Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95036
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳祝嵩zh_TW
dc.contributor.advisorChu-Song Chenen
dc.contributor.author洪彥揚zh_TW
dc.contributor.authorYen-Yang Hungen
dc.date.accessioned2024-08-26T16:22:30Z-
dc.date.available2024-08-27-
dc.date.copyright2024-08-26-
dc.date.issued2024-
dc.date.submitted2024-08-10-
dc.identifier.citation1. Y. An, D. Yang, and M. Song. Hft6d: Multimodal 6d object pose estimation based on hierarchical feature transformer. Measurement, 224:113848, 2024.

2. J. K. S. B. Bowen Wen, Wei Yang. FoundationPose: Unified 6d pose estimation and tracking of novel objects. CVPR, 2024.

3. Y. Bukschat and M. Vetter. Efficientpose: An efficient, accurate and scalable end-to-end 6d multi object pose estimation approach. ArXiv, abs/2011.04307, 2020.

4. M. Cai and I. Reid. Reconstruct locally, localize globally: A model free method for object pose estimation. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 3150–3160, 2020.

5. P. Castro and T.-K. Kim. Posematcher: One-shot 6d object pose estimation by deep feature matching. ICCVW, 2023.

6. D. Chen, J. Li, Z. Wang, and K. Xu. Learning canonical shape space for category-level 6d object pose and size estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020. arXiv:2001.09322.

7. H. Chen, P. Wang, F. Wang, W. Tian, L. Xiong, and H. Li. Epro-pnp: Generalized end-to-end probabilistic perspective-n-points for monocular object pose estimation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

8. W. Chen, X. Jia, H. J. Chang, J. Duan, and A. Leonardis. G2l-net: Global to local network for real-time 6d pose estimation with embedding vector features. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 4232–4241, 2020.

9. W. Chen, X. Jia, H. J. Chang, J. Duan, L. Shen, and A. Leonardis. Fs-net: Fast shape-based network for category-level 6d object pose estimation with decoupled rotation mechanism. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021. arXiv:2103.07054.

10. X. Deng, Y. Xiang, A. Mousavian, C. Eppner, T. Bretl, and D. Fox. Self-supervised 6d object pose estimation for robot manipulation. In Proceedings of the IEEE/CVF International Conference on Robotics and Automation (ICRA), 2020. arXiv:1909.10159.

11. Z. Fan, P. Pan, P. Wang, Y. Jiang, D. Xu, H. Jiang, and Z. Wang. Pope: 6-dof promptable pose estimation of any object, in any scene, with one reference. CVPR, 2023.

12. G. Feng, T.-B. Xu, F. Liu, M. Liu, and Z. Wei. Nvr-net: Normal vector guided regression network for disentangled 6d pose estimation. IEEE Transactions on Circuits and Systems for Video Technology, 34(2):1098–1113, 2024.

13. Y. Fu and X. Wang. Category-level 6d object pose estimation in the wild: A semi-supervised learning approach and a new dataset. In Proceedings of the Conference on Neural Information Processing Systems (NeurIPS), 2022. arXiv:2206.15436.

14. G. Gao, M. Lauri, X. Hu, J. Zhang, and S. Frintrop. Cloudaae: Learning 6d object pose regression with on-line data synthesis on point clouds. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pages 11081–11087, 2021.

15. G. Gao, M. Lauri, Y. Wang, X. Hu, J. Zhang, and S. Frintrop. 6d object pose regression via supervised learning on point clouds. In 2020 IEEE International Conference on Robotics and Automation (ICRA), pages 3643–3649, 2020.

16. Y. Hai, R. Song, J. Li, and Y. Hu. Shape-constraint recurrent flow for 6d object pose estimation. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 4831–4840, 2023.

17. R. L. Haugaard and A. G. Buch. Surfemb: Dense and continuous correspondence distributions for object pose estimation with learnt surface embeddings. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 6739–6748, 2022.

18. X. He, J. Sun, Y. Wang, D. Huang, H. Bao, and X. Zhou. Onepose++: Keypoint-free one-shot object pose estimation without CAD models. In Advances in Neural Information Processing Systems, 2022.

19. Y. He, H. Huang, H. Fan, Q. Chen, and J. Sun. Ffb6d: A full flow bidirectional fusion network for 6d pose estimation. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 3002–3012, 2021.

20. Y. He, W. Sun, H. Huang, J. Liu, H. Fan, and J. Sun. Pvn3d: A deep point-wise 3d keypoints voting network for 6dof pose estimation. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 11629–11638, 2020.

21. T. Hodaň, D. Baráth, and J. Matas. Epos: Estimating 6d pose of objects with symmetries. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 11700–11709, 2020.

22. Y. Hu, P. Fua, W. Wang, and M. Salzmann. Single-stage 6d object pose estimation. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 2927–2936, 2020.

23. Y. Hu, J. Hugonot, P. Fua, and M. Salzmann. Segmentation-driven 6d object pose estimation. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 3380–3389, 2019.

24. J. Huang, Y. Shi, X. Xu, Y. Zhang, and K. Xu. Stablepose: Learning 6d object poses from geometrically stable patches. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 15217–15226, 2021.

25. S. Iwase, X. Liu, R. Khirodkar, R. Yokota, and K. M. Kitani. Repose: Fast 6d object pose refinement via deep texture rendering. In 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pages 3283–3292, 2021.

26. A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret. Transformers are rnns: Fast autoregressive transformers with linear attention. In Proceedings of the International Conference on Machine Learning (ICML), 2020.

27. W. Kehl, F. Manhardt, F. Tombari, S. Ilic, and N. Navab. Ssd-6d: Making rgb-based 3d detection and 6d pose estimation great again. In 2017 IEEE International Conference on Computer Vision (ICCV), pages 1530–1538, 2017.

28. B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drettakis. 3d gaussian splatting for real-time radiance field rendering. ACM Transactions on Graphics (SIGGRAPH), 42(4), July 2023.

29. Y. Labbe, J. Carpentier, M. Aubry, and J. Sivic. Cosypose: Consistent multi-view multi-object 6d pose estimation. In Proceedings of the European Conference on Computer Vision (ECCV), 2020.

30. J. Lee, Y. Cabon, R. Brégier, S. Yoo, and J. Revaud. Mfos: Model-free one-shot object pose estimation. AAAI, 2024.

31. F. Li, S. R. Vutukur, H. Yu, I. Shugurov, B. Busam, S. Yang, and S. Ilic. Nerf-pose: A first-reconstruct-then-regress approach for weakly-supervised 6d object pose estimation. In 2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), pages 2115–2125, 2023.

32. X. Li, H. Wang, L. Yi, L. Guibas, A. L. Abbott, and S. Song. Category-level articulated object pose estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020. arXiv:1912.11913.

33. Y. Li, Y. Mao, R. Bala, and S. Hadap. Mrc-net: 6-dof pose estimation with multiscale residual correlation. In 2024 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2024.

34. Y. Li, G. Wang, X. Ji, Y. Xiang, and D. Fox. Deepim: Deep iterative matching for 6d pose estimation. In Proceedings of the European Conference on Computer Vision (ECCV), pages 683–698, 2018.

35. Z. Li, G. Wang, and X. Ji. Cdpn: Coordinates-based disentangled pose network for real-time rgb-based 6-dof object pose estimation. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pages 7677–7686, 2019.

36. R. Lian and H. Ling. Checkerpose: Progressive dense keypoint localization for object pose estimation with graph neural network. In 2023 IEEE/CVF International Conference on Computer Vision (ICCV), pages 13976–13987, 2023.

37. J. Lin, Z. Wei, Z. Li, S. Xu, K. Jia, and Y. Li. Dualposenet: Category-level 6d object pose and size estimation using dual pose network with refined learning of pose consistency. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021. arXiv:2103.06526.

38. M. Lin, V. Murali, and S. Karaman. 6d object pose estimation with pairwise compatible geometric features. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pages 10966–10973, 2021.

39. Y. Lin, Y. Su, P. Nathan, S. Inuganti, Y. Di, M. Sundermeyer, F. Manhardt, D. Stricke, J. Rambach, and Y. Zhang. Hipose: Hierarchical binary surface encoding and correspondence pruning for rgb-d 6dof object pose estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024.

40. L. Lipson, Z. Teed, A. Goyal, and J. Deng. Coupled iterative refinement for 6d multi-object pose estimation. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 6718–6727, 2022.

41. J. Liu, W. Sun, C. Liu, X. Zhang, S. Fan, and W. Wu. Hff6d: Hierarchical feature fusion network for robust 6d object pose tracking. IEEE Transactions on Circuits and Systems for Video Technology, 32(11):7719–7731, 2022.

42. Y. Liu, Y. Wen, S. Peng, C. Lin, X. Long, T. Komura, and W. Wang. Gen6d: Generalizable model-free 6-dof object pose estimation from rgb images. In ECCV, 2022.

43. Z. Liu, Q. Wang, D. Liu, and J. Tan. Pa-pose: Partial point cloud fusion based on reliable alignment for 6d pose tracking. Pattern Recognition, 148:110151, 2024.

44. J. Mao, Y. Xue, M. Niu, et al. Voxel transformer for 3d object detection. ICCV, 2021.

45. N. Mo, W. Gan, N. Yokoya, and S. Chen. Es6d: A computation efficient and symmetry-aware 6d pose regression framework. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 6708–6717, 2022.

46. V. N. Nguyen, T. Groueix, G. Ponimatkin, Y. Hu, R. Marlet, M. Salzmann, and V. Lepetit. NOPE: Novel Object Pose Estimation from a Single Image. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024.

47. K. Park, A. Mousavian, Y. Xiang, and D. Fox. Latentfusion: End-to-end differentiable reconstruction and rendering for unseen object pose estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020.

48. K. Park, T. Patten, and M. Vincze. Pix2pose: Pixel-wise coordinate regression of objects for 6d pose estimation. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pages 7667–7676, 2019.

49. G. Pavlakos, X. Zhou, A. Chan, K. G. Derpanis, and K. Daniilidis. 6-dof object pose from semantic keypoints. In 2017 IEEE International Conference on Robotics and Automation (ICRA), pages 2011–2018, 2017.

50. S. Peng, Y. Liu, Q. Huang, X. Zhou, and H. Bao. Pvnet: Pixel-wise voting network for 6dof pose estimation. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 4556–4565, 2019.

51. M. Rad and V. Lepetit. Bb8: A scalable, accurate, robust to partial occlusion method for predicting the 3d poses of challenging objects without using depth. In 2017 IEEE International Conference on Computer Vision (ICCV), pages 3848–3856, 2017.

52. P.-E. Sarlin, D. DeTone, T. Malisiewicz, and A. Rabinovich. SuperGlue: Learning feature matching with graph neural networks. In CVPR, 2020.

53. V. Sarode, X. Li, H. Goforth, Y. Aoki, R. A. Srivatsan, S. Lucey, and H. Choset. Pcrnet: Point cloud registration network using pointnet encoding. ArXiv, abs/1908.07906, 2019.

54. I. Shugurov, S. Zakharov, and S. Ilic. Dpodv2: Dense correspondence-based 6 dof pose estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(11):7417–7435, 2022.

55. C. Song, J. Song, and Q. Huang. Hybridpose: 6d object pose estimation under hybrid representations. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 428–437, 2020.

56. Y. Su, M. Saleh, T. Fetzer, J. Rambach, N. Navab, B. Busam, D. Stricker, and F. Tombari. Zebrapose: Coarse to fine surface encoding for 6dof object pose estimation. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 6728–6738, 2022.

57. J. Sun, Z. Shen, Y. Wang, H. Bao, and X. Zhou. LoFTR: Detector-free local feature matching with transformers. CVPR, 2021.

58. J. Sun, Z. Wang, S. Zhang, X. He, H. Zhao, G. Zhang, and X. Zhou. OnePose: One-shot object pose estimation without CAD models. CVPR, 2022.

59. T. Tan and Q. Dong. Smoc-net: Leveraging camera pose for self-supervised monocular object pose estimation. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 21307–21316, 2023.

60. M. Tian, M. H. Ang Jr, and G. H. Lee. Shape prior deformation for categorical 6d object pose and size estimation. In Proceedings of the European Conference on Computer Vision (ECCV), 2020. arXiv:2007.08454.

61. M. Tyszkiewicz, P. Fua, and E. Trulls. Disk: Learning local features with policy gradient. Advances in Neural Information Processing Systems, 33, 2020.

62. C. Wang, D. Xu, Y. Zhu, R. Martín-Martín, C. Lu, L. Fei-Fei, and S. Savarese. Densefusion: 6d object pose estimation by iterative dense fusion. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 3338–3347, 2019.

63. D. Wang, G. Zhou, Y. Yan, H. Chen, and Q. Chen. Geopose: Dense reconstruction guided 6d object pose estimation with geometric consistency. IEEE Transactions on Multimedia, 24:4394–4408, 2022.

64. G. Wang, F. Manhardt, X. Liu, X. Ji, and F. Tombari. Occlusion-aware self-supervised monocular 6d object pose estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 46(3):1788–1803, 2024.

65. G. Wang, F. Manhardt, F. Tombari, and X. Ji. G dr-net: Geometry-guided direct regression network for monocular 6d object pose estimation. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 16606–16616, 2021.

66. H. Wang, S. Sridhar, J. Huang, J. Valentin, S. Song, and L. J. Guibas. Normalized object coordinate space for category-level 6d object pose and size estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019. arXiv:1901.02970.

67. T. Wang, X. Zhu, J. Pang, and D. Lin. Fcos3d: Fully convolutional one-stage monocular 3d object detection. ICCVW, 2021.

68. J. Wu, Y. Wang, and R. Xiong. Unseen object pose estimation via registration. In Proceedings of the IEEE International Conference on Real-time Computing and Robotics (RCAR), pages 1–6, 2021.

69. J. Wu, B. Zhou, R. Russell, V. Kee, S. Wagner, M. Hebert, A. Torralba, and D. M. Johnson. Real-time object pose estimation with pose interpreter networks. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 6798–6805, 2018.

70. Y. Wu, M. Zand, A. Etemad, and M. Greenspan. Vote from the center: 6 dof pose estimation in rgb-d images by radial keypoint voting. In European Conference on Computer Vision (ECCV). Springer, 2022.

71. Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox. Posecnn: A convolutional neural network for 6d object pose estimation in cluttered scenes. RSS, 2018.

72. L. Xu, H. Qu, Y. Cai, and J. Liu. 6d-diff: A keypoint diffusion framework for 6d object pose estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9676–9686, 2024.

73. Q. Xu, Y. Zhou, W. Wang, C. R. Qi, and D. Anguelov. Spg: Unsupervised domain adaptation for 3d object detection via semantic point generation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 15446–15456, 2021.

74. Y. Xu, K.-Y. Lin, G. Zhang, X. Wang, and H. Li. Rnnpose: 6-dof object pose estimation via recurrent correspondence field estimation and pose optimization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 46(7):4669–4683, 2024.

75. H. Yisheng, W. Yao, F. Haoqiang, C. Qifeng, and S. Jian. Fs6d: Few-shot 6d pose estimation of novel objects. CVPR, 2022.

76. Z. Zhang, W. Chen, L. Zheng, A. Leonardis, and H. J. Chang. Trans6d: Transformer-based 6d object pose estimation and refinement. In L. Karlinsky, T. Michaeli, and K. Nishino, editors, Computer Vision – ECCV 2022 Workshops, pages 112–128, Cham, 2023. Springer Nature Switzerland.

77. C. Zhao, Y. Hu, and M. Salzmann. Locposenet: Robust location prior for unseen object pose estimation. International Conference on 3D Vision, 2024.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95036-
dc.description.abstract我們提出了一種新方法,能夠從單張RGB圖像準確估計新物體的6自由度(6DoF)姿態。我們的方法巧妙地結合了2D-3D關鍵點的對應和透過渲染比較來優化姿態。具體來說,我們首先使用現有的物體檢測技術檢測輸入圖像中的目標物體,然後通過2D-3D關鍵點匹配來估計初始的6DoF姿態。最後,我們利用3D高斯渲染技術,通過比較渲染圖像與輸入圖像來精細化優化物體的姿態。我們的方法結合了基於點雲模型的2D-3D關鍵點對應和基於3D高斯點的渲染模型,並實現了高效的可微渲染技術。實驗結果顯示,我們的方法在LINEMOD、YCB-V和OnePose-LowTexture等數據集上表現出色,尤其適用於實景和室內場景中的應用。zh_TW
dc.description.abstractWe introduce a new method for accurately estimating the 6DoF pose of new objects from a single RGB image. Our approach cleverly integrates 2D-3D keypoint correspondences and utilizes rendering comparisons to optimize the pose. Specifically, we first employ existing object detection techniques to detect the target object in the input image. Next, we estimate the initial 6DoF pose using 2D-3D keypoint matching. Finally, we refine the object's pose using 3D Gaussian rendering techniques by comparing rendered images with the input image. Our method combines 2D-3D keypoint correspondences based on point cloud models and utilizes 3D Gaussian rendering models, implementing efficient differentiable rendering techniques. Experimental results demonstrate the effectiveness of our approach on datasets such as LINEMOD, YCB-V, and OnePose-LowTexture, particularly in real-world and indoor settings.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-26T16:22:30Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-26T16:22:30Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i
Acknowledgements ii
摘要 iii
Abstract iv
Contents v
List of Figures viii
Chapter 1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Chapter 2 Related Works 6
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Instance-Level 6Dof Object Pose Estimation . . . . . . . . . . . . . 8
2.2.1 Regression-Based Methods . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1.1 Geometry-Guided Regression . . . . . . . . . . . . . . 9
2.2.1.2 Direct Regression Methods . . . . . . . . . . . . . . . 11
2.2.2 Keypoint-based methods . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2.1 Sparse Correspondence Methods . . . . . . . . . . . . 12
2.2.2.2 Dense Correspondence Methods . . . . . . . . . . . . 14
2.3 Category-Level 6Dof Object Pose Estimation . . . . . . . . . . . . . 16
2.4 Unseen 6Dof Object Pose Estimation . . . . . . . . . . . . . . . . . 17
2.4.1 Keypoints matching-based methods . . . . . . . . . . . . . . . . . 18
2.4.2 render-and-compare method . . . . . . . . . . . . . . . . . . . . . 20

Chapter 3 Methods 22
3.1 Overview of Our Method . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Reconstructed SfM Point Cloud . . . . . . . . . . . . . . . . . . . . 24
3.3 2D3D Keypoints Matching . . . . . . . . . . . . . . . . . . . . . . 25
3.3.1 Coarse 2D3D Matching . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.2 Fine Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.3 Handling Novel Objects . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Gaussian Splatting Refinement . . . . . . . . . . . . . . . . . . . . . 29
3.4.1 Optimization Procedure . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.2 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.3 Optimization Strategy . . . . . . . . . . . . . . . . . . . . . . . . . 31

Chapter 4 Experiments 32
4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Benchmark Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.1 OnePose Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.2 LINEMOD Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.3 YCBVideo Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.4 OnePoseLowTexture Dataset . . . . . . . . . . . . . . . . . . . . 34
4.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.1 Average Distance Metric (ADD) . . . . . . . . . . . . . . . . . . . 36
4.3.2 Average Distance Metric for Symmetric Objects (ADDS) . . . . . 37
4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4.1 Result on LINEMOD Dataset . . . . . . . . . . . . . . . . . . . . . 37
4.4.2 Result on OnePoseLowTexture Dataset . . . . . . . . . . . . . . . 38
4.4.3 Result on YCBVideo Dataset . . . . . . . . . . . . . . . . . . . . 39

Chapter 5 Conclusion 41
References 42
-
dc.language.isoen-
dc.subject單張 RGB 影像zh_TW
dc.subject6D 姿態估計zh_TW
dc.subject2D-3D 特徵點匹配zh_TW
dc.subject可微渲染zh_TW
dc.subjectDifferentiable renderingen
dc.subject2D-3D keypoint matchingen
dc.subjectSingle RGB imageen
dc.subject6DoF pose estimationen
dc.title基於 RGB 圖像中新物體的 6D 姿態估計zh_TW
dc.title6D Pose Estimation of Novel Objects Based on RGB Imagesen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張明清;陳駿丞zh_TW
dc.contributor.oralexamcommitteeMing-Ching Chang;Jun-Cheng Chenen
dc.subject.keyword6D 姿態估計,單張 RGB 影像,可微渲染,2D-3D 特徵點匹配,zh_TW
dc.subject.keyword6DoF pose estimation,Single RGB image,Differentiable rendering,2D-3D keypoint matching,en
dc.relation.page52-
dc.identifier.doi10.6342/NTU202403279-
dc.rights.note未授權-
dc.date.accepted2024-08-13-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept資訊工程學系-
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
24.9 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved