Figure 10. PKH-labeled EVs were observed to aggregate within T cells. - 46 - Figure 11. Co-culture Live T cell assay with T cells and SAS cells. - 47 - Figure 12. Continuous imaging analysis data of LIVE T cell assay with EVE Analytic images captured sequentially. - 48 - Figure 13. Exhaustion Trend in T Cells Stimulated by EVs - 49 - Figure 14. Stimulation of T cells with EVs at varying pH levels results in differential protein expression profiles. - 50 - Figure 15. Related with T cell exhaustion proteins. - 51 - Figure 16. Gene Set Enrichment Analysis (GSEA) of T cell proteomics. - 53 - Figure 17. Upregulation of LARP7 and ARID1A Proteins in pH 6.6 Group. - 54 - | - |
| dc.language.iso | en | - |
| dc.subject | 酸化微環境 | zh_TW |
| dc.subject | 口腔癌 | zh_TW |
| dc.subject | T細胞耗竭 | zh_TW |
| dc.subject | T細胞 | zh_TW |
| dc.subject | 胞外體 | zh_TW |
| dc.subject | extracellular vesicles | en |
| dc.subject | T cell | en |
| dc.subject | T cell exhaustion | en |
| dc.subject | oral cancer | en |
| dc.subject | acidotic microenvironment | en |
| dc.title | 酸化口腔癌之胞外體對免疫 T 細胞的影響 | zh_TW |
| dc.title | Effects of Extracellular Vesicles from Acidotic Oral Cancer on Immune T Cells. | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 鄭世榮;沈湯龍;饒梓明 | zh_TW |
| dc.contributor.oralexamcommittee | SHIH-JUNG CHENG;Tang-Long Shen;Tzu-Ming Jao | en |
| dc.subject.keyword | 口腔癌,酸化微環境,胞外體,T細胞,T細胞耗竭, | zh_TW |
| dc.subject.keyword | acidotic microenvironment,oral cancer,extracellular vesicles,T cell,T cell exhaustion, | en |
| dc.relation.page | 54 | - |
| dc.identifier.doi | 10.6342/NTU202404061 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-10 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 口腔生物科學研究所 | - |
| 顯示於系所單位: | 口腔生物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 12.12 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
