請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95034完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李世光 | zh_TW |
| dc.contributor.advisor | Chih-Kung Lee | en |
| dc.contributor.author | 徐暐傑 | zh_TW |
| dc.contributor.author | Wei-Chieh Hsu | en |
| dc.date.accessioned | 2024-08-26T16:21:55Z | - |
| dc.date.available | 2024-08-27 | - |
| dc.date.copyright | 2024-08-26 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-10 | - |
| dc.identifier.citation | [1] V. Bali, "Atomizer Market Report 2024," 2024.
[2] H. Hinterbichler, H. Steiner, and G. Brenn, "Self-similar pressure-atomized sprays," Journal of Fluid Mechanics, vol. 889, p. A17, 2020. [3] S. Ryan, A. Gerber, and A. Holloway, "A computational study of sprays produced by rotary cage atomizers," Transactions of the ASABE, vol. 55, no. 4, pp. 1133-1148, 2012. [4] P. Gogate and R. Khaire, "Use of ultrasonic atomization for encapsulation and other processes in food and pharmaceutical manufacturing," in Power ultrasonics: Elsevier, 2023, pp. 773-794. [5] K.-M. Quan, G. J. Dechert, L. Wen, L. R. Morrison, R. E. Pegoli, and S. R. Glassmeyer, "Ultrasonic spray apparatus to coat a substrate," ed: Google Patents, 2008. [6] T. Kudo, K. Sekiguchi, K. Sankoda, N. Namiki, and S. Nii, "Effect of ultrasonic frequency on size distributions of nanosized mist generated by ultrasonic atomization," Ultrasonics sonochemistry, vol. 37, pp. 16-22, 2017. [7] S. Nii, "Ultrasonic Atomization," Handbook of Ultrasonics and Sonochemistry, 2016. [8] R. J. Lang, "Ultrasonic atomization of liquids," The journal of the acoustical society of America, vol. 34, no. 1, pp. 6-8, 1962. [9] M. Alvarez, J. Friend, and L. Y. Yeo, "Rapid generation of protein aerosols and nanoparticles via surface acoustic wave atomization," Nanotechnology, vol. 19, no. 45, p. 455103, 2008. [10] M. Kurosawa, T. Watanabe, A. Futami, and T. Higuchi, "Surface acoustic wave atomizer," Sensors and Actuators A: Physical, vol. 50, no. 1-2, pp. 69-74, 1995. [11] Q.-Y. Huang, Y. Le, H. Hu, Z.-j. Wan, J. Ning, and J.-L. Han, "Experimental research on surface acoustic wave microfluidic atomization for drug delivery," Scientific Reports, vol. 12, no. 1, p. 7930, 2022. [12] J. R. Friend, L. Y. Yeo, D. R. Arifin, and A. Mechler, "Evaporative self-assembly assisted synthesis of polymeric nanoparticles by surface acoustic wave atomization," Nanotechnology, vol. 19, no. 14, p. 145301, 2008. [13] A. M. Gañán-Calvo, "Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams," Physical review letters, vol. 80, no. 2, p. 285, 1998. [14] J. Grace and J. Marijnissen, "A review of liquid atomization by electrical means," Journal of aerosol science, vol. 25, no. 6, pp. 1005-1019, 1994. [15] L. Y. Yeo, D. Lastochkin, S.-C. Wang, and H.-C. Chang, "A new ac electrospray mechanism by Maxwell-Wagner polarization and capillary resonance," Physical review letters, vol. 92, no. 13, p. 133902, 2004. [16] S. Ueha, N. Maehara, and E. Mori, "Mechanism of ultrasonic atomization using a multipinhole plate," Journal of the Acoustical Society of Japan (E), vol. 6, no. 1, pp. 21-26, 1985. [17] G. Forde, J. Friend, and T. Williamson, "Straightforward biodegradable nanoparticle generation through megahertz-order ultrasonic atomization," Applied physics letters, vol. 89, no. 6, 2006. [18] A. Yule and Y. Al–Suleimani, "On droplet formation from capillary waves on a vibrating surface," Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 456, no. 1997, pp. 1069-1085, 2000. [19] A. James, B. Vukasinovic, M. K. Smith, and A. Glezer, "Vibration-induced drop atomization and bursting," Journal of Fluid Mechanics, vol. 476, pp. 1-28, 2003. [20] J. Wiegmann, S. Beuermann, and A. P. Weber, "Influence of Spray Drying Parameters on the Formation of β‐Phase Poly (vinylidene fluoride)," Chemie Ingenieur Technik, vol. 93, no. 8, pp. 1300-1306, 2021. [21] A. Priyadarshi et al., "New insights into the mechanism of ultrasonic atomization for the production of metal powders in additive manufacturing," Additive Manufacturing, vol. 83, p. 104033, 2024. [22] B. Vukasinovic, M. K. Smith, and A. Glezer, "Dynamics of a sessile drop in forced vibration," Journal of Fluid Mechanics, vol. 587, pp. 395-423, 2007. [23] K.-y. Hashimoto and K.-Y. Hashimoto, Surface acoustic wave devices in telecommunications. Springer, 2000. [24] M. K. Tan, J. R. Friend, and L. Y. Yeo, "Microparticle collection and concentration via a miniature surface acoustic wave device," Lab on a Chip, vol. 7, no. 5, pp. 618-625, 2007. [25] A. Wixforth, C. Strobl, C. Gauer, A. Toegl, J. Scriba, and Z. v Guttenberg, "Acoustic manipulation of small droplets," Analytical and bioanalytical chemistry, vol. 379, pp. 982-991, 2004. [26] R. Shilton, M. K. Tan, L. Y. Yeo, and J. R. Friend, "Particle concentration and mixing in microdrops driven by focused surface acoustic waves," Journal of Applied Physics, vol. 104, no. 1, 2008. [27] M. K. Tan, J. R. Friend, and L. Y. Yeo, "Direct visualization of surface acoustic waves along substrates using smoke particles," Applied Physics Letters, vol. 91, no. 22, 2007. [28] A. Wixforth, "Acoustically driven planar microfluidics," Superlattices and microstructures, vol. 33, no. 5-6, pp. 389-396, 2003. [29] H. Li, J. R. Friend, and L. Y. Yeo, "A scaffold cell seeding method driven by surface acoustic waves," Biomaterials, vol. 28, no. 28, pp. 4098-4104, 2007. [30] R. M. White and F. W. Voltmer, "Direct piezoelectric coupling to surface elastic waves," Applied physics letters, vol. 7, no. 12, pp. 314-316, 1965. [31] N. Zhang et al., "Microliter ultrafast centrifuge platform for size-based particle and cell separation and extraction using novel omnidirectional spiral surface acoustic waves," Lab on a Chip, vol. 21, no. 5, pp. 904-915, 2021. [32] "Surface acoustic wave resonator global market analysis," p. 147, 2021. [33] M. Intelligence, "Nebulizer Market Size and Share Analysis - Growth Trends and Forecasts," 2019. [34] L. Rayleigh, "On waves propagated along the plane surface of an elastic solid," Proceedings of the London mathematical Society, vol. 1, no. 1, pp. 4-11, 1885. [35] J. Friend and L. Y. Yeo, "Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics," Reviews of Modern Physics, vol. 83, no. 2, pp. 647-704, 2011. [36] K. F. Graff, Wave motion in elastic solids. Courier Corporation, 2012. [37] V. IA, "Rayleigh and Lamb waves: physical theory and applications," Moscow: Acoustics Institute, Academy of Science of the USSR, 1967. [38] B. A. Bolt, "Nuclear explosions and earthquakes. The parted vail," 1976. [39] X. Zhang, "A novel sensitive cell-based Love Wave biosensor for marine toxin detection," Biosensors and Bioelectronics, vol. 77, pp. 573-579, 2016. [40] S.-H. RHEE, "The Lamb Wave Equation in a Composite Plate with Anisotropy," Journal of the Korea Institute of Military Science and Technology, pp. 126-132, 2010. [41] 吳朗, "電子陶瓷: 壓電陶瓷," 全欣, 1994. [42] J. P. B. G.A. Borrero, S.F. Mora, S. Velásquez, F.E. Segura-Quijano, "Design and fabrication of SAW pressure, temperature and impedance sensors using novel multiphysics simulation models," Sensors and Actuators A: Physical, vol. 203, pp. 204-214, 2013. [43] F. S. Hickernell, "DC Voltage Effects on SAW Device Interdigital Electrodes," 15th International Reliability Physics Symposium, pp. 144-148, 1977. [44] H. JAFFE, "Piezoelectric ceramics," Journal of the American Ceramic Society, vol. 41.11, pp. 494-498, 1958. [45] E. Fukada and I. Yasuda, "On the piezoelectric effect of bone," Journal of the physical society of Japan, vol. 12, no. 10, pp. 1158-1162, 1957. [46] J. Yang, An introduction to the theory of piezoelectricity. Springer, 2005. [47] H. Paul, "Vibrations of circular cylindrical shells of piezoelectric silver iodide crystals," The Journal of the Acoustical Society of America, vol. 40, no. 5, pp. 1077-1080, 1966. [48] S. Barbaid, J. Duclos, and M. Leduc, "Circular interdigital transducers," Journal of applied physics, vol. 68, no. 2, pp. 466-473, 1990. [49] J. Wang, H. Hu, A. Ye, J. Chen, and P. Zhang, "Experimental investigation of surface acoustic wave atomization," Sensors and Actuators A: Physical, vol. 238, pp. 1-7, 2016. [50] C. Eckart, "Vortices and streams caused by sound waves," Physical review, vol. 73, no. 1, p. 68, 1948. [51] T. M. Squires and S. R. Quake, "Microfluidics: Fluid physics at the nanoliter scale," Reviews of modern physics, vol. 77, no. 3, pp. 977-1026, 2005. [52] M. Alghane, B. Chen, Y. Q. Fu, Y. Li, J. Luo, and A. Walton, "Experimental and numerical investigation of acoustic streaming excited by using a surface acoustic wave device on a 128° YX-LiNbO3 substrate," Journal of micromechanics and Microengineering, vol. 21, no. 1, p. 015005, 2010. [53] W. L. M. Nyborg, "Acoustic streaming," in Physical acoustics, vol. 2: Elsevier, 1965, pp. 265-331. [54] J. Lighthill, "Acoustic streaming," Journal of sound and vibration, vol. 61, no. 3, pp. 391-418, 1978. [55] T. Uchida, T. Suzuki, and S. Shiokawa, "Investigation of acoustic streaming excited by surface acoustic waves," in 1995 IEEE Ultrasonics Symposium. Proceedings. An International Symposium, 1995, vol. 2: IEEE, pp. 1081-1084. [56] J. J. Campbell and W. R. Jones, "Propagation of surface waves at the boundary between a piezoelectric crystal and a fluid medium," IEEE Transactions on Sonics and Ultrasonics, vol. 17, no. 2, pp. 71-76, 1970. [57] D. J. Collins, O. Manor, A. Winkler, H. Schmidt, J. R. Friend, and L. Y. Yeo, "Atomization off thin water films generated by high-frequency substrate wave vibrations," Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, vol. 86, no. 5, p. 056312, 2012. [58] G. Scheuch, M. J. Kohlhaeufl, P. Brand, and R. Siekmeier, "Clinical perspectives on pulmonary systemic and macromolecular delivery," Advanced drug delivery reviews, vol. 58, no. 9-10, pp. 996-1008, 2006. [59] A. Qi, J. R. Friend, L. Y. Yeo, D. A. Morton, M. P. McIntosh, and L. Spiccia, "Miniature inhalation therapy platform using surface acoustic wave microfluidic atomization," Lab on a Chip, vol. 9, no. 15, pp. 2184-2193, 2009. [60] P. M. Morse and K. U. Ingard, Theoretical acoustics. Princeton university press, 1986. [61] A. Qi, L. Y. Yeo, and J. R. Friend, "Interfacial destabilization and atomization driven by surface acoustic waves," Physics of Fluids, vol. 20, no. 7, 2008. [62] K. Nakamura, Ultrasonic transducers. Woodhead publishing Oxford, UK: , 2012. [63] M. Gröschl, "Ultrasonic separation of suspended particles-Part I: Fundamentals," Acta Acustica united with Acustica, vol. 84, no. 3, pp. 432-447, 1998. [64] Y. Ai and B. L. Marrone, "Droplet translocation by focused surface acoustic waves," Microfluidics and nanofluidics, vol. 13, pp. 715-722, 2012. [65] A. G. Bailey, "Electrostatic atomization of liquids," Science Progress (1933-), pp. 555-581, 1974. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95034 | - |
| dc.description.abstract | 本研究旨在開發一種在不鏽鋼環盤上產生徑向雷利波的新型環型表面聲波致動元件,此設計不同於以往的單向表面聲波裝置,透過環形的結構設計以及環形指叉電極,在不鏽鋼表面上產生向心的徑向表面聲波。本研究使用有限元素法來分析不同環寬下、不同厚度下和不同指叉電極對數下對雷利波產生的影響及放大倍率進行研究。根據本研究的設計,發現使用不鏽鋼層1.5 mm厚度以上的環型表面聲波元件可在7.26 MHz的驅動頻率下在不鏽鋼表面產生徑向雷利波,由外向內的表面聲波會向中心匯聚,並在內表面處振幅會逐漸增強,接著透過有限元素法模擬這種表面聲波會以雷利角34.43∘輻射進液滴中並產生聲流力,此機制可在液滴表面產生霧化之效果。本研究從分析中整理出壓電層環寬並不會影響振幅放大比例,而隨著不鏽鋼層環寬變長,振幅放大比例則會增大,並且不鏽鋼內徑越靠近中心時,振幅放大比例會增得越快。此外,電極對數會影響位移大小,當電極對數越多時,位移則會越大,從雷利波產生區至圓中心的振幅可以達到4.85倍。本研究總結環型表面聲波致動元件的最佳設計方法,以供使用者可以以最有效率的方法依所需驅動頻率設計出環形表面聲波元件。 | zh_TW |
| dc.description.abstract | This study aims to develop a new annular surface acoustic wave (SAW) actuator that generates radial Rayleigh waves on a stainless-steel ring disk. This design is different from the standard unidirectional SAW devices. This device has a unique annular structural design and annular interdigitated electrodes, which can generate centripetal radial surface acoustic waves on the stainless-steel surface. To study the effectiveness of this design, the finite element method is used to analyze the effect and magnification of the amplification ratio and displacement on the generation of Rayleigh waves under different ring widths, thicknesses, and pairs of interdigital electrodes. It was found that when using an annular surface acoustic wave element with a stainless steel thickness of more than 1.5 mm, radial Rayleigh waves can be generated on the surface of stainless steel at a driving frequency of 7.26 MHz. The surface acoustic waves can be activated from the outer ring and propagate toward the center of the stainless-steel ring disk. The amplitude at the inner surface will gradually increase. Based on the finding of the finite element analysis, this surface acoustic wave will radiate into a droplet at a Rayleigh angle of 34.43∘with a concentric acoustic force. This mechanism can produce an acoustic atomization effect on the droplet surface. In summary, this study concludes that the ring width of the piezoelectric layer does not affect the amplification ratio. As the ring width of the stainless-steel ring dish becomes longer, the amplification ratio also increases. Furthermore, when the inner diameter of the stainless steel is closer to the center, the amplitude amplification ratio will increase. In addition, the number of electrode pairs can affect the amplitude of the displacement at center. More electrode pairs can have a larger displacement and amplitude from the Rayleigh wave generation area to the central region. The amplification ratio can be 4.85 times. Lastly, this study also summarizes the best design criteria for ring-shaped SAW actuators so that users can follow this guidance to design a ring-shaped surface acoustic wave devices. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-26T16:21:55Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-26T16:21:55Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii ABSTRACT iii 目次 v 圖次 viii 表次 xii 第1章 緒論 1 1.1 霧化器產業趨勢 1 1.2 研究背景 2 1.3 研究動機 3 1.4 文獻回顧 4 1.4.1 流體霧化技術 4 1.4.2 表面聲波應用於流體霧化 7 1.4.3 表面聲波元件市場分析 12 1.4.4 藥用霧化器市場分析 13 1.5 論文架構 14 第2章 表面波元件介紹 15 2.1 表面聲波原理 15 2.1.1 簡介 15 2.1.2 固體中的聲波 16 2.2 表面聲波元件 19 2.2.1 表面聲波元件工作原理 19 2.2.2 壓電材料選擇 19 2.2.3 指叉換能器設計原理 21 第3章 理論推導 24 3.1 壓電效應 24 3.2 統御理論推導 25 3.2.1 壓電物性組成律 25 3.2.2 統御方程式推導 29 3.3 液滴霧化理論分析 36 3.3.1 表面聲波霧化機制 36 3.3.2 液滴中的聲流力 37 3.3.3 液滴特徵尺寸和激勵頻率 40 第4章 霧化器裝置設計 42 4.1 設計理念 42 4.2 設計架構 44 4.3 結構設計 44 4.3.1 霧化器結構設計 44 4.3.2 材料選擇 46 4.3.3 指叉電極設計 47 4.3.4 驅動頻設計 50 4.3.5 霧化器設計 51 第5章 有限元素模擬與分析 52 5.1 有限元素模型之建立與參數設定 52 5.1.1 頻域響應分析 56 5.1.2 暫態分析 59 5.2 液滴內部聲波模型 60 5.2.1 液滴內部聲波模型之建立 60 5.2.2 結果與討論 62 5.3 液滴霧化模型 64 5.3.1 液滴霧化模型之建立 64 5.3.2 結果與討論 67 第6章 霧化器元件製程 69 6.1 光罩製作 69 6.2 製程技術 70 6.3 製程結果與討論 79 第7章 設計流程分析與驗證 82 7.1 表面聲波元件參數設計 82 7.2 表面聲波元件模擬與驗證 83 7.2.1 不鏽鋼層不同厚度之參數設計 83 7.2.2 不同不鏽鋼層厚度之模擬與結果討論 85 7.2.3 不鏽鋼層不同環寬之參數設計 87 7.2.4 不鏽鋼層不同環寬之模擬結果與討論 89 7.2.5 壓電層不同環寬之參數設計 91 7.2.6 壓電層不同環寬之模擬結果與討論 97 7.2.7 振幅放大比例因子As比較與討論 102 7.2.8 表面聲波元件設計流程 103 7.2.9 表面聲波元件驗證與討論 104 第8章 結果與未來展望 110 8.1 結論 110 8.2 未來展望 111 REFERENCES 112 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 霧化器 | zh_TW |
| dc.subject | 雷利波 | zh_TW |
| dc.subject | 徑向表面聲波 | zh_TW |
| dc.subject | 表面聲波元件 | zh_TW |
| dc.subject | 環形壓電致動器 | zh_TW |
| dc.subject | SAW device | en |
| dc.subject | radial-type surface acoustic waves | en |
| dc.subject | a piezoelectric actuator ring | en |
| dc.subject | Rayleigh wave | en |
| dc.subject | atomization | en |
| dc.title | 利用環形壓電致動器產生供霧化用表面聲波之研究 | zh_TW |
| dc.title | Study on the generation of surface acoustic waves using a ring-type piezoelectric actuator for atomization | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 許聿翔 | zh_TW |
| dc.contributor.coadvisor | Yu-Hsiang Hsu | en |
| dc.contributor.oralexamcommittee | 吳文中;謝志文;柯文清 | zh_TW |
| dc.contributor.oralexamcommittee | Wen-Jong Wu;Chih-Wen Hsieh;Wen-Ching Ko | en |
| dc.subject.keyword | 表面聲波元件,徑向表面聲波,環形壓電致動器,雷利波,霧化器, | zh_TW |
| dc.subject.keyword | SAW device,radial-type surface acoustic waves,a piezoelectric actuator ring,Rayleigh wave,atomization, | en |
| dc.relation.page | 116 | - |
| dc.identifier.doi | 10.6342/NTU202403091 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-13 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
| dc.date.embargo-lift | 2026-09-01 | - |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 此日期後於網路公開 2026-09-01 | 7.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
