Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95045
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳日騰zh_TW
dc.contributor.advisorRih-Teng Wuen
dc.contributor.author歐家文zh_TW
dc.contributor.authorJeffrey Owenen
dc.date.accessioned2024-08-26T16:25:12Z-
dc.date.available2024-08-27-
dc.date.copyright2024-08-26-
dc.date.issued2024-
dc.date.submitted2024-08-08-
dc.identifier.citationWenjuan Sun, Paolo Bocchini, and Brian D Davison. Resilience metrics and measurement methods for transportation infrastructure: The state of the art. Sustainable and Resilient Infrastructure, 5(3):168–199, 2020.
Qiang Lian, Penghui Zhang, Huaifeng Li, Wancheng Yuan, and Xinzhi Dang. Adjustment method of bridge seismic importance factor based on bridge network connectivity reliability. In Structures, volume 32, pages 1692–1700. Elsevier, 2021.
Mengdie Chen, Sujith Mangalathu, and Jong-Su Jeon. Bridge fragilities to network fragilities in seismic scenarios: An integrated approach. Engineering Structures, 237:112212, 2021.
Tong Liu and Hadi Meidani. Optimizing seismic retrofit of bridges: integrating efficient graph neural network surrogates and transportation equity. In Proceedings of Cyber-Physical Systems and Internet of Things Week 2023, pages 367–372. 2023.
Rodrigo Silva-Lopez and Jack W Baker. Optimal bridge retrofitting selection for seismic risk management using genetic algorithms and neural network–based surrogate models. Journal of Infrastructure Systems, 29(4):04023030, 2023.
Brian Donovan and Daniel B Work. Empirically quantifying city-scale transportation system resilience to extreme events. Transportation Research Part C: Emerging Technologies, 79:333–346, 2017.
Nils Goldbeck, Panagiotis Angeloudis, and Washington Y Ochieng. Resilience assessment for interdependent urban infrastructure systems using dynamic network flow models. Reliability Engineering & System Safety, 188:62–79, 2019.
Jorge-Mario Lozano and Iris Tien. Data collection tools for post-disaster damage assessment of building and lifeline infrastructure systems. International journal of disaster risk reduction, 94:103819, 2023.
Xiaoya Hu, Bingwen Wang, and Han Ji. A wireless sensor network-based structural health monitoring system for highway bridges. Computer-Aided Civil and Infrastructure Engineering, 28(3):193–209, 2013.
Shen-En Chen, Wanqiu Liu, Haitao Bian, and Ben Smith. 3d lidar scans for bridge damage evaluations. In Forensic Engineering 2012: Gateway to a Safer Tomorrow, pages 487–495. 2013.
Christopher A Baker, Randy R Rapp, Emad Elwakil, and Jiansong Zhang. Infrastructure assessment post-disaster: Remotely sensing bridge structural damage by unmanned aerial vehicle in low-light conditions. Journal of emergency management, 18(1):27–41, 2020.
Youjeong Jang. Cascaded Deep Learning Network for Postearthquake Bridge Serviceability Assessment. South Dakota State University, 2021.
Xiao Liang. Image-based post-disaster inspection of reinforced concrete bridge systems using deep learning with bayesian optimization. Computer-Aided Civil and Infrastructure Engineering, 34(5):415–430, 2019.
Mohammad Amin Nabian and Hadi Meidani. Deep learning for accelerated seismic reliability analysis of transportation networks. Computer-Aided Civil and Infrastructure Engineering, 33(6):443–458, 2018.
Sungsik Yoon, Jeongseob Kim, Minsun Kim, Hye-Young Tak, and Young-Joo Lee. Accelerated system-level seismic risk assessment of bridge transportation networks through artificial neural network-based surrogate model. Applied Sciences, 10(18):6476, 2020.
Zhiwei Guo and Heng Wang. A deep graph neural network-based mechanism for social recommendations. IEEE Transactions on Industrial Informatics, 17(4):2776–2783, 2020.
Georgios A Pavlopoulos, Maria Secrier, Charalampos N Moschopoulos, Theodoros G Soldatos, Sophia Kossida, Jan Aerts, Reinhard Schneider, and Pantelis G Bagos. Using graph theory to analyze biological networks. BioData mining, 4:1–27, 2011.
Saeed Rahmani, Asiye Baghbani, Nizar Bouguila, and Zachary Patterson. Graph neural networks for intelligent transportation systems: A survey. IEEE Transactions on Intelligent Transportation Systems, 24(8):8846–8885, 2023.
Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.
Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907, 2016.
Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.
Hourun Li, Yusheng Zhao, Zhengyang Mao, Yifang Qin, Zhiping Xiao, Jiaqi Feng, Yiyang Gu, Wei Ju, Xiao Luo, and Ming Zhang. A survey on graph neural networks in intelligent transportation systems. arXiv preprint arXiv:2401.00713, 2024.
Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, and Huaiyu Wan. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. In Proceedings of the AAAI conference on artificial intelligence, volume 33, pages 922–929, 2019.
Yue Wang and Justin M Solomon. Object dgcnn: 3d object detection using dynamic graphs. Advances in Neural Information Processing Systems, 34:20745–20758, 2021.
Tomoki Nishi, Keisuke Otaki, Keiichiro Hayakawa, and Takayoshi Yoshimura. Traffic signal control based on reinforcement learning with graph convolutional neural nets. In 2018 21st International conference on intelligent transportation systems (ITSC), pages 877–883. IEEE, 2018.
Hong-Wei Wang, Zhong-Ren Peng, Dongsheng Wang, Yuan Meng, Tianlong Wu, Weili Sun, and Qing-Chang Lu. Evaluation and prediction of transportation resilience under extreme weather events: A diffusion graph convolutional approach. Transportation research part C: emerging technologies, 115:102619, 2020.
Tong Liu and Hadi Meidani. Graph neural network surrogate for seismic reliability analysis of highway bridge system. arXiv preprint arXiv:2210.06404, 2022.
Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. Advances in neural information processing systems, 30, 2017.
TWLive News and Media Website. Live surveillance images. https://tw.live/. Accessed: 11 July 2024.
Ministry of Transportation and R.O.C. Communications. Transport data exchange. https://tdx.transportdata.tw/, note = Accessed: 11 July 2024.
Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255. Ieee, 2009.
Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.
Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2818–2826, 2016.
Mingxing Tan and Quoc Le. Efficientnetv2: Smaller models and faster training. In International conference on machine learning, pages 10096–10106. PMLR, 2021.
Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and Yu Sun. Masked label prediction: Unified message passing model for semi-supervised classification. arXiv preprint arXiv:2009.03509, 2020.
Jhony H Giraldo, Konstantinos Skianis, Thierry Bouwmans, and Fragkiskos D Malliaros. On the trade-off between over-smoothing and over-squashing in deep graph neural networks. In Proceedings of the 32nd ACM international conference on information and knowledge management, pages 566–576, 2023.
Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. arXiv preprint arXiv:2111.14522, 2021.
T Konstantin Rusch, Michael M Bronstein, and Siddhartha Mishra. A survey on oversmoothing in graph neural networks. arXiv preprint arXiv:2303.10993, 2023.
Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. arXiv preprint arXiv:1903.02428, 2019.
Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747, 2016.
Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
Rohit Ranjan Singh, Michel Bruneau, Andreas Stavridis, and Kallol Sett. Resilience deficit index for quantification of resilience. Resilient Cities and Structures, 1(2): 1–9, 2022.
Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? arXiv preprint arXiv:2105.14491, 2021. 66
Federal Emergency Management Agency (FEMA). HAZUS Earthquake Model Technical Manual. Federal Emergency Management Agency (FEMA), Washington, DC, 2020. URL https://www.fema.gov/sites/default/files/2020-10/fema_hazus_earthquake_technical_manual_4-2.pdf.
John H Holland. Genetic algorithms. Scientific american, 267(1):66–73, 1992.
Public Works Department Taipei City Government New Construction Office. Taipei city bridges and culverts management system. https://bridge.nco.taipei/BMS2/Guest/Bridge/search.aspx. Accessed: 11 July 2024.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95045-
dc.description.abstract面對地震災害時,交通運輸網絡的恢復力對於維持城市中緊急救護功能和減少對關鍵基礎設施的干擾至關重要。橋梁作為交通運輸網路的主要聯通工具,易受到地震影響而發生破壞,進而降低交通網路整體的功能性。本研究提出了一個基於卷積神經網路(convolutional neural network, CNN)和圖神經網絡(graph neural network, GNN)估計橋梁連通系統震後恢復力的方法。此方法利用CNN基於交通即時影像監視器資料評估橋梁功能現況。接著,利用GNN網絡的拓撲結構和連接性來建立道路與道路之間的關係,來預測地震對交通網絡功能之影響。即使對相對較小的資料集進行了訓練(CNN的200張影像資料和1200個震後模擬之圖),這些模型已表現非常不錯,CNN達到了96.5%的分類準確率,而圖轉換模型(graph transformer)的R平方達到0.990。此方法考慮了地震會造成的橋梁損失資訊、交通車流資料和交通網絡拓撲,提供了震後交通路網的恢復力評估,並有效地模擬以最大化增益橋梁恢復力之優先順序。透過台北市城際橋梁網絡的案例研究,展示了本研究提出的方法的效能。zh_TW
dc.description.abstractEnsuring the resilience of transportation networks in the face of seismic hazards is vital for rapid recovery and minimizing disruptions to critical infrastructure. Bridges are especially prone to damage from earthquakes, posing significant risks to overall network integrity. This work presents a novel approach to assess the resilience of road-bridge networks by combining a fine-tuned EfficientNet model with a Graph Neural Network (GNN). EfficientNet is utilized to evaluate bridge serviceability based on data from traffic surveillance cameras. Concurrently, GNNs harness the topological structure and interconnectivity of the network to model dependencies and predict the effects of seismic events on network functionality. This comprehensive methodology integrates seismic hazard information, traffic data, and network topology to provide a robust resilience assessment. The combined inputs enables the estimation of network functionality and the development of a bridge restoration prioritization strategy using GNNs. Despite being trained on a relatively small dataset (200 images for EfficientNet and 1200 simulated graphs), the models perform impressively, achieving a 96.5% classification accuracy with EfficientNet and an R-squared score of 0.990 with the Graph Transformer. This approach effectively simulates the prioritization of bridge restorations to maximize functionality gains. The method's efficacy is demonstrated through a case study of the road-bridge network in Taipei City.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-26T16:25:11Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-26T16:25:12Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements i
摘要 iii
Abstract v
Contents vii
List of Figures xi
List of Tables xiii
Chapter 1 Introduction 1
1.1 Research Background and Motivation 1
1.2 Literature Review 3
1.2.1 Transportation Network Resilience 3
1.2.2 Artificial Intelligence in Resilience 5
1.2.3 Graph Neural Networks 7
1.2.3.1 Graph Convolutional Networks 8
1.2.3.2 Graph Attention Networks 9
1.2.3.3 Graph Attention Networks version 2 10
1.2.4 Application of GNN in Transportation 12
1.2.5 Research Gap 12
1.3 Contribution and Scope 13
Chapter 2 Datasets 15
2.1 Bridge Damage Classification 15
2.2 Road-Bridge Network 16
2.3 Traffic-Related Dataset and Functionality Metric 19
Chapter 3 Methodology 21
3.1 Overview 21
3.2 Bridge Serviceability Classification 23
3.3 Functionality Prediction 26
3.3.1 Graph Neural Network 26
3.3.2 Post-Disaster Simulated Graphs 27
3.3.3 Graph Transformer 28
3.3.4 Network Architecture 30
3.4 Training Details 32
3.5 Bridge Recovery Strategy 33
3.6 Resilience Index 33
Chapter 4 Results and Discussions 39
4.1 Model Evaluations 39
4.1.1 Bridge Serviceability Classification Model 39
4.1.2 Graph Neural Network Model 40
4.1.3 Error Propagation 42
4.2 Case Study 46
4.2.1 Single Worker Scheduling 46
4.2.2 Multi-Worker Scheduling 48
Chapter 5 Conclusion 55
5.1 Concluding Remarks 55
5.2 Limitations 56
5.3 Future Works 58
References 61
-
dc.language.isoen-
dc.subject恢復力zh_TW
dc.subject交通路網zh_TW
dc.subject橋梁zh_TW
dc.subject圖神經網路zh_TW
dc.subject深度學習zh_TW
dc.subjectResilienceen
dc.subjectDeep Learningen
dc.subjectTransportation Networken
dc.subjectBridgeen
dc.subjectGraph Neural Networken
dc.title基於圖神經網路評估震後橋梁連通系統之恢復力zh_TW
dc.titleEvaluation of Transportation Bridge Network Resilience Under Seismic Hazard Using Graph Neural Networken
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張國鎮;林其穎;葉芳耀zh_TW
dc.contributor.oralexamcommitteeKuo-Chun Chang;Chi-Ying Lin;Fang-Yao Yehen
dc.subject.keyword恢復力,圖神經網路,橋梁,交通路網,深度學習,zh_TW
dc.subject.keywordResilience,Graph Neural Network,Bridge,Transportation Network,Deep Learning,en
dc.relation.page67-
dc.identifier.doi10.6342/NTU202404013-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-12-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
dc.date.embargo-lift2029-08-08-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  此日期後於網路公開 2029-08-08
6.09 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved