請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95032完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃正雅 | zh_TW |
| dc.contributor.advisor | Cheng-Ya Huang | en |
| dc.contributor.author | 洪郁婷 | zh_TW |
| dc.contributor.author | Yu-Ting Hung | en |
| dc.date.accessioned | 2024-08-26T16:21:20Z | - |
| dc.date.available | 2024-08-27 | - |
| dc.date.copyright | 2024-08-26 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-10 | - |
| dc.identifier.citation | 1. Broen MP, Narayen NE, Kuijf ML, Dissanayaka NN, Leentjens AF. Prevalence of anxiety in Parkinson's disease: A systematic review and meta-analysis. Mov Disord. 2016;31(8):1125-33; https://doi.org/10.1002/mds.26643
2. Walsh K, Bennett G. Parkinson's disease and anxiety. Postgrad Med J. 2001;77(904):89-93; https://doi.org/10.1136/pmj.77.904.89 3. Coakeley S, Martens KE, Almeida QJ. Management of anxiety and motor symptoms in Parkinson's disease. Expert Rev Neurother. 2014;14(8):937-46; https://doi.org/10.1586/14737175.2014.936388 4. Ghielen I, Koene P, Twisk JW, Kwakkel G, van den Heuvel OA, van Wegen EE. The association between freezing of gait, fear of falling and anxiety in Parkinson's disease: a longitudinal analysis. Neurodegener Dis Manag. 2020;10(3):159-68; https://doi.org/10.2217/nmt-2019-0028 5. Siemers ER, Shekhar A, Quaid K, Dickson H. Anxiety and motor performance in Parkinson's disease. Mov Disord. 1993;8(4):501-6; https://doi.org/10.1002/mds.870080415 6. Hanna KK, Cronin-Golomb A. Impact of anxiety on quality of life in Parkinson's disease. Parkinsons Dis. 2012;2012:640707; https://doi.org/10.1155/2012/640707 7. Deane KH, Flaherty H, Daley DJ, Pascoe R, Penhale B, Clarke CE, et al. Priority setting partnership to identify the top 10 research priorities for the management of Parkinson's disease. BMJ Open. 2014;4(12):e006434; https://doi.org/10.1136/bmjopen-2014-006434 8. Quek DYL, Economou K, MacDougall H, Lewis SJG, Ehgoetz Martens KA. Validating a seated virtual reality threat paradigm for inducing anxiety and freezing of gait in Parkinson's disease. J Parkinsons Dis. 2021;11(3):1443-54; https://doi.org/10.3233/jpd-212619 9. Pontone GM, Mills KA. Optimal treatment of depression and anxiety in Parkinson's disease. Am J Geriatr Psychiatry. 2021;29(6):530-40; https://doi.org/10.1016/j.jagp.2021.02.037 10. Ferreira RM, Alves WMGdC, Lima TAd, Alves TGG, Alves Filho PAM, Pimentel CP, et al. The effect of resistance training on the anxiety symptoms and quality of life in elderly people with Parkinson's disease: a randomized controlled trial. Arquivos de neuro-psiquiatria. 2018;76:499-506; 11. Kwok JYY, Kwan JCY, Auyeung M, Mok VCT, Lau CKY, Choi KC, Chan HYL. Effects of mindfulness yoga vs stretching and resistance training exercises on anxiety and depression for people with Parkinson disease: A randomized clinical trial. JAMA Neurol. 2019;76(7):755-63; https://doi.org/10.1001/jamaneurol.2019.0534 12. Moonen AJH, Mulders AEP, Defebvre L, Duits A, Flinois B, Köhler S, et al. Cognitive behavioral therapy for anxiety in Parkinson's disease: A randomized controlled trial. Mov Disord. 2021;36(11):2539-48; https://doi.org/10.1002/mds.28533 13. Doruk D, Gray Z, Bravo GL, Pascual-Leone A, Fregni F. Effects of tDCS on executive function in Parkinson's disease. Neurosci Lett. 2014;582:27-31; https://doi.org/10.1016/j.neulet.2014.08.043 14. Bremner JD, Gurel NZ, Wittbrodt MT, Shandhi MH, Rapaport MH, Nye JA, et al. Application of noninvasive vagal nerve stimulation to stress-related psychiatric disorders. J Pers Med. 2020;10(3); https://doi.org/10.3390/jpm10030119 15. Noble LJ, Meruva VB, Hays SA, Rennaker RL, Kilgard MP, McIntyre CK. Vagus nerve stimulation promotes generalization of conditioned fear extinction and reduces anxiety in rats. Brain Stimul. 2019;12(1):9-18; https://doi.org/10.1016/j.brs.2018.09.013 16. Shivaswamy T, Souza RR, Engineer CT, McIntyre CK. Vagus nerve stimulation as a treatment for fear and anxiety in individuals with autism spectrum disorder. J Psychiatr Brain Sci. 2022;7(4); https://doi.org/10.20900/jpbs.20220007 17. Yap JYY, Keatch C, Lambert E, Woods W, Stoddart PR, Kameneva T. Critical review of transcutaneous vagus nerve stimulation: challenges for translation to clinical practice. Front Neurosci. 2020;14:284; https://doi.org/10.3389/fnins.2020.00284 18. Howland RH. Vagus nerve stimulation. Current Behavioral Neuroscience Reports. 2014;1(2):64-73; https://doi.org/10.1007/s40473-014-0010-5 19. Khodaparast N, Hays SA, Sloan AM, Hulsey DR, Ruiz A, Pantoja M, et al. Vagus nerve stimulation during rehabilitative training improves forelimb strength following ischemic stroke. Neurobiol Dis. 2013;60:80-8; https://doi.org/10.1016/j.nbd.2013.08.002 20. Meyers EC, Solorzano BR, James J, Ganzer PD, Lai ES, Rennaker RL, 2nd, et al. Vagus nerve stimulation enhances stable plasticity and generalization of stroke recovery. Stroke. 2018;49(3):710-7; https://doi.org/10.1161/strokeaha.117.019202 21. Kasten M, Kertelge L, Brüggemann N, van der Vegt J, Schmidt A, Tadic V, et al. Nonmotor symptoms in genetic Parkinson disease. Arch Neurol. 2010;67(6):670-6; https://doi.org/10.1001/archneurol.67.6.670 22. Prediger RD, Matheus FC, Schwarzbold ML, Lima MM, Vital MA. Anxiety in Parkinson's disease: a critical review of experimental and clinical studies. Neuropharmacology. 2012;62(1):115-24; https://doi.org/10.1016/j.neuropharm.2011.08.039 23. Ray S, Agarwal P. Depression and anxiety in Parkinson disease. Clin Geriatr Med. 2020;36(1):93-104; https://doi.org/10.1016/j.cger.2019.09.012 24. Zung WW. A rating instrument for anxiety disorders. Psychosomatics. 1971;12(6):371-9; https://doi.org/10.1016/s0033-3182(71)71479-0 25. Barone P, Antonini A, Colosimo C, Marconi R, Morgante L, Avarello TP, et al. The PRIAMO study: A multicenter assessment of nonmotor symptoms and their impact on quality of life in Parkinson's disease. Mov Disord. 2009;24(11):1641-9; https://doi.org/10.1002/mds.22643 26. Duncan GW, Khoo TK, Yarnall AJ, O'Brien JT, Coleman SY, Brooks DJ, et al. Health-related quality of life in early Parkinson's disease: the impact of nonmotor symptoms. Mov Disord. 2014;29(2):195-202; https://doi.org/10.1002/mds.25664 27. Hughes TA, Ross HF, Mindham RH, Spokes EG. Mortality in Parkinson's disease and its association with dementia and depression. Acta Neurol Scand. 2004;110(2):118-23; https://doi.org/10.1111/j.1600-0404.2004.00292.x 28. Burn DJ, Landau S, Hindle JV, Samuel M, Wilson KC, Hurt CS, Brown RG. Parkinson's disease motor subtypes and mood. Mov Disord. 2012;27(3):379-86; https://doi.org/10.1002/mds.24041 29. Ehgoetz Martens KA, Lefaivre SC, Beck EN, Chow R, Pieruccini-Faria F, Ellard CG, Almeida QJ. Anxiety provokes balance deficits that are selectively dopa-responsive in Parkinson's disease. Neuroscience. 2017;340:436-44; https://doi.org/10.1016/j.neuroscience.2016.11.011 30. Jazaeri SZ, Azad A, Mehdizadeh H, Habibi SA, Mandehgary Najafabadi M, Saberi ZS, et al. The effects of anxiety and external attentional focus on postural control in patients with Parkinson's disease. PLoS One. 2018;13(2):e0192168; https://doi.org/0.1371/journal.pone.0192168 31. Ehgoetz Martens KA, Silveira CRA, Intzandt BN, Almeida QJ. Overload from anxiety: A non-motor cause for gait impairments in Parkinson's disease. J Neuropsychiatry Clin Neurosci. 2018;30(1):77-80; https://doi.org/10.1176/appi.neuropsych.16110298 32. Dissanayaka NNW, Lawson RA, Yarnall AJ, Duncan GW, Breen DP, Khoo TK, et al. Anxiety is associated with cognitive impairment in newly-diagnosed Parkinson's disease. Parkinsonism Relat Disord. 2017;36:63-8; https://doi.org/10.1016/j.parkreldis.2017.01.001 33. Foster PS, Drago V, Yung RC, Skidmore FM, Skoblar B, Shenal BV, et al. Anxiety affects working memory only in left hemibody onset Parkinson disease patients. Cogn Behav Neurol. 2010;23(1):14-8; https://doi.org/10.1097/WNN.0b013e3181cc8be9 34. Prell T. Structural and functional brain patterns of non-motor syndromes in Parkinson's disease. Front Neurol. 2018;9:138; https://doi.org/10.3389/fneur.2018.00138 35. Shiba Y, Santangelo AM, Roberts AC. Beyond the medial regions of prefrontal cortex in the regulation of fear and anxiety. Front Syst Neurosci. 2016;10:12; https://doi.org/10.3389/fnsys.2016.00012 36. Wang X, Zhang J, Yuan Y, Li T, Zhang L, Ding J, et al. Cerebral metabolic change in Parkinson's disease patients with anxiety: A FDG-PET study. Neurosci Lett. 2017;653:202-7; https://doi.org/10.1016/j.neulet.2017.05.062 37. Perepezko K, Naaz F, Wagandt C, Dissanayaka NN, Mari Z, Nanavati J, et al. Anxiety in Parkinson's disease: A systematic review of neuroimaging studies. J Neuropsychiatry Clin Neurosci. 2021;33(4):280-94; https://doi.org/10.1176/appi.neuropsych.20110272 38. Aftanas LI, Pavlov SV, Reva NV, Varlamov AA. Trait anxiety impact on the EEG theta band power changes during appraisal of threatening and pleasant visual stimuli. Int J Psychophysiol. 2003;50(3):205-12; https://doi.org/10.1016/s0167-8760(03)00156-9 39. Oathes DJ, Ray WJ, Yamasaki AS, Borkovec TD, Castonguay LG, Newman MG, Nitschke J. Worry, generalized anxiety disorder, and emotion: Evidence from the EEG gamma band. Biological psychology. 2008;79(2):165-70; 40. Betrouni N, Alazard E, Bayot M, Carey G, Derambure P, Defebvre L, et al. Anxiety in Parkinson's disease: A resting-state high density EEG study. Neurophysiol Clin. 2022;52(3):202-11; https://doi.org/10.1016/j.neucli.2022.01.001 41. Iyer KK, Au TR, Angwin AJ, Copland DA, Dissanayaka NN. Theta and gamma connectivity is linked with affective and cognitive symptoms in Parkinson's disease. J Affect Disord. 2020;277:875-84; https://doi.org/10.1016/j.jad.2020.08.086 42. Leentjens AF, Dujardin K, Marsh L, Martinez-Martin P, Richard IH, Starkstein SE, et al. Anxiety rating scales in Parkinson's disease: critique and recommendations. Mov Disord. 2008;23(14):2015-25; https://doi.org/10.1002/mds.22233 43. Beck AT, Epstein N, Brown G, Steer RA. An inventory for measuring clinical anxiety: psychometric properties. J Consult Clin Psychol. 1988;56(6):893-7; https://doi.org/10.1037//0022-006x.56.6.893 44. Leentjens AF, Dujardin K, Pontone GM, Starkstein SE, Weintraub D, Martinez-Martin P. The Parkinson Anxiety Scale (PAS): development and validation of a new anxiety scale. Mov Disord. 2014;29(8):1035-43; https://doi.org/10.1002/mds.25919 45. Bjelland I, Dahl AA, Haug TT, Neckelmann D. The validity of the Hospital Anxiety and Depression Scale. An updated literature review. J Psychosom Res. 2002;52(2):69-77; https://doi.org/10.1016/s0022-3999(01)00296-3 46. Olssøn I, Mykletun A, Dahl AA. The Hospital Anxiety and Depression Rating Scale: a cross-sectional study of psychometrics and case finding abilities in general practice. BMC Psychiatry. 2005;5:46; https://doi.org/10.1186/1471-244x-5-46 47. Hamilton M. The assessment of anxiety states by rating. Br J Med Psychol. 1959;32(1):50-5; https://doi.org/10.1111/j.2044-8341.1959.tb00467.x 48. Yang HJ, Ahn JH, Lee J, Lee WK, Lee J, Kim Y. Measuring anxiety in patients with early-stage Parkinson's disease: Rasch analysis of the state-trait anxiety inventory. Front Neurol. 2019;10:49; https://doi.org/10.3389/fneur.2019.00049 49. Thomas PE, Korr IM. Relationship between sweat gland activity and electrical resistance of the skin. J Appl Physiol. 1957;10(3):505-10; https://doi.org/10.1152/jappl.1957.10.3.505 50. Friedman BH. An autonomic flexibility-neurovisceral integration model of anxiety and cardiac vagal tone. Biol Psychol. 2007;74(2):185-99; https://doi.org/10.1016/j.biopsycho.2005.08.009 51. Thayer JF, Friedman BH, Borkovec TD. Autonomic characteristics of generalized anxiety disorder and worry. Biol Psychiatry. 1996;39(4):255-66; https://doi.org/10.1016/0006-3223(95)00136-0 52. Dutkiewicz J, Friedman A. [Diagnosis of autonomic disorders in Parkinson's disease]. Wiad Lek. 2020;73(4):809-13; 53. Figner B, Murphy RO. Using skin conductance in judgment and decision making research. A handbook of process tracing methods for decision research: A critical review and user's guide. Society for Judgment and Decision Making series. New York, NY, US: Psychology Press; 2011. p. 163-84. 54. Frith CD, Allen HA. The skin conductance orienting response as an index of attention. Biol Psychol. 1983;17(1):27-39; https://doi.org/10.1016/0301-0511(83)90064-9 55. Wang CA, Baird T, Huang J, Coutinho JD, Brien DC, Munoz DP. Arousal effects on pupil size, heart rate, and skin conductance in an emotional face task. Front Neurol. 2018;9:1029; https://doi.org/10.3389/fneur.2018.01029 56. Hyde J, Ryan KM, Waters AM. Psychophysiological markers of fear and anxiety. Curr Psychiatry Rep. 2019;21(7):56; https://doi.org/10.1007/s11920-019-1036-x 57. Ehgoetz Martens KA, Ellard CG, Almeida QJ. Evaluating the link between dopaminergic treatment, gait impairment, and anxiety in Parkinson's disease. Mov Disord Clin Pract. 2016;3(4):389-94; https://doi.org/10.1002/mdc3.12298 58. Howe ES. GSR conditioning in anxiety states, normals, and chronic functional schizophrenic subjects. J Abnorm Psychol. 1958;56(2):183-9; https://doi.org/10.1037/h0047365 59. Otto MW, Moshier SJ, Kinner DG, Simon NM, Pollack MH, Orr SP. De novo fear conditioning across diagnostic groups in the affective disorders: evidence for learning impairments. Behav Ther. 2014;45(5):619-29; https://doi.org/10.1016/j.beth.2013.12.012 60. Pasman E, Murnaghan C, Bloem B, Carpenter M. Balance problems with Parkinson's disease: are they anxiety-dependent? Neuroscience. 2011;177:283-91; 61. Mazilu S, Calatroni A, Gazit E, Mirelman A, Hausdorff JM, Tröster G. Prediction of freezing of gait in Parkinson's from physiological wearables: An exploratory study. IEEE J Biomed Health Inform. 2015;19(6):1843-54; https://doi.org/10.1109/jbhi.2015.2465134 62. Carey G, Görmezoğlu M, de Jong JJA, Hofman PAM, Backes WH, Dujardin K, Leentjens AFG. Neuroimaging of anxiety in Parkinson's disease: A systematic review. Mov Disord. 2021;36(2):327-39; https://doi.org/10.1002/mds.28404 63. Dan R, Růžička F, Bezdicek O, Růžička E, Roth J, Vymazal J, et al. Separate neural representations of depression, anxiety and apathy in Parkinson's disease. Sci Rep. 2017;7(1):12164; https://doi.org/10.1038/s41598-017-12457-6 64. Hartley CA, Phelps EA. Changing fear: the neurocircuitry of emotion regulation. Neuropsychopharmacology. 2010;35(1):136-46; https://doi.org/10.1038/npp.2009.121 65. Roy AK, Shehzad Z, Margulies DS, Kelly AM, Uddin LQ, Gotimer K, et al. Functional connectivity of the human amygdala using resting state fMRI. Neuroimage. 2009;45(2):614-26; https://doi.org/10.1016/j.neuroimage.2008.11.030 66. Volkmann J, Daniels C, Witt K. Neuropsychiatric effects of subthalamic neurostimulation in Parkinson disease. Nat Rev Neurol. 2010;6(9):487-98; https://doi.org/10.1038/nrneurol.2010.111 67. Picillo M, Santangelo G, Erro R, Cozzolino A, Amboni M, Vitale C, et al. Association between dopaminergic dysfunction and anxiety in de novo Parkinson's disease. Parkinsonism Relat Disord. 2017;37:106-10; https://doi.org/10.1016/j.parkreldis.2017.02.010 68. Erro R, Pappatà S, Amboni M, Vicidomini C, Longo K, Santangelo G, et al. Anxiety is associated with striatal dopamine transporter availability in newly diagnosed untreated Parkinson's disease patients. Parkinsonism Relat Disord. 2012;18(9):1034-8; https://doi.org/10.1016/j.parkreldis.2012.05.022 69. Remy P, Doder M, Lees A, Turjanski N, Brooks D. Depression in Parkinson's disease: loss of dopamine and noradrenaline innervation in the limbic system. Brain. 2005;128(Pt 6):1314-22; https://doi.org/10.1093/brain/awh445 70. Thobois S, Prange S, Sgambato-Faure V, Tremblay L, Broussolle E. Imaging the etiology of apathy, anxiety, and depression in Parkinson's disease: implication for treatment. Curr Neurol Neurosci Rep. 2017;17(10):76; https://doi.org/10.1007/s11910-017-0788-0 71. Stacy MA, Murck H, Kroenke K. Responsiveness of motor and nonmotor symptoms of Parkinson disease to dopaminergic therapy. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34(1):57-61; https://doi.org/10.1016/j.pnpbp.2009.09.023 72. Iruela LM, Ibañez-Rojo V, Palanca I, Caballero L. Anxiety disorders and Parkinson's disease. Am J Psychiatry. 1992;149(5):719-20; 73. Bari BA, Chokshi V, Schmidt K. Locus coeruleus-norepinephrine: basic functions and insights into Parkinson's disease. Neural Regen Res. 2020;15(6):1006-13; https://doi.org/10.4103/1673-5374.270297 74. McCall JG, Al-Hasani R, Siuda ER, Hong DY, Norris AJ, Ford CP, Bruchas MR. CRH engagement of the locus coeruleus noradrenergic system mediates stress-induced anxiety. Neuron. 2015;87(3):605-20; https://doi.org/10.1016/j.neuron.2015.07.002 75. Zhu K, van Hilten JJ, Marinus J. Onset and evolution of anxiety in Parkinson's disease. Eur J Neurol. 2017;24(2):404-11; https://doi.org/10.1111/ene.13217 76. Schrag A, Politis M. Serotonergic loss underlying apathy in Parkinson's disease. Brain. 2016;139(Pt 9):2338-9; https://doi.org/10.1093/brain/aww190 77. Arango V, Underwood MD, Boldrini M, Tamir H, Kassir SA, Hsiung S, et al. Serotonin 1A receptors, serotonin transporter binding and serotonin transporter mRNA expression in the brainstem of depressed suicide victims. Neuropsychopharmacology. 2001;25(6):892-903; https://doi.org/10.1016/s0893-133x(01)00310-4 78. Maillet A, Krack P, Lhommée E, Météreau E, Klinger H, Favre E, et al. The prominent role of serotonergic degeneration in apathy, anxiety and depression in de novo Parkinson's disease. Brain. 2016;139(Pt 9):2486-502; https://doi.org/10.1093/brain/aww162 79. Nutt DJ, Malizia AL. New insights into the role of the GABA(A)-benzodiazepine receptor in psychiatric disorder. Br J Psychiatry. 2001;179:390-6; https://doi.org/10.1192/bjp.179.5.390 80. Kalueff AV, Nutt DJ. Role of GABA in anxiety and depression. Depress Anxiety. 2007;24(7):495-517; https://doi.org/10.1002/da.20262 81. Cryan JF, Kaupmann K. Don't worry 'B' happy!: a role for GABA(B) receptors in anxiety and depression. Trends Pharmacol Sci. 2005;26(1):36-43; https://doi.org/10.1016/j.tips.2004.11.004 82. Murueta-Goyena A, Andikoetxea A, Gómez-Esteban JC, Gabilondo I. Contribution of the GABAergic system to non-motor manifestations in premotor and early stages of Parkinson's disease. Front Pharmacol. 2019;10:1294; https://doi.org/10.3389/fphar.2019.01294 83. Zhang H, Qiu Y, Luo Y, Xu P, Li Z, Zhu W, et al. The relationship of anxious and depressive symptoms in Parkinson's disease with voxel-based neuroanatomical and functional connectivity measures. J Affect Disord. 2019;245:580-8; https://doi.org/10.1016/j.jad.2018.10.364 84. Nakano K. Neural circuits and topographic organization of the basal ganglia and related regions. Brain Dev. 2000;22 Suppl 1:S5-16; https://doi.org/10.1016/s0387-7604(00)00139-x 85. Caetano MJ, Gobbi LT, Sánchez-Arias Mdel R, Stella F, Gobbi S. Effects of postural threat on walking features of Parkinson's disease patients. Neurosci Lett. 2009;452(2):136-40; https://doi.org/10.1016/j.neulet.2009.01.053 86. Almeida QJ, Lebold CA. Freezing of gait in Parkinson's disease: a perceptual cause for a motor impairment? J Neurol Neurosurg Psychiatry. 2010;81(5):513-8; https://doi.org/10.1136/jnnp.2008.160580 87. Ehgoetz Martens KA, Ellard CG, Almeida QJ. Does anxiety cause freezing of gait in Parkinson's disease? Plos one. 2014;9(9):e106561; 88. Richard IH, McDermott MP, Kurlan R, Lyness JM, Como PG, Pearson N, et al. A randomized, double-blind, placebo-controlled trial of antidepressants in Parkinson disease. Neurology. 2012;78(16):1229-36; https://doi.org/10.1212/WNL.0b013e3182516244 89. Suranyi-Cadotte BE, Nestoros JN, Nair NP, Lal S, Gauthier S. Parkinsonism induced by high doses of diazepam. Biol Psychiatry. 1985;20(4):455-7; https://doi.org/10.1016/0006-3223(85)90048-4 90. Oehlberg K, Barg FK, Brown GK, Taraborelli D, Stern MB, Weintraub D. Attitudes regarding the etiology and treatment of depression in Parkinson's disease: a qualitative study. J Geriatr Psychiatry Neurol. 2008;21(2):123-32; https://doi.org/10.1177/0891988708316862 91. Thompson-Hollands J, Sauer-Zavala S, Barlow DH. CBT and the future of personalized treatment: a proposal. Depress Anxiety. 2014;31(11):909-11; https://doi.org/10.1002/da.22301 92. Yang S, Sajatovic M, Walter BL. Psychosocial interventions for depression and anxiety in Parkinson's disease. J Geriatr Psychiatry Neurol. 2012;25(2):113-21; https://doi.org/10.1177/0891988712445096 93. Reynolds GO, Saint-Hilaire M, Thomas CA, Barlow DH, Cronin-Golomb A. Cognitive-behavioral therapy for anxiety in Parkinson's disease. Behav Modif. 2020;44(4):552-79; https://doi.org/10.1177/0145445519838828 94. Beck EN, Wang MTY, Intzandt BN, Almeida QJ, Ehgoetz Martens KA. Sensory focused exercise improves anxiety in Parkinson's disease: A randomized controlled trial. PLoS One. 2020;15(4):e0230803; https://doi.org/10.1371/journal.pone.0230803 95. Kurtis MM, Rajah T, Delgado LF, Dafsari HS. The effect of deep brain stimulation on the non-motor symptoms of Parkinson's disease: a critical review of the current evidence. NPJ Parkinsons Dis. 2017;3:16024; https://doi.org/10.1038/npjparkd.2016.24 96. Chang C, Li N, Wu Y, Geng N, Ge S, Wang J, et al. Associations between bilateral subthalamic nucleus deep brain stimulation (STN-DBS) and anxiety in Parkinson's disease patients: a controlled study. J Neuropsychiatry Clin Neurosci. 2012;24(3):316-25; https://doi.org/10.1176/appi.neuropsych.11070170 97. Zhang F, Wang F, Li C-H, Wang J-W, Han C-L, Fan S-Y, et al. Therapeutic effects of subthalamic nucleus deep brain stimulation on anxiety and depression in Parkinson’s disease patients. Journal of Neurorestoratology. 2022;10(1):31-42; https://doi.org/10.26599/JNR.2022.9040004 98. Zoon TJC, van Rooijen G, Balm G, Bergfeld IO, Daams JG, Krack P, et al. Apathy induced by subthalamic nucleus deep brain stimulation in Parkinson's disease: A meta-analysis. Mov Disord. 2021;36(2):317-26; https://doi.org/10.1002/mds.28390 99. Mishra BR, Sarkar S, Praharaj SK, Mehta VS, Diwedi S, Nizamie SH. Repetitive transcranial magnetic stimulation in psychiatry. Ann Indian Acad Neurol. 2011;14(4):245-51; https://doi.org/10.4103/0972-2327.91935 100. Pal E, Nagy F, Aschermann Z, Balazs E, Kovacs N. The impact of left prefrontal repetitive transcranial magnetic stimulation on depression in Parkinson's disease: a randomized, double-blind, placebo-controlled study. Mov Disord. 2010;25(14):2311-7; https://doi.org/10.1002/mds.23270 101. Epstein CM, Evatt ML, Funk A, Girard-Siqueira L, Lupei N, Slaughter L, et al. An open study of repetitive transcranial magnetic stimulation in treatment-resistant depression with Parkinson's disease. Clin Neurophysiol. 2007;118(10):2189-94; https://doi.org/10.1016/j.clinph.2007.07.010 102. Shiozawa P, Leiva AP, Castro CD, da Silva ME, Cordeiro Q, Fregni F, Brunoni AR. Transcranial direct current stimulation for generalized anxiety disorder: a case study. Biol Psychiatry. 2014;75(11):e17-8; https://doi.org/10.1016/j.biopsych.2013.07.014 103. Heeren A, Billieux J, Philippot P, De Raedt R, Baeken C, de Timary P, et al. Impact of transcranial direct current stimulation on attentional bias for threat: a proof-of-concept study among individuals with social anxiety disorder. Soc Cogn Affect Neurosci. 2017;12(2):251-60; https://doi.org/10.1093/scan/nsw119 104. Orrù G, Baroni M, Cesari V, Conversano C, Hitchcott PK, Gemignani A. The effect of single and repeated tDCS sessions on motor symptoms in Parkinson's disease: a systematic review. Arch Ital Biol. 2019;157(2-3):89-101; https://doi.org/10.12871/00039829201925 105. Feng XJ, Huang YT, Huang YZ, Kuo CW, Peng CW, Rotenberg A, et al. Early transcranial direct current stimulation treatment exerts neuroprotective effects on 6-OHDA-induced Parkinsonism in rats. Brain Stimul. 2020;13(3):655-63; https://doi.org/10.1016/j.brs.2020.02.002 106. Johnson RL, Wilson CG. A review of vagus nerve stimulation as a therapeutic intervention. J Inflamm Res. 2018;11:203-13; https://doi.org/10.2147/jir.S163248 107. Jiang Y, Cao Z, Ma H, Wang G, Wang X, Wang Z, et al. Auricular vagus nerve stimulation exerts antiinflammatory effects and immune regulatory function in a 6-OHDA model of Parkinson's disease. Neurochem Res. 2018;43(11):2155-64; https://doi.org/10.1007/s11064-018-2639-z 108. George MS, Ward HE, Jr., Ninan PT, Pollack M, Nahas Z, Anderson B, et al. A pilot study of vagus nerve stimulation (VNS) for treatment-resistant anxiety disorders. Brain Stimul. 2008;1(2):112-21; https://doi.org/10.1016/j.brs.2008.02.001 109. Wittbrodt MT, Gurel NZ, Nye JA, Shandhi MMH, Gazi AH, Shah AJ, et al. Noninvasive cervical vagal nerve stimulation alters brain activity during traumatic stress in individuals with posttraumatic stress disorder. Psychosom Med. 2021;83(9):969-77; https://doi.org/10.1097/psy.0000000000000987 110. Morris R, Yarnall AJ, Hunter H, Taylor JP, Baker MR, Rochester L. Noninvasive vagus nerve stimulation to target gait impairment in Parkinson's disease. Mov Disord. 2019;34(6):918-9; https://doi.org/10.1002/mds.27664 111. Mondal B, Choudhury S, Banerjee R, Roy A, Chatterjee K, Basu P, et al. Non-invasive vagus nerve stimulation improves clinical and molecular biomarkers of Parkinson's disease in patients with freezing of gait. NPJ Parkinsons Dis. 2021;7(1):46; https://doi.org/10.1038/s41531-021-00190-x 112. Yakunina N, Kim SS, Nam EC. Optimization of transcutaneous vagus nerve stimulation using functional MRI. Neuromodulation. 2017;20(3):290-300; https://doi.org/10.1111/ner.12541 113. Kutlu N, Özden AV, Alptekin HK, Alptekin J. The impact of auricular vagus nerve stimulation on pain and life quality in patients with fibromyalgia syndrome. Biomed Res Int. 2020;2020:8656218; https://doi.org/10.1155/2020/8656218 114. Liu A, Rong P, Gong L, Song L, Wang X, Li L, Wang Y. Efficacy and safety of treatment with transcutaneous vagus nerve stimulation in 17 patients with refractory epilepsy evaluated by electroencephalogram, seizure frequency, and quality of life. Med Sci Monit. 2018;24:8439-48; https://doi.org/10.12659/msm.910689 115. Braak H, Del Tredici K, Bratzke H, Hamm-Clement J, Sandmann-Keil D, Rüb U. Staging of the intracerebral inclusion body pathology associated with idiopathic Parkinson's disease (preclinical and clinical stages). J Neurol. 2002;249 Suppl 3:Iii/1-5; https://doi.org/10.1007/s00415-002-1301-4 116. Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry. 1992;55(3):181-4; https://doi.org/10.1136/jnnp.55.3.181 117. Dubois B, Burn D, Goetz C, Aarsland D, Brown RG, Broe GA, et al. Diagnostic procedures for Parkinson's disease dementia: recommendations from the movement disorder society task force. Mov Disord. 2007;22(16):2314-24; https://doi.org/10.1002/mds.21844 118. Post B, van den Heuvel L, van Prooije T, van Ruissen X, van de Warrenburg B, Nonnekes J. Young onset Parkinson's Disease: a modern and tailored approach. J Parkinsons Dis. 2020;10(s1):S29-S36; https://doi.org/10.3233/jpd-202135 119. Bjelland I, Dahl AA, Haug TT, Neckelmann D. The validity of the Hospital Anxiety and Depression Scale: an updated literature review. J Psychosom Res. 2002;52(2):69-77; https://doi.org/10.1016/s0022-3999(01)00296-3 120. Li X, Hamdy R, Sandborn W, Chi D, Dyer A. Long-term effects of antidepressants on balance, equilibrium, and postural reflexes. Psychiatry Res. 1996;63(2-3):191-6; https://doi.org/10.1016/0165-1781(96)02878-8 121. Brown LA, Polych MA, Doan JB. The effect of anxiety on the regulation of upright standing among younger and older adults. Gait Posture. 2006;24(4):397-405; https://doi.org/10.1016/j.gaitpost.2005.04.013 122. Beckley D, Panzer V, Remler M, Ilog L, Bloem B. Clinical correlates of motor performance during paced postural tasks in Parkinson's disease. J Neurol Sci. 1995;132(2):133-8; https://doi.org/10.1016/0022-510x(95)00130-t 123. Duncan PW, Weiner DK, Chandler J, Studenski S. Functional reach: a new clinical measure of balance. J Gerontol. 1990;45(6):M192-7; https://doi.org/10.1093/geronj/45.6.m192 124. Brauer S, Burns Y, Galley P. Lateral reach: a clinical measure of medio-lateral postural stability. Physiother Res Int. 1999;4(2):81-8; https://doi.org/10.1002/pri.155 125. Tantisuwat A, Chamonchant D, Boonyong S. Multi-directional reach test: An investigation of the limits of stability of people aged between 20-79 years. J Phys Ther Sci. 2014;26(6):877-80; https://doi.org/10.1589/jpts.26.877 126. Takahashi T, Ishida K, Yamamoto H, Takata J, Nishinaga M, Doi Y, et al. Modification of the functional reach test: analysis of lateral and anterior functional reach in community-dwelling older people. Arch Gerontol Geriatr. 2006;42(2):167-73; https://doi.org/10.1016/j.archger.2005.06.010 127. Hogan N. An organizing principle for a class of voluntary movements. J Neurosci. 1984;4(11):2745-54; https://doi.org/10.1523/JNEUROSCI.04-11-02745.1984 128. Maetzler W, Mancini M, Liepelt-Scarfone I, Müller K, Becker C, Van Lummel RC, et al. Impaired trunk stability in individuals at high risk for Parkinson's disease. PLoS One. 2012;7(3):e32240; https://doi.org/10.1371/journal.pone.0032240 129. Wang M, Wang J, Cui X, Wang T, Jiang T, Gao F, Cao J. Multidimensional feature optimization based eye blink detection under epileptiform discharges. IEEE Trans Neural Syst Rehabil Eng. 2022;30:905-14; https://doi.org/10.1109/tnsre.2022.3164126 130. Mennes M, Wouters H, Vanrumste B, Lagae L, Stiers P. Validation of ICA as a tool to remove eye movement artifacts from EEG/ERP. Psychophysiology. 2010;47(6):1142-50; https://doi.org/10.1111/j.1469-8986.2010.01015.x 131. Plöchl M, Ossandón JP, König P. Combining EEG and eye tracking: identification, characterization, and correction of eye movement artifacts in electroencephalographic data. Front Hum Neurosci. 2012;6:278; https://doi.org/10.3389/fnhum.2012.00278 132. Faria MH, Simieli L, Rietdyk S, Penedo T, Santinelli FB, Barbieri FA. (A)symmetry during gait initiation in people with Parkinson's disease: A motor and cortical activity exploratory study. Front Aging Neurosci. 2023;15:1142540; https://doi.org/10.3389/fnagi.2023.1142540 133. Yu SH, Wu RM, Huang CY. Attentional resource associated with visual feedback on a postural dual task in Parkinson's disease. Neurorehabil Neural Repair. 2020;34(10):891-903; https://doi.org/10.1177/1545968320948071 134. Takakusaki K. Functional neuroanatomy for posture and gait control. J Mov Disord. 2017;10(1):1-17; https://doi.org/10.14802/jmd.16062 135. Jollife IT, Cadima J. Principal component analysis: A review and recent developments. Philos Trans R Soc A Math Phys Eng Sci. 2016;374(2065):20150202; https://doi.org/10.1098/rsta.2015.0202 136. Martens Ehgoetz KA, Lefaivre SC, Beck EN, Chow R, Pieruccini-Faria F, Ellard CG, et al. Anxiety provokes balance deficits that are selectively dopa-responsive in Parkinson’s disease. Neuroscience. 2017;340:436-44; https://doi.org/10.1016/j.neuroscience.2016.11.011 137. Dijkstra BW, Gilat M, Cofré Lizama LE, Mancini M, Bergmans B, Verschueren SMP, Nieuwboer A. Impaired weight-shift amplitude in people with Parkinson's disease with freezing of gait. J Parkinsons Dis. 2021;11(3):1367-80; https://doi.org/10.3233/jpd-202370 138. Yang YR, Lee YY, Cheng SJ, Lin PY, Wang RY. Relationships between gait and dynamic balance in early Parkinson's disease. Gait Posture. 2008;27(4):611-5; https://doi.org/10.1016/j.gaitpost.2007.08.003 139. Maki B, McIlroy W. Influence of arousal and attention on the control of postural sway. J Vestib Res. 1996;6(1):53-9; 140. Wada M, Sunaga N, Nagai M. Anxiety affects the postural sway of the antero-posterior axis in college students. Neurosci lett. 2001;302(2-3):157-9; https://doi.org/10.1016/s0304-3940(01)01662-7 141. Eysenck MW, Derakshan N, Santos R, Calvo MG. Anxiety and cognitive performance: attentional control theory. Emotion. 2007;7(2):336; https://doi.org/10.1037/1528-3542.7.2.336 142. Baker K, Rochester L, Nieuwboer A. The effect of cues on gait variability--reducing the attentional cost of walking in people with Parkinson's disease. Parkinsonism Relat Disord. 2008;14(4):314-20; https://doi.org/10.1016/j.parkreldis.2007.09.008 143. Blaauwendraat C, Levy Berg A, Gyllensten AL. One-year follow-up of basic body awareness therapy in patients with posttraumatic stress disorder. A small intervention study of effects on movement quality, PTSD symptoms, and movement experiences. Physiother Theory Pract. 2017;33(7):515-26; https://doi.org/10.1080/09593985.2017.1325957 144. Maki BE, Holliday PJ, Topper AK. A prospective study of postural balance and risk of falling in an ambulatory and independent elderly population. J Gerontol. 1994;49(2):M72-84; https://doi.org/10.1093/geronj/49.2.m72 145. Carpenter MG, Bloem BR. Postural control in Parkinson patients: a proprioceptive problem? Exp Neurol. 2011;227(1):26-30; https://doi.org/10.1016/j.expneurol.2010.11.007 146. Boonstra TA, Schouten AC, van Vugt JP, Bloem BR, van der Kooij H. Parkinson's disease patients compensate for balance control asymmetry. J Neurophysiol. 2014;112(12):3227-39; https://doi.org/10.1152/jn.00813.2013 147. Sheikh M, Azarpazhooh MR, Hosseini HA. Randomized comparison trial of gait training with and without compelled weight-shift therapy in individuals with chronic stroke. Clin Rehabil. 2015;30(11):1088-96; https://doi.org/10.1177/0269215515611467 148. Doyon J. Skill learning. Int Rev Neurobiol. 1997;41:273-94; https://doi.org/10.1016/s0074-7742(08)60356-6 149. Morenilla L, Márquez G, Sánchez JA, Bello O, López-Alonso V, Fernández-Lago H, et al. Postural stability and cognitive performance of subjects with Parkinson’s disease during a dual-task in an upright stance. Front Psychol. 2020;11:1256; https://doi.org/10.3389/fpsyg.2020.01256 150. Graydon MM, Linkenauger SA, Teachman BA, Proffitt DR. Scared stiff: the influence of anxiety on the perception of action capabilities. Cogn Emot. 2012;26(7):1301-15; https://doi.org/10.1080/02699931.2012.667391 151. Wulf G, Chiviacowsky S, Lewthwaite R. Altering mindset can enhance motor learning in older adults. Psychol Aging. 2012;27(1):14-21; https://doi.org/10.1037/a0025718 152. Raghavachari S, Lisman JE, Tully M, Madsen JR, Bromfield E, Kahana MJ. Theta oscillations in human cortex during a working-memory task: evidence for local generators. J Neurophysiol. 2006;95(3):1630-8; https://doi.org/10.1152/jn.00409.2005 153. Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Brain Res Rev. 1999;29(2-3):169-95; https://doi.org/10.1016/s0165-0173(98)00056-3 154. Gebel A, Lehmann T, Granacher U. Balance task difficulty affects postural sway and cortical activity in healthy adolescents. Exp Brain Res. 2020;238(5):1323-33; https://doi.org/10.1007/s00221-020-05810-1 155. Maurer U, Brem S, Liechti M, Maurizio S, Michels L, Brandeis D. Frontal midline theta reflects individual task performance in a working memory task. Brain Topogr. 2015;28:127-34; https://doi.org/10.1007/s10548-014-0361-y 156. Schmidt B, Kanis H, Holroyd CB, Miltner WH, Hewig J. Anxious gambling: anxiety is associated with higher frontal midline theta predicting less risky decisions. Psychophysiology. 2018;55(10):e13210; https://doi.org/10.1111/psyp.13210 157. Rozengurt R, Barnea A, Uchida S, Levy DA. Theta EEG neurofeedback benefits early consolidation of motor sequence learning. Psychophysiology. 2016;53(7):965-73; https://doi.org/10.1111/psyp.12656 158. Van Der Cruijsen J, Manoochehri M, Jonker ZD, Andrinopoulou E-R, Frens MA, Ribbers GM, et al. Theta but not beta power is positively associated with better explicit motor task learning. Neuroimage. 2021;240:118373; https://doi.org/10.1016/j.neuroimage.2021.118373 159. Tobias S. Test anxiety: Interference, defective skills, and cognitive capacity. Educ Psychol. 1985;20(3):135-42; https://doi.org/10.1207/s15326985ep2003_3 160. Müller MM, Keil A, Gruber T, Elbert T. Processing of affective pictures modulates right-hemispheric gamma band EEG activity. Clin Neurophysiol. 1999;110(11):1913-20; https://doi.org/10.1016/s1388-2457(99)00151-0 161. Slobounov S, Fukada K, Simon R, Rearick M, Ray W. Neurophysiological and behavioral indices of time pressure effects on visuomotor task performance. Brain Res Cogn Brain Res. 2000;9(3):287-98; https://doi.org/10.1016/s0926-6410(00)00009-4 162. Assem M, Hart MG, Coelho P, Romero-Garcia R, McDonald A, Woodberry E, et al. High gamma activity distinguishes frontal cognitive control regions from adjacent cortical networks. Cortex. 2023;159:286-98; https://doi.org/10.1016/j.cortex.2022.12.007 163. Crowell AL, Ryapolova-Webb ES, Ostrem JL, Galifianakis NB, Shimamoto S, Lim DA, et al. Oscillations in sensorimotor cortex in movement disorders: an electrocorticography study. Brain. 2012;135(2):615-30; https://doi.org/10.1093/brain/awr332 164. Jenkinson N, Kühn AA, Brown P. γ oscillations in the human basal ganglia. Exp Neurol. 2013;245:72-6; https://doi.org/10.1016/j.expneurol.2012.07.005 165. Heid C, Mouraux A, Treede R-D, Schuh-Hofer S, Rupp A, Baumgärtner U. Early gamma-oscillations as correlate of localized nociceptive processing in primary sensorimotor cortex. J Neurophysiol. 2020;123(5):1711-26; https://doi.org/10.1152/jn.00444.2019 166. Spooner RK, Wiesman AI, Proskovec AL, Heinrichs‐Graham E, Wilson TW. Prefrontal theta modulates sensorimotor gamma networks during the reorienting of attention. Hum Brain Mapp. 2020;41(2):520-9; https://doi.org/10.1002/hbm.24819 167. Frangos E, Ellrich J, Komisaruk BR. Non-invasive access to the vagus nerve central projections via electrical stimulation of the external ear: fMRI evidence in humans. Brain Stimul. 2015;8(3):624-36; https://doi.org/10.1016/j.brs.2014.11.018 168. Sluka KA, Walsh D. Transcutaneous electrical nerve stimulation: basic science mechanisms and clinical effectiveness. J Pain. 2003;4(3):109-21; https://doi.org/10.1054/jpai.2003.434 169. Farmer AD, Strzelczyk A, Finisguerra A, Gourine AV, Gharabaghi A, Hasan A, et al. International consensus based review and recommendations for minimum reporting standards in research on transcutaneous vagus nerve stimulation (version 2020). Front Hum Neurosci. 2020;14:568051; https://doi.org/10.3389/fnhum.2020.568051 170. Geršak G, Drnovšek J. Electrodermal activity patient simulator. PLoS One. 2020;15(2):e0228949; https://doi.org/10.1371/journal.pone.0228949 171. Ramos JB, Duarte GS, Bouça-Machado R, Fabbri M, Mestre TA, Costa J, et al. The Role of architecture and design in the management of Parkinson's disease: A systematic review. J Parkinsons Dis. 2020;10(4):1301-14; https://doi.org/10.3233/jpd-202035 172. McKinlay A, Grace RC, Dalrymple-Alford JC, Roger D. Characteristics of executive function impairment in Parkinson's disease patients without dementia. J Int Neuropsychol Soc. 2010;16(2):268-77; https://doi.org/10.1017/s1355617709991299 173. Hickman DC, Metz NE. The impact of pressure on performance: Evidence from the PGA TOUR. Journal of Economic Behavior & Organization. 2015;116:319-30; https://doi.org/10.1016/j.jebo.2015.04.007 174. Beaudreau SA, O'Hara R. The association of anxiety and depressive symptoms with cognitive performance in community-dwelling older adults. Psychol Aging. 2009;24(2):507-12; https://doi.org/10.1037/a0016035 175. Corbetta M, Patel G, Shulman GL. The reorienting system of the human brain: from environment to theory of mind. Neuron. 2008;58(3):306-24; https://doi.org/10.1016/j.neuron.2008.04.017 176. Aniwattanapong D, List JJ, Ramakrishnan N, Bhatti GS, Jorge R. Effect of vagus nerve stimulation on attention and working memory in neuropsychiatric disorders: A systematic review. Neuromodulation. 2022;25(3):343-55; https://doi.org/10.1016/j.neurom.2021.11.009 177. Lewine JD, Paulson K, Bangera N, Simon BJ. Exploration of the impact of brief noninvasive vagal nerve stimulation on EEG and event-related potentials. Neuromodulation. 2019;22(5):564-72; https://doi.org/10.1111/ner.12864 178. Gurtubay IG, Perez-Rodriguez DR, Fernandez E, Librero-Lopez J, Calvo D, Bermejo P, et al. Immediate effects and duration of a short and single application of transcutaneous auricular vagus nerve stimulation on P300 event related potential. Front Neurosci. 2023;17:1096865; https://doi.org/10.3389/fnins.2023.1096865 179. Polich J. Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol. 2007;118(10):2128-48; https://doi.org/10.1016/j.clinph.2007.04.019 180. Mathew E, Tabet MN, Robertson NM, Hays SA, Rennaker RL, Kilgard MP, et al. Vagus nerve stimulation produces immediate dose-dependent anxiolytic effect in rats. J Affect Disord. 2020;265:552-7; https://doi.org/10.1016/j.jad.2019.11.090 181. Kim JS, Kim DY, Jo HJ, Hwang YH, Song JY, Yang KI, Hong SB. Effect of long-term treatment with vagus nerve stimulation on mood and quality of life in Korean patients with drug-resistant epilepsy. J Clin Neurol. 2021;17(3):385-92; https://doi.org/10.3988/jcn.2021.17.3.385 182. Jacobs SC, Friedman R, Parker JD, Tofler GH, Jimenez AH, Muller JE, et al. Use of skin conductance changes during mental stress testing as an index of autonomic arousal in cardiovascular research. Am Heart J. 1994;128(6 Pt 1):1170-7; https://doi.org/10.1016/0002-8703(94)90748-x 183. Landers DM. The arousal-performance relationship revisited. Res Q Exerc Sport. 1980;51(1):77-90; https://doi.org/10.1080/02701367.1980.10609276 184. Santarnecchi E, Biasella A, Tatti E, Rossi A, Prattichizzo D, Rossi S. High-gamma oscillations in the motor cortex during visuo-motor coordination: A tACS interferential study. Brain Res Bull. 2017;131:47-54; https://doi.org/10.1016/j.brainresbull.2017.03.006 185. Aoki F, Fetz EE, Shupe L, Lettich E, Ojemann GA. Increased gamma-range activity in human sensorimotor cortex during performance of visuomotor tasks. Clin Neurophysiol. 1999;110(3):524-37; https://doi.org/10.1016/s1388-2457(98)00064-9 186. Tatti E, Cacciola A, Carrara F, Luciani A, Quartarone A, Ghilardi MF. Movement-related ERS and connectivity in the gamma frequency decrease with practice. Neuroimage. 2023;284:120444; https://doi.org/10.1016/j.neuroimage.2023.120444 187. Madhavan R, Millman D, Tang H, Crone NE, Lenz FA, Tierney TS, et al. Decrease in gamma-band activity tracks sequence learning. Front Syst Neurosci. 2014;8:222; https://doi.org/10.3389/fnsys.2014.00222 188. Schoenberg PLA. Linear and nonlinear EEG-based functional networks in anxiety disorders. Adv Exp Med Biol. 2020;1191:35-59; https://doi.org/10.1007/978-981-32-9705-0_3 189. Jonasson SB, Nilsson MH, Lexell J. Psychometric properties of the original and short versions of the Falls Efficacy Scale-International (FES-I) in people with Parkinson's disease. Health Qual Life Outcomes. 2017;15(1):116; https://doi.org/10.1186/s12955-017-0689-6 190. Bradley MM, Lang PJ. Measuring emotion: the Self-Assessment Manikin and the Semantic Differential. J Behav Ther Exp Psychiatry. 1994;25(1):49-59; https://doi.org/10.1016/0005-7916(94)90063-9 191. Carroll K, Kennedy RA, Koutoulas V, Bui M, Kraan CM. Validation of shoe-worn Gait Up Physilog®5 wearable inertial sensors in adolescents. Gait Posture. 2022;91:19-25; https://doi.org/10.1016/j.gaitpost.2021.09.203 192. Akimoto Y, Nozawa T, Kanno A, Kambara T, Ihara M, Ogawa T, et al. High-gamma power changes after cognitive intervention: preliminary results from twenty-one senior adult subjects. Brain Behav. 2016;6(3):e00427; https://doi.org/10.1002/brb3.427 193. Hamada H, Wen W, Kawasaki T, Yamashita A, Asama H. Characteristics of EEG power spectra involved in the proficiency of motor learning. Front Neurosci. 2023;17:1094658; https://doi.org/10.3389/fnins.2023.1094658 194. Engineer CT, Hays SA, Kilgard MP. Vagus nerve stimulation as a potential adjuvant to behavioral therapy for autism and other neurodevelopmental disorders. J Neurodev Disord. 2017;9:20; https://doi.org/10.1186/s11689-017-9203-z 195. Lai J, David SV. Short-term effects of vagus nerve stimulation on jearning and evoked activity in auditory cortex. eNeuro. 2021;8(3); https://doi.org/10.1523/eneuro.0522-20.2021 196. Bowles S, Hickman J, Peng X, Williamson WR, Huang R, Washington K, et al. Vagus nerve stimulation drives selective circuit modulation through cholinergic reinforcement. Neuron. 2022;110(17):2867-85.e7; https://doi.org/10.1016/j.neuron.2022.06.017 197. Porter BA, Khodaparast N, Fayyaz T, Cheung RJ, Ahmed SS, Vrana WA, et al. Repeatedly pairing vagus nerve stimulation with a movement reorganizes primary motor cortex. Cereb Cortex. 2012;22(10):2365-74; https://doi.org/10.1093/cercor/bhr316 198. Farrand AQ, Helke KL, Gregory RA, Gooz M, Hinson VK, Boger HA. Vagus nerve stimulation improves locomotion and neuronal populations in a model of Parkinson's disease. Brain Stimul. 2017;10(6):1045-54; https://doi.org/10.1016/j.brs.2017.08.008 199. Morris ME, Iansek R, Matyas TA, Summers JJ. Stride length regulation in Parkinson's disease. Normalization strategies and underlying mechanisms. Brain. 1996;119 ( Pt 2):551-68; https://doi.org/10.1093/brain/119.2.551 200. Nutt JG, Bloem BR, Giladi N, Hallett M, Horak FB, Nieuwboer A. Freezing of gait: moving forward on a mysterious clinical phenomenon. Lancet Neurol. 2011;10(8):734-44; https://doi.org/10.1016/s1474-4422(11)70143-0 201. Pruitt DT, Schmid AN, Kim LJ, Abe CM, Trieu JL, Choua C, et al. Vagus nerve stimulation delivered with motor training enhances recovery of function after traumatic brain injury. J Neurotrauma. 2016;33(9):871-9; https://doi.org/10.1089/neu.2015.3972 202. Dawson J, Liu CY, Francisco GE, Cramer SC, Wolf SL, Dixit A, et al. Vagus nerve stimulation paired with rehabilitation for upper limb motor function after ischaemic stroke (VNS-REHAB): a randomised, blinded, pivotal, device trial. Lancet. 2021;397(10284):1545-53; https://doi.org/10.1016/s0140-6736(21)00475-x 203. Zhang H, Cao XY, Wang LN, Tong Q, Sun HM, Gan CT, et al. Transcutaneous auricular vagus nerve stimulation improves gait and cortical activity in Parkinson's disease: A pilot randomized study. CNS Neurosci Ther. 2023;29(12):3889-900; https://doi.org/10.1111/cns.14309 204. Clark KB, Smith DC, Hassert DL, Browning RA, Naritoku DK, Jensen RA. Posttraining electrical stimulation of vagal afferents with concomitant vagal efferent inactivation enhances memory storage processes in the rat. Neurobiol Learn Mem. 1998;70(3):364-73; https://doi.org/10.1006/nlme.1998.3863 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95032 | - |
| dc.description.abstract | 焦慮是巴金森患者常見的非動作表徵,且會加重患者動作障礙與影響動作學習的成效。當巴金森患者處於空間受限的狀態時,可能因焦慮程度增加使平衡步態異常更嚴重。關於巴金森患者之焦慮症狀,無論是藥物或非藥物介入,目前皆尚未有最佳的治療方式。迷走神經刺激為一種降低焦慮程度的神經刺激介入方式,但尚無研究探討經皮迷走神經刺激於空間限制情境下,降低巴金森患者焦慮與提升平衡或行走表現之效果。
實驗一的目的是探討焦慮對巴金森患者重心轉移學習的影響。受試者分為焦慮組與非焦慮組。受試者以控制重心轉移之方式追蹤目標正弦波(速度:0.25赫茲、振幅:10%-90%體重)。實驗流程為前測、訓練(1天)、訓練後當天後測與2天後追蹤測試。主要評估參數有:重心轉移軌跡誤差、重心轉移軌跡平滑度(反映追蹤軌跡校正量)、腦電圖theta與gamma頻帶的相對功率強度。焦慮組於前測時表現出較大的重心轉移誤差和較小的重心轉移追蹤速動方均根,並具有比非焦慮組更大的前額葉theta頻帶、額葉與感覺運動區gamma頻帶相對功率強度。經學習後,非焦慮組降低重心轉移誤差量並增加theta頻帶相對功率強度,焦慮組則僅呈現降低gamma頻帶相對功率強度,但無動作表現進步。 實驗二為交叉設計研究,目的是探討迷走神經刺激對有、無焦慮症狀巴金森患者於空間限制下重心轉移控制的影響。每位受試者均須於重心轉移測試時接受經皮迷走神經刺激或假性經皮迷走神經刺激,受試者分別於接受迷走神經刺激、假性迷走神經刺激下,在三種空間情境進行重心轉移測試,分別為:無空間限制、低空間限制(長90公分、寬90公分)和高空間限制(長70公分、寬70公分)。主要評估參數有:重心轉移軌跡誤差、腦電圖各頻帶之相對功率、主觀焦慮和生理焦慮(皮膚電導反應)。實驗結果顯示具焦慮症狀的巴金森患者於空間限制的情境下,接受迷走神經刺激比起假性迷走神經刺激,有較小的重心轉移軌跡誤差與較低的gamma頻帶相對功率強度。此外,接受假性迷走神經刺激時,於空間限制情境下會有較高的焦慮程度。但迷走神經刺激不會影響無焦慮症狀巴金森患者的重心轉移表現與大腦活動。 實驗三為長期訓練研究,目的是探討結合迷走神經與平衡步態訓練,對具焦慮症狀巴金森患者於空間限制下重心轉移與行走表現的影響。受試者皆為具焦慮症狀巴金森患者,隨機分配迷走神經刺激組與假性迷走神經刺激組。實驗流程為前測、6週平衡訓練(配合迷走神經刺激或假性迷走神經刺激)、後測與8週後追蹤測試。於前測、後測和追蹤測試時,每位受試者在三種不同的情境下進行重心轉移任務:無空間限制、高空間限制、複雜高空間限制(複合波形追蹤);另在三種情境下進行行走測試:空間限制下的單一作業行走與空間限制下的雙重作業行走(端水杯及算術)。主要評估參數有:重心轉移軌跡誤差、腦電圖在各頻帶的相對功率、步態參數、主觀焦慮和生理焦慮(皮膚電導反應)。實驗結果顯示,迷走神經組在後測和追蹤測試中,於各種空間情境下均可降低種心轉移軌跡誤差、增加gamma頻帶相對功率強度,且焦慮程度也有下降的趨勢。訓練後單一任務和雙重任務步長皆顯著改善,兩組效果能夠持續至追蹤測試。於行走表現上,經訓練後,兩組於單一行走端水行走下均可增加步長,於算術行走下,僅迷走神經刺激組可增加步長。 總結以上研究發現,具焦慮症狀巴金森患者重心轉移控制較差,且訓練效果不顯著。於進行重心轉移動作時給予迷走神經刺激,可有效改善具焦慮症狀巴金森患者,於空間限制情境下之重心轉移表現,並抑制患者因空間限制而提高的焦慮程度。若將迷走神經刺激結合平衡與行走訓練,具焦慮症狀巴金森患者可改善重心轉移與行走表現,且此成效可延續至訓練後二個月。建議臨床可將經皮迷走神經刺激做為具焦慮症狀巴金森患者平衡與步態訓練之輔助工具,以增進其動作學習表現、大腦可塑性與情緒調節。 | zh_TW |
| dc.description.abstract | Anxiety is a common non-motor symptom in people with Parkinson disease (PD), and it can exacerbate motor dysfunction and affect motor learning effectiveness. When PD individuals are in a confined space, increased levels of anxiety may make balance and gait abnormalities severer. While vagus nerve stimulation reduces anxiety, the effects of transcutaneous vagus nerve stimulation (tVNS) on anxiety and balance or gait in PD under space constraints are unexplored.
Experiment 1 investigated the impact of anxiety on weight-shifting learning in PD. Subjects were divided into anxiety group and nonanxiety group and tasked with tracking a target sine wave (speed: 0.25 Hz, amplitude: 10%-90% of body weight) by shifting their weight. The experiment included a pretest, training (1 day), a posttest on the same day, and a follow-up test 2 days later. Key measures were: weight-shifting trajectory error, weight-shifting trajectory smoothness (reflecting the amount of correction in the tracking trajectory), and relative power of the theta and gamma bands in EEG. At pretest, the anxiety group demonstrated greater weight-shifting errors and smaller trajectory smoothness, and had greater prefrontal theta band and frontal and sensorimotor gamma band relative power compared to the nonanxiety group. After learning, the nonanxiety group reduced weight-shifting errors and increased theta band relative power, while the anxiety group only showed a reduction in gamma band relative power without any improvement in motor performance. Experiment 2 used a cross-over design to examine tVNS effects on weight-shifting control in PD with and without anxiety in space-constraint. Participants performed weight-shifting task with active or sham tVNS under three spatial conditions: none-constraint, low-constraint (length: 90 cm; width: 90 cm), and high-constraint (length: 70 cm; width: 70 cm). Key measures were weight-shifting error, relative power of different EEG bands, subjective anxiety, and physiological anxiety (skin conductance response). Results showed that PD with anxiety exhibited smaller weight-shifting errors and lower gamma relative power with active tVNS compared to sham tVNS in space-constraint condition. Additionally, sham tVNS led to increased anxiety levels under spatial restrictions. However, tVNS did not affect the weight-shifting performance and brain activity of PD without anxiety. Experiment 3 was a longitudinal study that aimed to investigate the effects of combining tVNS and balance and gait training on weight-shifting and walking performance for PD with anxiety in space-constraint condition. Participants were randomly assigned to the active tVNS or sham tVNS group and underwent a pretest, 6-week training (with active tVNS or sham tVNS), a posttest, and a follow-up test 8 weeks later. They performed weight-shifting tasks under none-constraint, high-constraint, and complicated high-constraint (composite waveform tracking). Subjects also did walk tasks under spatial restrictions: single-task walking and dual-task walking (walking with a cup of water and arithmetic). Key measures included weight-shifting error, EEG relative power in different bands, gait parameters, subjective anxiety, and physiological anxiety. In the active tVNS group, posttest and follow-up results showed reduced weight-shifting errors, increased gamma band relative power, and a trend of decreased anxiety. Training improved step length in single-task and dual-task walking, with effects lasting until the follow-up. Both groups had increased step length in single-task and dual-task walking with a cup, but only the active tVNS group improved during arithmetic walking. PD with anxiety had poorer weight-shifting control and limited training effects. Applying tVNS during weight-shifting could improve weight-shifting control and reduce anxiety under space-constraint conditions. Combining tVNS with balance and gait training could further enhance walking performance in PD with anxiety. Clinically, tVNS could be recommended as an adjunctive tool for balance and gait training in PD with anxiety to enhance motor learning, brain plasticity, and emotional regulation. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-26T16:21:20Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-26T16:21:20Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 I
中文摘要 II ABSTRACT IV LIST OF ABBREVIATION XI LIST OF FIGURES XII LIST OF TABLES XIV CHAPTER I 1 INTRODUCTION 1 CHAPTER II 4 REVIEW OF THE LITERATURE 4 2.1 Anxiety in Parkinson disease (PD) 4 2.1.1 Prevalence and characteristics of anxiety in PD 4 2.1.2 Evaluation of anxiety in PD 8 2.1.3 Possible neural mechanisms of anxiety in PD 12 2.2 Interplay between anxiety and space constraint in PD 15 2.3 Current treatments of anxiety in PD 18 2.3.1 Pharmacological management 18 2.3.2 Non-pharmacological management: non-neurostimulation 19 2.3.3 Non-pharmacological management: neurostimulation 21 2.4 Purpose and hypothesis of the study 26 2.5 Significance of the study 28 CHAPTER III 29 EXPERIMENT 1 29 3.1 Participants 29 3.2 Study procedure and data recording 31 3.3 Data analysis 33 3.4 Statistical analysis 36 3.5 Results 37 3.5.1 Behavior performance 37 3.5.2 Brain activity 39 3.5.3 Correlation between HADS-A and behavior performance or brain activity 41 3.6 Discussion 42 3.6.1 The effect of anxiety on weight-shifting control before learning 43 3.6.2 The learning effect on weight-shifting control between anxiety and nonanxiety groups 45 3.6.3 Brain activity modulation between the anxiety and nonanxiety groups 47 3.6.4 Methodological concerns and study limitations 49 CHAPTER IV 51 EXPERIMENT 2 51 4.1 Participants 51 4.2 Study procedure and data recording 52 4.3 Data analysis 55 4.4 Statistical analysis 57 4.5 Results 58 4.5.1 Behavior 58 4.5.2 Anxiety level 60 4.5.3 EEG relative power 62 4.6 Discussion 63 4.6.1 The effect of tVNS on weight-shifting control and anxiety 64 4.6.2 Brain activity modulation between active tVNS and sham tVNS 68 4.6.3 Methodological concerns and study limitations 70 CHAPTER V 71 EXPERIMENT 3 71 5.1 Participant 71 5.2 Study procedure and data recording 72 5.3 Data analysis 75 5.4 Statistical analysis 77 5.5 Results 78 5.5.1 Weight-shifting related findings 78 5.5.2 Walking related findings 86 5.5.3 Clinical scales 90 5.6 Discussion 92 5.6.1 Weight-shifting error decreased and gamma power increased after training with active tVNS 92 5.6.2 Increased step length was more pronounced in active tVNS group 94 5.6.3 Methodological concerns and study limitations 96 CHAPTER VI 97 GENERAL DISCUSSION AND CONCLUSION 97 REFERENCES 99 FIGURES 118 TABLES 146 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 腦電圖 | zh_TW |
| dc.subject | 步態 | zh_TW |
| dc.subject | 迷走神經刺激 | zh_TW |
| dc.subject | 焦慮 | zh_TW |
| dc.subject | 巴金森 | zh_TW |
| dc.subject | 平衡 | zh_TW |
| dc.subject | electroencephalogram | en |
| dc.subject | Parkinson disease | en |
| dc.subject | anxiety | en |
| dc.subject | balance | en |
| dc.subject | gait | en |
| dc.subject | vagus nerve stimulation | en |
| dc.title | 探討焦慮與迷走神經刺激對巴金森患者於空間限制下重心轉移控制之影響 | zh_TW |
| dc.title | Investigating the effects of anxiety and vagus nerve stimulation on weight-shifting control under space constraint in patients with Parkinson disease | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 吳瑞美;張雅如;周立偉;李亞芸 | zh_TW |
| dc.contributor.oralexamcommittee | Ruey-Meei Wu;Ya-Ju Chang;Li-Wei Chou;Ya-Yun Lee | en |
| dc.subject.keyword | 巴金森,焦慮,平衡,步態,迷走神經刺激,腦電圖, | zh_TW |
| dc.subject.keyword | Parkinson disease,anxiety,balance,gait,vagus nerve stimulation,electroencephalogram, | en |
| dc.relation.page | 173 | - |
| dc.identifier.doi | 10.6342/NTU202404096 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-12 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 物理治療學研究所 | - |
| dc.date.embargo-lift | 2029-08-09 | - |
| 顯示於系所單位: | 物理治療學系所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 3.32 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
