請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95028
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張博鈞 | zh_TW |
dc.contributor.advisor | Po-Chun Chang | en |
dc.contributor.author | 陳語涵 | zh_TW |
dc.contributor.author | Yu-Han Chen | en |
dc.date.accessioned | 2024-08-26T16:20:08Z | - |
dc.date.available | 2024-08-27 | - |
dc.date.copyright | 2024-08-26 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-06 | - |
dc.identifier.citation | Abbasi, K., Tavakolizadeh, S., Hadi, A., Hosseini, M. S., Soufdoost, R. S., Heboyan, A., Alam, M., & Fani-Hanifeh, S. (2022). The Wound Healing Effect of Collagen/Adipose‐derived Stem Cells (ADSCs) Hydrogel: In Vivo Study. Veterinary Medicine and Science, 9(1), 282-289. https://doi.org/10.1002/vms3.1059
Allen, M. R., & Ruggiero, S. L. (2009). Higher bone matrix density exists in only a subset of patients with bisphosphonate-related osteonecrosis of the jaw. J Oral Maxillofac Surg, 67(7), 1373-1377. https://doi.org/10.1016/j.joms.2009.03.048 An, Y., Zhao, J., Nie, F., Qin, Z., Xue, H., Wang, G., & Li, D. (2019). Exosomes from Adipose-Derived Stem Cells (ADSCs) Overexpressing miR-21 Promote Vascularization of Endothelial Cells. Sci Rep, 9(1), 12861. https://doi.org/10.1038/s41598-019-49339-y Aravindaksha, S. P., Batra, P., Sood, V., Kumar, A., & Gupta, G. (2014). Use of Platelet‐Rich Fibrin Membrane as a Palatal Bandage. Clinical Advances in Periodontics, 4(4), 246-250. https://doi.org/10.1902/cap.2013.130011 Arda, O., Göksügür, N., & Tüzün, Y. (2014). Basic histological structure and functions of facial skin. Clinics in Dermatology, 32(1), 3-13. https://doi.org/https://doi.org/10.1016/j.clindermatol.2013.05.021 Arthur, A., & Gronthos, S. (2020). Clinical Application of Bone Marrow Mesenchymal Stem/Stromal Cells to Repair Skeletal Tissue. Int J Mol Sci, 21(24). https://doi.org/10.3390/ijms21249759 Asadi, M. R., Torkaman, G., Hedayati, M., & Mofid, M. (2013). Role of sensory and motor intensity of electrical stimulation on fibroblastic growth factor-2 expression, inflammation, vascularization, and mechanical strength of full-thickness wounds. J Rehabil Res Dev, 50(4), 489-498. https://doi.org/10.1682/jrrd.2012.04.0074 Ashrafi, M., Alonso-Rasgado, T. A., Baguneid, M., & Bayat, A. (2016). The Efficacy of Electrical Stimulation in Experimentally Induced Cutaneous Wounds in Animals. Veterinary Dermatology, 27(4), 235. https://doi.org/10.1111/vde.12328 Balint, R., Cassidy, N. J., & Cartmell, S. H. (2012). Electrical Stimulation: A Novel Tool for Tissue Engineering. Tissue Engineering Part B: Reviews, 19(1), 48-57. https://doi.org/10.1089/ten.teb.2012.0183 Balint, R., Cassidy, N. J., & Cartmell, S. H. (2014). Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater, 10(6), 2341-2353. https://doi.org/10.1016/j.actbio.2014.02.015 Barrientos, S., Stojadinovic, O., Golinko, M. S., Brem, H., & Tomic-Canic, M. (2008). Growth factors and cytokines in wound healing. Wound Repair Regen, 16(5), 585-601. https://doi.org/10.1111/j.1524-475X.2008.00410.x Bernstein, G. (1989). Healing by secondary intention. Dermatol Clin, 7(4), 645-660. Bhavya, B. S., Fazal, I., & Khan, S. F. (2021). Effect of Silver Nanoparticle Membrane on Wound Healing and Patient Satisfaction Following Flap Surgery. International Journal of Applied Dental Sciences, 7(2), 155-160. https://doi.org/10.22271/oral.2021.v7.i2c.1202 Bowers, G. M., Chadroff, B., Carnevale, R., Mellonig, J., Corio, R., Emerson, J., Stevens, M., & Romberg, E. (1989a). Histologic evaluation of new attachment apparatus formation in humans. Part I. J Periodontol, 60(12), 664-674. https://doi.org/10.1902/jop.1989.60.12.664 Bowers, G. M., Chadroff, B., Carnevale, R., Mellonig, J., Corio, R., Emerson, J., Stevens, M., & Romberg, E. (1989b). Histologic evaluation of new attachment apparatus formation in humans. Part II. J Periodontol, 60(12), 675-682. https://doi.org/10.1902/jop.1989.60.12.675 Brennan, M. Á., Renaud, A., Amiaud, J., Rojewski, M., Schrezenmeier, H., Heymann, D., Trichet, V., & Layrolle, P. (2014). Pre-Clinical Studies of Bone Regeneration With Human Bone Marrow Stromal Cells and Biphasic Calcium Phosphate. Stem Cell Research & Therapy, 5(5). https://doi.org/10.1186/scrt504 Bryant, S. J., Nuttelman, C. R., & Anseth, K. S. (2000). Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. J Biomater Sci Polym Ed, 11(5), 439-457. https://doi.org/10.1163/156856200743805 Camargo, P. M., Melnick, P. R., & Kenney, E. B. (2001). The use of free gingival grafts for aesthetic purposes. Periodontol 2000, 27, 72-96. https://doi.org/10.1034/j.1600-0757.2001.027001072.x Canseven, A. G., & Atalay, N. S. (1996). Is it possible to trigger collagen synthesis by electric current in skin wounds? Indian J Biochem Biophys, 33(3), 223-227. Chang, Y.-P., Hong, H.-P., Lee, Y.-H., & Liu, I. H. (2015). The Canine Epiphyseal-Derived Mesenchymal Stem Cells Are Comparable to Bone Marrow Derived-Mesenchymal Stem Cells. Journal of Veterinary Medical Science, 77(3), 273-280. https://doi.org/10.1292/jvms.14-0265 Chen, F. J., Hsiao, Y. S., Liao, I. H., Liu, C. T., Wu, P. I., Lin, C. Y., Cheng, N. C., & Yu, J. (2021). Rational design of a highly porous electronic scaffold with concurrent enhancement in cell behaviors and differentiation under electrical stimulation. J Mater Chem B, 9(37), 7674-7685. https://doi.org/10.1039/d1tb01260f Chen, L., Arbieva, Z. H., Guo, S., Marucha, P. T., Mustoe, T. A., & DiPietro, L. A. (2010). Positional differences in the wound transcriptome of skin and oral mucosa. BMC Genomics, 11, 471. https://doi.org/10.1186/1471-2164-11-471 Cheng, L., Yang, K., Chen, Q., & Liu, Z. (2012). Organic stealth nanoparticles for highly effective in vivo near-infrared photothermal therapy of cancer. ACS Nano, 6(6), 5605-5613. https://doi.org/10.1021/nn301539m Cheng, N. C., Chen, S. Y., Li, J. R., & Young, T. H. (2013). Short-term spheroid formation enhances the regenerative capacity of adipose-derived stem cells by promoting stemness, angiogenesis, and chemotaxis. Stem Cells Transl Med, 2(8), 584-594. https://doi.org/10.5966/sctm.2013-0007 Cheng, Y., Chen, C. H., Kuo, H. W., Yen, T. L., Mao, Y. Y., & Hu, W. W. (2019). Electrical Stimulation Through Conductive Substrate to Enhance Osteo-Differentiation of Human Dental Pulp-Derived Stem Cells. Applied Sciences, 9(18), 3938. https://doi.org/10.3390/app9183938 Cheng, Y., Li, Y., Huang, S., Yu, F., Bei, Y., Zhang, Y., Tang, J., Huang, Y., & Xiang, Q. (2020). Hybrid Freeze-Dried Dressings Composed of Epidermal Growth Factor and Recombinant Human-Like Collagen Enhance Cutaneous Wound Healing in Rats. Front Bioeng Biotechnol, 8, 742. https://doi.org/10.3389/fbioe.2020.00742 Cho, H. H., Kyoung, K. M., Seo, M. J., Kim, Y. J., Bae, Y. C., & Jung, J. S. (2006). Overexpression of CXCR4 increases migration and proliferation of human adipose tissue stromal cells. Stem Cells Dev, 15(6), 853-864. https://doi.org/10.1089/scd.2006.15.853 Cho, M. R., Thatte, H. S., Silvia, M. T., & Golan, D. E. (1999). Transmembrane calcium influx induced by ac electric fields. The FASEB Journal, 13(6), 677-683. https://doi.org/https://doi.org/10.1096/fasebj.13.6.677 Ciuffi, S., Zonefrati, R., & Brandi, M. L. (2017). Adipose stem cells for bone tissue repair. Clin Cases Miner Bone Metab, 14(2), 217-226. https://doi.org/10.11138/ccmbm/2017.14.1.217 Cui, L., Zhang, J., Zou, J., Yang, X., Guo, H., Tian, H., Zhang, P., Wang, Y., Zhang, N., Zhuang, X., Li, Z., Ding, J., & Chen, X. (2020). Electroactive composite scaffold with locally expressed osteoinductive factor for synergistic bone repair upon electrical stimulation. Biomaterials, 230, 119617. https://doi.org/10.1016/j.biomaterials.2019.119617 Darby, I. A., Laverdet, B., Bonté, F., & Desmoulière, A. (2014). Fibroblasts and myofibroblasts in wound healing. Clin Cosmet Investig Dermatol, 7, 301-311. https://doi.org/10.2147/ccid.S50046 Del Pizzo, M., Modica, F., Bethaz, N., Priotto, P., & Romagnoli, R. (2002). The connective tissue graft: a comparative clinical evaluation of wound healing at the palatal donor site. A preliminary study. J Clin Periodontol, 29(9), 848-854. https://doi.org/10.1034/j.1600-051x.2002.290910.x desJardins-Park, H. E., Mascharak, S., Chinta, M. S., Wan, D. C., & Longaker, M. T. (2019). The Spectrum of Scarring in Craniofacial Wound Repair. Front Physiol, 10, 322. https://doi.org/10.3389/fphys.2019.00322 Diagnosis and classification of diabetes mellitus. (2013). Diabetes Care, 36 Suppl 1(Suppl 1), S67-74. https://doi.org/10.2337/dc13-S067 Diegelmann, R. F., & Evans, M. C. (2004). Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci, 9, 283-289. https://doi.org/10.2741/1184 Ding, J., Chen, B., Lv, T., Liu, X., Fu, X., Wang, Q., Li, Y., Kang, N., Cao, Y., & Xiao, R. (2016). Bone Marrow Mesenchymal Stem Cell-Based Engineered Cartilage Ameliorates Polyglycolic Acid/Polylactic Acid Scaffold-Induced Inflammation Through M2 Polarization of Macrophages in a Pig Model. Stem Cells Translational Medicine, 5(8), 1079-1089. https://doi.org/10.5966/sctm.2015-0263 Ding, L., Yuan, Q., Xiong, L., Li, A., & Xia, Y. (2021). The miR-4739/DLX3 Axis Modulates Bone Marrow-Derived Mesenchymal Stem Cell (BMSC) Osteogenesis Affecting Osteoporosis Progression. Frontiers in Endocrinology, 12. https://doi.org/10.3389/fendo.2021.703167 Dixon, D. T., & Gomillion, C. T. (2021). Conductive Scaffolds for Bone Tissue Engineering: Current State and Future Outlook. J Funct Biomater, 13(1). https://doi.org/10.3390/jfb13010001 Ehrlich, H. P., & Krummel, T. M. (1996). Regulation of wound healing from a connective tissue perspective. Wound Repair Regen, 4(2), 203-210. https://doi.org/10.1046/j.1524-475X.1996.40206.x Eischen-Loges, M., Oliveira, K. M. C., Bhavsar, M. B., Barker, J. H., & Leppik, L. (2018). Pretreating mesenchymal stem cells with electrical stimulation causes sustained long-lasting pro-osteogenic effects. PeerJ, 6, e4959. https://doi.org/10.7717/peerj.4959 El-Sayed, M. K., Hommos, A. M., Kotry, G. S., & Labib, G. S. (2021). The Effect of a Calendula Based Topical Formula Versus Oxidized Regenerated Cellulose on Palatal Wound Healing: A Randomized Controlled Clinical Trial. Alexandria Dental Journal, 46(2), 45-53. https://doi.org/10.21608/adjalexu.2021.185219 El-Sherbiny, I. M., & Yacoub, M. H. (2013). Hydrogel scaffolds for tissue engineering: Progress and challenges. Glob Cardiol Sci Pract, 2013(3), 316-342. https://doi.org/10.5339/gcsp.2013.38 Engler, W. O., Ramfjord, S. P., & Hiniker, J. J. (1966). Healing following simple gingivectomy. A tritiated thymidine radioautographic study. I. Epithelialization. J Periodontol, 37(4), 298-308. https://doi.org/10.1902/jop.1966.37.4.298 Fickl, S., Fischer, K. R., Jockel-Schneider, Y., Stappert, C. F., Schlagenhauf, U., & Kebschull, M. (2014). Early wound healing and patient morbidity after single-incision vs. trap-door graft harvesting from the palate--a clinical study. Clin Oral Investig, 18(9), 2213-2219. https://doi.org/10.1007/s00784-014-1204-7 Foulds, I. S., & Barker, A. T. (1983). Human skin battery potentials and their possible role in wound healing. Br J Dermatol, 109(5), 515-522. https://doi.org/10.1111/j.1365-2133.1983.tb07673.x Franklin, B. M., Maroudas, E., & Osborn, J. L. (2016). Sine-wave electrical stimulation initiates a voltage-gated potassium channel-dependent soft tissue response characterized by induction of hemocyte recruitment and collagen deposition. Physiol Rep, 4(12). https://doi.org/10.14814/phy2.12832 Fretwurst, T., Larsson, L., Yu, S. H., Pilipchuk, S. P., Kaigler, D., & Giannobile, W. V. (2018). Periodontal Tissue Bioengineering: Is the Future Now? Compend Contin Educ Dent, 39(4), 218-223; quiz 224. Fu, X., Liu, G., Halim, A., Ju, Y., Luo, Q., & Song, A. G. (2019). Mesenchymal Stem Cell Migration and Tissue Repair. Cells, 8(8). https://doi.org/10.3390/cells8080784 Fukuoka, H., Narita, K., & Suga, H. (2017). Hair Regeneration Therapy: Application of Adipose-Derived Stem Cells. Current Stem Cell Research & Therapy, 12(7). https://doi.org/10.2174/1574888x12666170522114307 Ghasemi-Mobarakeh, L., Prabhakaran, M. P., Morshed, M., Nasr-Esfahani, M. H., Baharvand, H., Kiani, S., Al-Deyab, S. S., & Ramakrishna, S. (2011). Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 5(4), e17-e35. https://doi.org/https://doi.org/10.1002/term.383 Gholami, L., Ansari-Moghadam, S., Sadeghi, F., Arbabi-Kalati, F., & Barati, I. (2019). Clinical and Cytotoxic Comparison of Two Periodontal Dressings After Periodontal Flap Surgery. World Journal of Dentistry, 10(1), 7-13. https://doi.org/10.5005/jp-journals-10015-1594 Ghosh, S., Roy, P., & Lahiri, D. (2024). Development of Anisotropic Electrically Conductive GNP‐Reinforced PCL‐Collagen Scaffold for Enhanced Neurogenic Differentiation Under Electrical Stimulation. Chemistry - An Asian Journal, 19(9). https://doi.org/10.1002/asia.202400061 Gil, E. S., Panilaitis, B., Bellas, E., & Kaplan, D. L. (2013). Functionalized silk biomaterials for wound healing. Adv Healthc Mater, 2(1), 206-217. https://doi.org/10.1002/adhm.201200192 Gimble, J., & Guilak, F. (2003). Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy, 5(5), 362-369. https://doi.org/10.1080/14653240310003026 Ginestal, R., Pérez-Köhler, B., Pérez-López, P., Rodríguez, M., Pascual, G., Cebrián, D., Bellón, J. M., & García-Moreno, F. (2019). Comparing the influence of two immunosuppressants (fingolimod, azathioprine) on wound healing in a rat model of primary and secondary intention wound closure. Wound Repair Regen, 27(1), 59-68. https://doi.org/10.1111/wrr.12685 Gomes, B., Berber, V. B., Chiarelli-Neto, V. M., Aveiro, E., Chapola, R. C., Passini, M. R. Z., Lopes, E. M., Chen, T., & Paster, B. J. (2023). Microbiota present in combined endodontic-periodontal diseases and its risks for endocarditis. Clin Oral Investig, 27(8), 4757-4771. https://doi.org/10.1007/s00784-023-05104-0 Graves, D. T., Liu, R., Alikhani, M., Al-Mashat, H., & Trackman, P. C. (2006). Diabetes-enhanced inflammation and apoptosis--impact on periodontal pathology. J Dent Res, 85(1), 15-21. https://doi.org/10.1177/154405910608500103 Graziani, F. (2024). Early Periodontal Wound Healing After Chlorhexidine Rinsing: A Randomized Clinical Trial. Clinical Oral Investigations, 28(6). https://doi.org/10.1007/s00784-024-05643-0 Guo, B., B.L, G., Lidija, G., & Albertsson, A.-C. (2013). Biodegradable and Electrically Conducting Polymers for Biomedical Applications. Progress in Polymer Science, 38, 1263-1286. https://doi.org/10.1016/j.progpolymsci.2013.06.003 Guo, B., & Ma, P. X. (2018). Conducting Polymers for Tissue Engineering. Biomacromolecules, 19(6), 1764-1782. https://doi.org/10.1021/acs.biomac.8b00276 Haroon, Z. A., Amin, K., Jiang, X., & Arcasoy, M. O. (2003). A Novel Role for Erythropoietin During Fibrin-Induced Wound-Healing Response. American Journal of Pathology, 163(3), 993-1000. https://doi.org/10.1016/s0002-9440(10)63459-1 He, J., Liang, Y., Shi, M., & Guo, B. (2020). Anti-oxidant electroactive and antibacterial nanofibrous wound dressings based on poly(ε-caprolactone)/quaternized chitosan-graft-polyaniline for full-thickness skin wound healing. Chemical Engineering Journal, 385, 123464. https://doi.org/https://doi.org/10.1016/j.cej.2019.123464 Hiatt, W. H., Stallard, R. E., Butler, E. D., & Badgett, B. (1968). Repair following mucoperiosteal flap surgery with full gingival retention. J Periodontol, 39(1), 11-16. https://doi.org/10.1902/jop.1968.39.1.11 Hong, S. H., Jeong, J., Shim, S., Kang, H., Kwon, S., Ahn, K. H., & Yoon, J. (2008). Effect of electric currents on bacterial detachment and inactivation. Biotechnol Bioeng, 100(2), 379-386. https://doi.org/10.1002/bit.21760 Iglesias-Bartolomé, R., Uchiyama, A., Molinolo, A., Abusleme, L., Brooks, S. R., Callejas‐Valera, J. L., Edwards, D., Doçi, C. L., Asselin-Labat, M. L., Onaitis, M. W., Moutsopoulos, N. M., Gutkind, J. S., & Morasso, M. I. (2018). Transcriptional Signature Primes Human Oral Mucosa for Rapid Wound Healing. Science Translational Medicine, 10(451). https://doi.org/10.1126/scitranslmed.aap8798 Ivanovski, S., Vaquette, C., Gronthos, S., Hutmacher, D. W., & Bartold, P. M. (2014). Multiphasic Scaffolds for Periodontal Tissue Engineering. Journal of Dental Research, 93(12), 1212-1221. https://doi.org/10.1177/0022034514544301 Kakar, A., Lamba, A. K., Tandon, S., Faraz, F., & Ahad, A. (2018). Gingival Tissue Response Following Placement of a Light Cure Dressing and a Non-Eugenol Dressing After Periodontal Flap Procedure: A Comparative Clinical Study. Journal of Natural Science Biology and Medicine, 9(1), 65. https://doi.org/10.4103/jnsbm.jnsbm_75_17 Kale, T., Dani, D. N., & Patange, D. T. (2014). Periodontal Dressing. Iosr Journal of Dental and Medical Sciences, 13(3), 94-98. https://doi.org/10.9790/0853-13349498 Katz, J., Bhattacharyya, I., Farkhondeh-Kish, F., Perez, F. M., Caudle, R. M., & Heft, M. W. (2005). Expression of the receptor of advanced glycation end products in gingival tissues of type 2 diabetes patients with chronic periodontal disease: a study utilizing immunohistochemistry and RT-PCR. J Clin Periodontol, 32(1), 40-44. https://doi.org/10.1111/j.1600-051X.2004.00623.x Khan, U., Kim, T.-H., Ryu, H., Seung, W., & Kim, S.-W. (2017). Graphene Tribotronics for Electronic Skin and Touch Screen Applications. Advanced Materials, 29(1), 1603544. https://doi.org/https://doi.org/10.1002/adma.201603544 Khorshidi, S., & Karkhaneh, A. (2018). Hydrogel/fiber conductive scaffold for bone tissue engineering. Journal of Biomedical Materials Research Part A, 106(3), 718-724. https://doi.org/https://doi.org/10.1002/jbm.a.36282 Kim, T. K., Wikesjö, U. M., Cho, K.-S., Chai, J. K., Pippig, S., Siedler, M., & Kim, C. K. (2009). Periodontal Wound Healing/Regeneration Following Implantation of Recombinant Human Growth/Differentiation Factor‐5 (rhGDF‐5) in an Absorbable Collagen Sponge Carrier Into One‐wall Intrabony Defects in Dogs: A Dose‐range Study. Journal of Clinical Periodontology, 36(7), 589-597. https://doi.org/10.1111/j.1600-051x.2009.01420.x Kincaid, C. B., & Lavoie, K. H. (1989). Inhibition of bacterial growth in vitro following stimulation with high voltage, monophasic, pulsed current. Phys Ther, 69(8), 651-655. https://doi.org/10.1093/ptj/69.8.651 Kloth, L. C. (2013). Electrical Stimulation Technologies for Wound Healing. Advances in Wound Care, 3(2), 81-90. https://doi.org/10.1089/wound.2013.0459 Kubota, K., Yoshimura, N., Yokota, M., Fitzsimmons, R. J., & Wikesjö, M. E. (1995). Overview of effects of electrical stimulation on osteogenesis and alveolar bone. J Periodontol, 66(1), 2-6. https://doi.org/10.1902/jop.1995.66.1.2 Kumar, M. B. V., Narayanan, V., Jalaluddin, M., Almalki, S. A., Dey, S. M., & Sathe, S. (2019). Assessment of Clinical Efficacy of Different Periodontal Dressing Materials on Wound Healing: A Comparative Study. The Journal of Contemporary Dental Practice, 20(8), 896-900. https://doi.org/10.5005/jp-journals-10024-2631 Lala, D., Spaulding, S. J., Burke, S. M., & Houghton, P. E. (2016). Electrical stimulation therapy for the treatment of pressure ulcers in individuals with spinal cord injury: a systematic review and meta-analysis. Int Wound J, 13(6), 1214-1226. https://doi.org/10.1111/iwj.12446 Langer, R., & Vacanti, J. P. (1993). Tissue engineering. Science, 260(5110), 920-926. https://doi.org/10.1126/science.8493529 Lee, K. Y., & Mooney, D. J. (2001). Hydrogels for Tissue Engineering. Chemical Reviews, 101(7), 1869-1880. https://doi.org/10.1021/cr000108x Leppik, L., Oliveira, K. M. C., Bhavsar, M. B., & Barker, J. H. (2020). Electrical stimulation in bone tissue engineering treatments. Eur J Trauma Emerg Surg, 46(2), 231-244. https://doi.org/10.1007/s00068-020-01324-1 Li, J., Wang, W., Li, M., Song, P., Lei, H., Gui, X., Zhou, C., & Liu, L. (2021). Biomimetic Methacrylated Gelatin Hydrogel Loaded With Bone Marrow Mesenchymal Stem Cells for Bone Tissue Regeneration. Frontiers in Bioengineering and Biotechnology, 9. https://doi.org/10.3389/fbioe.2021.770049 Li, L., Gu, W., Du, J., Reid, B., Deng, X., Liu, Z., Zong, Z., Wang, H., Yao, B., Yang, C., Yan, J., Zeng, L., Chalmers, L., Zhao, M., & Jiang, J. (2012). Electric fields guide migration of epidermal stem cells and promote skin wound healing. Wound Repair and Regeneration, 20(6), 840-851. https://doi.org/https://doi.org/10.1111/j.1524-475X.2012.00829.x Lin, F., Baldessari, F., Gyenge, C. C., Sato, T., Chambers, R. D., Santiago, J. G., & Butcher, E. C. (2008). Lymphocyte electrotaxis in vitro and in vivo. J Immunol, 181(4), 2465-2471. https://doi.org/10.4049/jimmunol.181.4.2465 Liu, R., Desta, T., He, H., & Graves, D. T. (2004). Diabetes alters the response to bacteria by enhancing fibroblast apoptosis. Endocrinology, 145(6), 2997-3003. https://doi.org/10.1210/en.2003-1601 Liu, S., Yu, J. M., Gan, Y. C., Qiu, X. Z., Gao, Z. C., Wang, H., Chen, S. X., Xiong, Y., Liu, G. H., Lin, S. E., McCarthy, A., John, J. V., Wei, D. X., & Hou, H. H. (2023). Biomimetic natural biomaterials for tissue engineering and regenerative medicine: new biosynthesis methods, recent advances, and emerging applications. Mil Med Res, 10(1), 16. https://doi.org/10.1186/s40779-023-00448-w Liu, T., Weng, W., Zhang, Y., Sun, X., & Yang, H. (2020). Applications of Gelatin Methacryloyl (GelMA) Hydrogels in Microfluidic Technique-Assisted Tissue Engineering. Molecules, 25(22), 5305. https://doi.org/10.3390/molecules25225305 Luo, R., Dai, J., Zhang, J., & Li, Z. (2021). Accelerated Skin Wound Healing by Electrical Stimulation. Adv Healthc Mater, 10(16), e2100557. https://doi.org/10.1002/adhm.202100557 Maino, G. N. E., Vallés, C., Santos, A., Pascual, A., Esquinas, C., & Nart, J. (2018). Influence of Suturing Technique on Wound Healing and Patient Morbidity After Connective Tissue Harvesting. A Randomized Clinical Trial. Journal of Clinical Periodontology, 45(8), 977-985. https://doi.org/10.1111/jcpe.12960 Mao, L., Hu, S., Gao, Y., Wang, L., Zhao, W., Fu, L., Cheng, H., Xia, L., Xie, S., Ye, W., Shi, Z., & Yang, G. (2020). Biodegradable and Electroactive Regenerated Bacterial Cellulose/MXene (Ti(3) C(2) T(x) ) Composite Hydrogel as Wound Dressing for Accelerating Skin Wound Healing under Electrical Stimulation. Adv Healthc Mater, 9(19), e2000872. https://doi.org/10.1002/adhm.202000872 Marx, R. E. (2003). Pamidronate (Aredia) and zoledronate (Zometa) induced avascular necrosis of the jaws: a growing epidemic. J Oral Maxillofac Surg, 61(9), 1115-1117. https://doi.org/10.1016/s0278-2391(03)00720-1 McCaig, C. D., Rajnicek, A. M., Song, B., & Zhao, M. (2005). Controlling cell behavior electrically: current views and future potential. Physiol Rev, 85(3), 943-978. https://doi.org/10.1152/physrev.00020.2004 Melotto, G., Tunprasert, T., & Forss, J. R. (2022). The effects of electrical stimulation on diabetic ulcers of foot and lower limb: A systematic review. Int Wound J, 19(7), 1911-1933. https://doi.org/10.1111/iwj.13762 Meyers, K., Lee, B. P., & Rajachar, R. M. (2021). Electroactive Polymeric Composites to Mimic the Electromechanical Properties of Myocardium in Cardiac Tissue Repair. Gels, 7(2). https://doi.org/10.3390/gels7020053 Mobini, S., Talts, U.-L., Xue, R., Cassidy, N., & Cartmell, S. (2017). Electrical Stimulation Changes Human Mesenchymal Stem Cells Orientation and Cytoskeleton Organization. Journal of Biomaterials and Tissue Engineering, 7, 829-833. https://doi.org/10.1166/jbt.2017.1631 Momose, T., Miyaji, H., Ogawa, K., Yoshida, T., Nishida, E., Murakami, S., Kosen, Y., Sugaya, T., & Kawanami, M. (2016). Collagen Hydrogel Scaffold and Fibroblast Growth Factor-2 Accelerate Periodontal Healing of Class II Furcation Defects in Dog. The Open Dentistry Journal, 10(1), 347-359. https://doi.org/10.2174/1874210601610010347 Morand, D., Davideau, J. L., Clauss, F., Jessel, N., Tenenbaum, H., & Huck, O. (2016). Cytokines During Periodontal Wound Healing: Potential Application for New Therapeutic Approach. Oral Diseases, 23(3), 300-311. https://doi.org/10.1111/odi.12469 Mörmann, W., Schaer, F., & Firestone, A. R. (1981). The relationship between success of free gingival grafts and transplant thickness. Revascularization and shrinkage--a one year clinical study. J Periodontol, 52(2), 74-80. https://doi.org/10.1902/jop.1981.52.2.74 Mukhtar, S., Bains, V. K., Chandra, C., & Srivastava, R. (2023). Evaluation of Low-Level Laser Therapy and Platelet-Rich Fibrin on Donor Site Healing After Vascularized Interpositional Periosteal Connective Tissue Flap: A Randomized Clinical Study. Lasers in Medical Science, 38(1). https://doi.org/10.1007/s10103-023-03725-1 nabil, s. (2024). Effect of Topical Melatonin Loaded Gelatin Sponge on Palatal Wound Healing (Randomized Controlled Clinical Trial). Alexandria Dental Journal, 0(0), 0-0. https://doi.org/10.21608/adjalexu.2023.215970.1386 Nikkhah, M., Eshak, N., Zorlutuna, P., Annabi, N., Castello, M., Kim, K., Dolatshahi-Pirouz, A., Edalat, F., Bae, H., Yang, Y., & Khademhosseini, A. (2012). Directed endothelial cell morphogenesis in micropatterned gelatin methacrylate hydrogels. Biomaterials, 33(35), 9009-9018. https://doi.org/10.1016/j.biomaterials.2012.08.068 Nyman, S., Karring, T., Lindhe, J., & Plantén, S. (1980). Healing following implantation of periodontitis-affected roots into gingival connective tissue. J Clin Periodontol, 7(5), 394-401. https://doi.org/10.1111/j.1600-051x.1980.tb02012.x Nyman, S., Lindhe, J., Karring, T., & Rylander, H. (1982). New attachment following surgical treatment of human periodontal disease. J Clin Periodontol, 9(4), 290-296. https://doi.org/10.1111/j.1600-051x.1982.tb02095.x Ono, W., & Ono, N. (2021). Flow Cytometry-Based Analysis of the Mouse Bone Marrow Stromal and Perivascular Compartment. 83-94. https://doi.org/10.1007/978-1-0716-1425-9_7 Ouyang, L., Yao, R., Zhao, Y., & Sun, W. (2016). Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication, 8(3), 035020. https://doi.org/10.1088/1758-5090/8/3/035020 Overmiller, A. M., Sawaya, A. P., Hope, E. D., & Morasso, M. I. (2022). Intrinsic Networks Regulating Tissue Repair: Comparative Studies of Oral and Skin Wound Healing. Cold Spring Harb Perspect Biol, 14(11). https://doi.org/10.1101/cshperspect.a041244 Pa, Z., Zhu, M., Mizuno, H., Huang, J., Jw, F., Katz, A., Benhaim, P., Hp, L., & Mh, H. (2001). Multilineage Cells From Human Adipose Tissue: Implications for Cell-Based Therapies. Tissue Engineering, 7(2), 211-228. https://doi.org/10.1089/107632701300062859 Pak, J. (2012). Autologous Adipose Tissue-Derived Stem Cells Induce Persistent Bone-Like Tissue In Osteonecrotic Femoral Heads. Pain Physician, 1;15(1;1), 75-85. https://doi.org/10.36076/ppj.2012/15/75 Pihlstrom, B. L., Michalowicz, B. S., & Johnson, N. W. (2005). Periodontal diseases. Lancet, 366(9499), 1809-1820. https://doi.org/10.1016/s0140-6736(05)67728-8 Polimeni, G., Xiropaidis, A. V., & Wikesjö, U. M. (2006). Biology and principles of periodontal wound healing/regeneration. Periodontol 2000, 41, 30-47. https://doi.org/10.1111/j.1600-0757.2006.00157.x Politis, C., Schoenaers, J., Jacobs, R., & Agbaje, J. O. (2016). Wound Healing Problems in the Mouth. Front Physiol, 7, 507. https://doi.org/10.3389/fphys.2016.00507 Polymeri, A., Giannobile, W. V., & Kaigler, D. (2016). Bone Marrow Stromal Stem Cells in Tissue Engineering and Regenerative Medicine. Horm Metab Res, 48(11), 700-713. https://doi.org/10.1055/s-0042-118458 Portan, D. V., Deligianni, D. D., Papanicolaou, G. C., Kostopoulos, V., Psarras, G. C., & Tyllianakis, M. (2019). Combined Optimized Effect of a Highly Self-Organized Nanosubstrate and an Electric Field on Osteoblast Bone Cells Activity. BioMed Research International, 2019(1), 7574635. https://doi.org/https://doi.org/10.1155/2019/7574635 Qian, Y., Xu, C., Xiong, W., Jiang, N., Zheng, Y., He, X., Ding, F., Lu, X., & Shen, J. (2021). Dual cross-linked organic-inorganic hybrid hydrogels accelerate diabetic skin wound healing. Chemical Engineering Journal, 417, 129335. https://doi.org/https://doi.org/10.1016/j.cej.2021.129335 Rabbani, M., Rahman, E., Powner, M. B., & Triantis, I. F. (2024). Making Sense of Electrical Stimulation: A Meta-analysis for Wound Healing. Ann Biomed Eng, 52(2), 153-177. https://doi.org/10.1007/s10439-023-03371-2 Ramfjord, S. P., Engler, W. O., & Hiniker, J. J. (1966). A radioautographic study of healing following simple gingivectomy. II. The connective tissue. J Periodontol, 37(3), 179-189. https://doi.org/10.1902/jop.1966.37.3.179 Rezai, N., Podor, T. J., & McManus, B. M. (2004). Bone Marrow Cells in the Repair and Modulation of Heart and Blood Vessels: Emerging Opportunities in Native and Engineered Tissue and Biomechanical Materials. Artificial Organs, 28(2), 142-151. https://doi.org/10.1111/j.1525-1594.2004.47334.x Ritzau-Reid, K. I., Spicer, C. D., Gelmi, A., Grigsby, C. L., Ponder Jr, J. F., Bemmer, V., Creamer, A., Vilar, R., Serio, A., & Stevens, M. M. (2020). An Electroactive Oligo-EDOT Platform for Neural Tissue Engineering. Advanced Functional Materials, 30(42), 2003710. https://doi.org/https://doi.org/10.1002/adfm.202003710 Rizwan, M., Chan, S., Comeau, P., Willett, T. L., & Yim, E. K. F. (2020). Effect of Sterilization Treatment on Mechanical Properties, Biodegradation, Bioactivity and Printability of GelMA Hydrogels. Biomedical Materials, 15(6), 065017. https://doi.org/10.1088/1748-605x/aba40c Rossmann, J. A., & Rees, T. D. (1999). A comparative evaluation of hemostatic agents in the management of soft tissue graft donor site bleeding. J Periodontol, 70(11), 1369-1375. https://doi.org/10.1902/jop.1999.70.11.1369 Rouwkema, J., Rivron, N., & Blitterswijk, C. A. v. (2008). Vascularization in Tissue Engineering. Trends in Biotechnology, 26(8), 434-441. https://doi.org/10.1016/j.tibtech.2008.04.009 Ruggiero, S. L., Dodson, T. B., Fantasia, J., Goodday, R., Aghaloo, T., Mehrotra, B., & O'Ryan, F. (2014). American Association of Oral and Maxillofacial Surgeons position paper on medication-related osteonecrosis of the jaw--2014 update. J Oral Maxillofac Surg, 72(10), 1938-1956. https://doi.org/10.1016/j.joms.2014.04.031 Saxena, S., Punn, K., Dubey, D., Srivastava, V., Meenawat, A., & Yadav, S. (2020). Light Cured Resin- An Aesthetic and Biocompatible Alternative to Conventional Dressing. University Journal of Dental Sciences, 6(1), 31-35. https://doi.org/10.21276/ujds.2020.6.1.8 Sculean, A., Alessandri, R., Miron, R. J., Salvi, G. E., & Bosshardt, D. D. (2011). Enamel Matrix Proteins and Periodontal Wound Healing and Regeneration. Clinical Advances in Periodontics, 1(2), 101-117. https://doi.org/10.1902/cap.2011.110047 Sculean, A., Gruber, R., & Bosshardt, D. D. (2014). Soft tissue wound healing around teeth and dental implants. J Clin Periodontol, 41 Suppl 15, S6-22. https://doi.org/10.1111/jcpe.12206 Selvig, K. A., Bogle, G., & Claffey, N. M. (1988). Collagen linkage in periodontal connective tissue reattachment. An ultrastructural study in beagle dogs. J Periodontol, 59(11), 758-768. https://doi.org/10.1902/jop.1988.59.11.758 Singer, A. J., & Clark, R. A. (1999). Cutaneous wound healing. N Engl J Med, 341(10), 738-746. https://doi.org/10.1056/nejm199909023411006 Singh, S., Singh, G., Prakash, C., Ramakrishna, S., Lamberti, L., & Pruncu, C. I. (2020). 3D printed biodegradable composites: An insight into mechanical properties of PLA/chitosan scaffold. Polymer Testing, 89, 106722. https://doi.org/https://doi.org/10.1016/j.polymertesting.2020.106722 Sowa, Y., Kishida, T., Imura, T., Numajiri, T., Nishino, K., Tabata, Y., & Mazda, O. (2016). Adipose-Derived Stem Cells Promote Peripheral Nerve Regeneration in Vivo Without Differentiation Into Schwann-Like Lineage. Plastic & Reconstructive Surgery, 137(2), 318e-330e. https://doi.org/10.1097/01.prs.0000475762.86580.36 Spencer, A., Sani, E. S., Soucy, J. R., Corbet, C. C., Primbetova, A., Koppes, R. A., & Annabi, N. (2019). Bioprinting of a Cell-Laden Conductive Hydrogel Composite. Acs Applied Materials & Interfaces, 11(34), 30518-30533. https://doi.org/10.1021/acsami.9b07353 Spencer, A. R., Primbetova, A., Koppes, A. N., Koppes, R. A., Fenniri, H., & Annabi, N. (2018). Electroconductive Gelatin Methacryloyl-PEDOT:PSS Composite Hydrogels: Design, Synthesis, and Properties. ACS Biomater Sci Eng, 4(5), 1558-1567. https://doi.org/10.1021/acsbiomaterials.8b00135 Steinert, A. F., Rackwitz, L., Gilbert, F., Nöth, U., & Tuan, R. S. (2012). Concise review: the clinical application of mesenchymal stem cells for musculoskeletal regeneration: current status and perspectives. Stem Cells Transl Med, 1(3), 237-247. https://doi.org/10.5966/sctm.2011-0036 Storti, G., Scioli, M. G., Kim, B. S., Orlandi, A., & Cervelli, V. (2019). Adipose-Derived Stem Cells in Bone Tissue Engineering: Useful Tools with New Applications. Stem Cells Int, 2019, 3673857. https://doi.org/10.1155/2019/3673857 Su, X. (2023). Decellularized Extracellular Matrix Scaffold Seeded With Adipose-Derived Stem Cells Promotes Neurorestoration and Functional Recovery After Spinal Cord Injury Through WNT/Β-Catenin Signaling Pathway Regulation. Biomedical Materials, 19(1), 015007. https://doi.org/10.1088/1748-605x/ad0fa1 Sun, K., Zhang, S., Li, P., Xia, Y., Zhang, X., Du, D., Isikgor, F. H., & Ouyang, J. (2015). Review on application of PEDOTs and PEDOT:PSS in energy conversion and storage devices. Journal of Materials Science: Materials in Electronics, 26(7), 4438-4462. https://doi.org/10.1007/s10854-015-2895-5 Sun, Y., Liu, W.-Z., Liu, T., Feng, X., Yang, N., & Zhou, H.-F. (2015). Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. Journal of Receptors and Signal Transduction, 35(6), 600-604. https://doi.org/10.3109/10799893.2015.1030412 Sundararaghavan, H. G., Monteiro, G. A., Firestein, B. L., & Shreiber, D. I. (2009). Neurite growth in 3D collagen gels with gradients of mechanical properties. Biotechnol Bioeng, 102(2), 632-643. https://doi.org/10.1002/bit.22074 Syred, N., & Beér, J. M. (2017). Combustion in Swirling Flows: A Review. Journal of Physics Conference Series, 891, 012237. https://doi.org/10.1088/1742-6596/891/1/012237 Szpaderska, A. M., Zuckerman, J. D., & DiPietro, L. A. (2003). Differential injury responses in oral mucosal and cutaneous wounds. J Dent Res, 82(8), 621-626. https://doi.org/10.1177/154405910308200810 Tavelli, L., Barootchi, S., Stefanini, M., Zucchelli, G., Giannobile, W. V., & Wang, H.-L. (2023). Wound healing dynamics, morbidity, and complications of palatal soft-tissue harvesting. Periodontology 2000, 92(1), 90-119. https://doi.org/https://doi.org/10.1111/prd.12466 Thaning, E. M., Asplund, M. L., Nyberg, T. A., Inganäs, O. W., & von Holst, H. (2010). Stability of poly(3,4-ethylene dioxythiophene) materials intended for implants. J Biomed Mater Res B Appl Biomater, 93(2), 407-415. https://doi.org/10.1002/jbm.b.31597 Thoma, D. S., Naenni, N., Figuero, E., Hämmerle, C. H. F., Schwarz, F., Jung, R. E., & Sanz-Sánchez, I. (2018). Effects of soft tissue augmentation procedures on peri-implant health or disease: A systematic review and meta-analysis. Clinical Oral Implants Research, 29(S15), 32-49. https://doi.org/https://doi.org/10.1111/clr.13114 Thompson, B. C., Richardson, R. T., Moulton, S. E., Evans, A. J., O'Leary, S., Clark, G. M., & Wallace, G. G. (2010). Conducting polymers, dual neurotrophins and pulsed electrical stimulation--dramatic effects on neurite outgrowth. J Control Release, 141(2), 161-167. https://doi.org/10.1016/j.jconrel.2009.09.016 Toma, A. I., Fuller, J. M., Willett, N. J., & Goudy, S. L. (2021). Oral wound healing models and emerging regenerative therapies. Transl Res, 236, 17-34. https://doi.org/10.1016/j.trsl.2021.06.003 Tonetti, M. S., Greenwell, H., & Kornman, K. S. (2018). Staging and grading of periodontitis: Framework and proposal of a new classification and case definition. J Periodontol, 89 Suppl 1, S159-s172. https://doi.org/10.1002/jper.18-0006 Torkaman, G. (2014). Electrical Stimulation of Wound Healing: A Review of Animal Experimental Evidence. Adv Wound Care (New Rochelle), 3(2), 202-218. https://doi.org/10.1089/wound.2012.0409 Tu, C. C., Cheng, N. C., Yu, J., Pan, Y. X., Tai, W. C., Chen, Y.-C., & Chang, P.-C. (2023). Adipose-Derived Stem Cell Spheroid-Laden Microbial Transglutaminase Cross-Linked Gelatin Hydrogel for Treating Diabetic Periodontal Wounds and Craniofacial Defects. Stem Cell Research & Therapy, 14(1). https://doi.org/10.1186/s13287-023-03238-2 Turabelidze, A., Guo, S., Chung, A. Y., Chen, L., Dai, Y., Marucha, P. T., & DiPietro, L. A. (2014). Intrinsic differences between oral and skin keratinocytes. PLoS One, 9(9), e101480. https://doi.org/10.1371/journal.pone.0101480 Vacanti, J. P., & Langer, R. (1999). Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet, 354 Suppl 1, Si32-34. https://doi.org/10.1016/s0140-6736(99)90247-7 Velnar, T., Bailey, T., & Smrkolj, V. (2009). The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res, 37(5), 1528-1542. https://doi.org/10.1177/147323000903700531 Visser, J., Melchels, F. P., Jeon, J. E., van Bussel, E. M., Kimpton, L. S., Byrne, H. M., Dhert, W. J., Dalton, P. D., Hutmacher, D. W., & Malda, J. (2015). Reinforcement of hydrogels using three-dimensionally printed microfibres. Nat Commun, 6, 6933. https://doi.org/10.1038/ncomms7933 Waasdorp, M., Krom, B. P., Bikker, F. J., Zuijlen, P. P. M. v., Niessen, F. B., & Gibbs, S. (2021). The Bigger Picture: Why Oral Mucosa Heals Better Than Skin. Biomolecules, 11(8), 1165. https://doi.org/10.3390/biom11081165 Wagner, J. M., Reinkemeier, F., Wallner, C., Dadras, M., Huber, J., Schmidt, S., Drysch, M., Dittfeld, S., Jaurich, H., Becerikli, M., Becker, K., Rauch, N., Duhan, V., & Lehnhardt, M. (2019). Adipose-Derived Stromal Cells Are Capable of Restoring Bone Regeneration After Post-Traumatic Osteomyelitis and Modulate B-Cell Response. Stem Cells Translational Medicine, 8(10), 1084-1091. https://doi.org/10.1002/sctm.18-0266 Wang, C. C., Wang, C.-H., Hc, C., Cherng, J. H., Chang, S. J., Wang, Y., Chang, A., Yeh, J. Z., Huang, Y.-H., & Liu, C. C. (2018). Combination of Resveratrol‐containing Collagen With Adipose Stem Cells for Craniofacial Tissue‐engineering Applications. International Wound Journal, 15(4), 660-672. https://doi.org/10.1111/iwj.12910 Wang, X. F., Li, M. L., Fang, Q. Q., Zhao, W. Y., Lou, D., Hu, Y. Y., Chen, J., Wang, X. Z., & Tan, W. Q. (2021). Flexible electrical stimulation device with Chitosan-Vaseline® dressing accelerates wound healing in diabetes. Bioact Mater, 6(1), 230-243. https://doi.org/10.1016/j.bioactmat.2020.08.003 Wessel, J. R., & Tatakis, D. N. (2008). Patient outcomes following subepithelial connective tissue graft and free gingival graft procedures. J Periodontol, 79(3), 425-430. https://doi.org/10.1902/jop.2008.070325 Wikesjö, U. M., Crigger, M., Nilvéus, R., & Selvig, K. A. (1991). Early healing events at the dentin-connective tissue interface. Light and transmission electron microscopy observations. J Periodontol, 62(1), 5-14. https://doi.org/10.1902/jop.1991.62.1.5 Wikesjö, U. M., Nilvéus, R. E., & Selvig, K. A. (1992). Significance of early healing events on periodontal repair: a review. J Periodontol, 63(3), 158-165. https://doi.org/10.1902/jop.1992.63.3.158 Wilderman, M. N. (1964). Exposure of Bone in Periodontal Surgery. Dental Clinics of North America, 8(1), 23-36. https://doi.org/https://doi.org/10.1016/S0011-8532(22)01997-8 Xu, S., Du, C., Zhang, M., Wang, R., Feng, W., Wang, C., Liu, Q., & Zhao, W. (2023). Electroactive and antibacterial wound dressings based on Ti3C2Tx MXene/poly(ε-caprolactone)/gelatin coaxial electrospun nanofibrous membranes. Nano Research, 16(7), 9672-9687. https://doi.org/10.1007/s12274-023-5527-z Xu, X., Li, X., Wang, J., He, X.-T., Sun, H., & Chen, F. M. (2018). Concise Review: Periodontal Tissue Regeneration Using Stem Cells: Strategies and Translational Considerations. Stem Cells Translational Medicine, 8(4), 392-403. https://doi.org/10.1002/sctm.18-0181 Xue, M., & Jackson, C. J. (2015). Extracellular Matrix Reorganization During Wound Healing and Its Impact on Abnormal Scarring. Adv Wound Care (New Rochelle), 4(3), 119-136. https://doi.org/10.1089/wound.2013.0485 Yaghobee, S., Rouzmeh, N., Aslroosta, H., Mahmoodi, S., Khorsand, A., & Kharrazifard, M. J. (2018). Effect of Topical Erythropoietin (EPO) on Palatal Wound Healing Subsequent to Free Gingival Grafting (FGG). Brazilian Oral Research, 32(0). https://doi.org/10.1590/1807-3107bor-2018.vol32.0055 Yang, J., Zhang, Y. S., Yue, K., & Khademhosseini, A. (2017). Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomater, 57, 1-25. https://doi.org/10.1016/j.actbio.2017.01.036 Yang, X., Zhang, C., Deng, D., Gu, Y., Wang, H., & Zhong, Q. (2021). Multiple Stimuli‐Responsive MXene‐Based Hydrogel as Intelligent Drug Delivery Carriers for Deep Chronic Wound Healing. Small, 18(5). https://doi.org/10.1002/smll.202104368 Yoshimura, N. (1993). Effects of Electrical Stimulation on Periodontal Tissue Regeneration in Dogs : Application of Biodegradable Membrane in GTR Method. The Journal of The Kyushu Dental Society, 47, 590-606. Yue, K., Trujillo-de Santiago, G., Alvarez, M. M., Tamayol, A., Annabi, N., & Khademhosseini, A. (2015). Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials, 73, 254-271. https://doi.org/10.1016/j.biomaterials.2015.08.045 Yuk, H., Lu, B., & Zhao, X. (2019). Hydrogel bioelectronics [10.1039/C8CS00595H]. Chemical Society Reviews, 48(6), 1642-1667. https://doi.org/10.1039/C8CS00595H Zhang, M., & Guo, B. (2017). Electroactive 3D Scaffolds Based on Silk Fibroin and Water-Borne Polyaniline for Skeletal Muscle Tissue Engineering. Macromolecular Bioscience, 17(9), 1700147. https://doi.org/https://doi.org/10.1002/mabi.201700147 Zhang, Q., Chang, Q., Cox, R. A., Gong, X.-M., & Gould, L. (2008). Hyperbaric Oxygen Attenuates Apoptosis and Decreases Inflammation in an Ischemic Wound Model. Journal of Investigative Dermatology, 128(8), 2102-2112. https://doi.org/10.1038/jid.2008.53 Zhao, M. (2009). Electrical fields in wound healing-An overriding signal that directs cell migration. Semin Cell Dev Biol, 20(6), 674-682. https://doi.org/10.1016/j.semcdb.2008.12.009 Zhao, M., Forrester, J. V., & McCaig, C. D. (1999). A small, physiological electric field orients cell division. Proc Natl Acad Sci U S A, 96(9), 4942-4946. https://doi.org/10.1073/pnas.96.9.4942 Zhao, S., Mehta, A. S., & Zhao, M. (2020). Biomedical applications of electrical stimulation. Cell Mol Life Sci, 77(14), 2681-2699. https://doi.org/10.1007/s00018-019-03446-1 Zhu, G., Peng, B., Chen, J., Jing, Q., & Lin Wang, Z. (2015). Triboelectric nanogenerators as a new energy technology: From fundamentals, devices, to applications. Nano Energy, 14, 126-138. https://doi.org/https://doi.org/10.1016/j.nanoen.2014.11.050 Zhu, M., Wang, Y., Ferracci, G., Zheng, J., Cho, N. J., & Lee, B. H. (2019). Gelatin methacryloyl and its hydrogels with an exceptional degree of controllability and batch-to-batch consistency. Sci Rep, 9(1), 6863. https://doi.org/10.1038/s41598-019-42186-x Zucchelli, G., Mele, M., Stefanini, M., Mazzotti, C., Marzadori, M., Montebugnoli, L., & de Sanctis, M. (2010). Patient morbidity and root coverage outcome after subepithelial connective tissue and de-epithelialized grafts: a comparative randomized-controlled clinical trial. J Clin Periodontol, 37(8), 728-738. https://doi.org/10.1111/j.1600-051X.2010.01550.x | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95028 | - |
dc.description.abstract | 研究目的:傷口癒合是一個複雜的過程,但大多數敷料缺乏電活性,無法對生理電信號或外部電刺激(EStim)作出反應。本研究旨在開發一種具有電活性且可光固化的脂肪幹細胞(ADSCs)負載水凝膠,通過將聚(3,4-乙烯二氧噻吩)聚苯乙烯磺酸鹽(PEDOT:PSS)的導電性與甲基丙烯酸明膠(GelMA)的相容性相結合,PEDOT:PSS/GelMA水凝膠可以作為類似於細胞外基質的再生模板並充當導電中間體,而脂肪幹細胞具有自我更新和分化的能力,用以增強組織工程策略。我們預計這種電活性水凝膠可以將局部電刺激傳遞到傷口部位,調節細胞功能以改善傷口癒合。
研究材料與方法:PEDOT:PSS/GelMA水凝膠是使用含7% GelMA和0.1% PEDOT:PSS的配方合成的。在合成之後,水凝膠進行了全面的表徵和生物相容性測試。此外,我們從老鼠的雙側腹股溝脂肪組織中分離出ADSCs,並將其加入PEDOT:PSS/GelMA預聚合物溶液中,通過紫外線輻射誘導凝膠化。為了驗證電刺激對含ADSC的PEDOT:PSS/GelMA水凝膠促進傷口癒合的效果,在大鼠背部製造全厚度皮下傷口。對這些傷口進行了各種處理:含ADSC的GelMA水凝膠(有或沒有電刺激)和含ADSC的PEDOT:PSS/GelMA水凝膠(有電刺激)。為了記錄癒合進程,在第4天、第7天和第14天拍攝了傷口的照片。在第14天,進行了組織學評估和角質化的免疫組織染色,以進一步評估癒合過程。 研究結果:PEDOT:PSS/GelMA水凝膠表現出良好的親水性、生物降解性和優異的電活性。此外,它還顯示出良好的生物相容性,對L929細胞的黏附和增殖沒有細胞毒性的作用。 在使用全厚度傷口缺損模型的體內評估中,含ADSC的PEDOT:PSS/GelMA水凝膠與電刺激一起加速了傷口閉合。它增加了上皮化、角質化和膠原沉積。結果顯示,在電刺激下使用含ADSC的PEDOT:PSS/GelMA水凝膠處理的傷口有更多且更有組織的膠原纖維形成。新形成的膠原基質與周圍細胞外基質的總體比例顯著高於其他組別。該組觀察到的傷口癒合顯著改善可能歸因於通過導電水凝膠對組織的直接電刺激應用,這顯著促進了成纖維細胞的遷移和基質合成。 結論:PEDOT:PSS/GelMA水凝膠表現出良好的生物降解性、良好的導電性和理想的生物相容性。通過將電刺激與含脂肪幹細胞的水凝膠敷料結合,這種可生物降解且具有電活性的支架提供了一種有效的協同治療策略,以加速傷口癒合過程。 | zh_TW |
dc.description.abstract | Wound healing is a complex process, but most dressings lack electroactivity and cannot respond to physiological electrical signals or external electrical stimulation (EStim). This study aims to develop an electroactive, photocurable hydrogel loaded with adipose-derived stem cells (ADSCs). By combining the conductivity of Poly(3,4-ethylenedioxythiophene) Polystyrene Sulfonate (PEDOT:PSS) with the compatibility of Gelatin Methacrylate (GelMA), the PEDOT:PSS/GelMA hydrogel can serve as a regenerative template similar to the extracellular matrix and act as an electroconductive intermediate. ADSCs, capable of self-renewal and differentiation, are used to enhance the tissue engineering strategy. This electroactive hydrogel is expected to deliver localized EStim to wound sites, modulating cell behavior to improve wound healing.
Materials and methods: The PEDOT:PSS/GelMA hydrogel was synthesized using a protocol involving 7% GelMA and 0.1% PEDOT:PSS. Following synthesis, the hydrogel underwent comprehensive characterization and biocompatibility testing. Additionally, ADSCs were isolated from bilateral inguinal adipose tissues and incorporated into the PEDOT:PSS/GelMA prepolymer solution, with UV radiation used to induce gelation. To validate the effect of EStim on the ADSC-laden PEDOT:PSS/GelMA hydrogel for promoting wound healing, full-thickness subcutaneous wounds were created on the dorsal surface of rats. Various treatments were applied to these wounds: ADSC-laden GelMA hydrogel with or without EStim, and ADSC-laden PEDOT:PSS/GelMA hydrogel with EStim. To document the healing progression, digital photographs of the wounds were taken on days 4, 7, and 14. On day 14, histological evaluations and immunohistochemical staining for keratinization were performed to further assess the healing process. This multi-faceted approach ensured a thorough examination of the hydrogel's effectiveness in promoting wound repair. Results: The PEDOT:PSS/GelMA hydrogel demonstrated great hydrophilicity, biodegradability, and excellent electroactivity. Additionally, it showed great biocompatibility, with no cytotoxic effects on L929 cell adhesion and proliferation. In the in vivo evaluation using a full-thickness wound defect model, the ADSC-laden PEDOT:PSS/GelMA hydrogel with EStim accelerated wound closure. It increased epithelialization, keratinization and collagen deposition. The results indicated that wounds treated with ADSC-laden PEDOT:PSS/GelMA hydrogel with EStim exhibited a greater abundance and more organized collagen fiber formation. The overall ratio of newly formed collagen matrix to the surrounding extracellular matrix[U1] was significantly greater than in the other groups. The notable enhancement in wound healing observed in this group may be attributed to the direct application of EStim to the tissue through the conductive hydrogel, which markedly facilitated fibroblast migration and matrix synthesis. Conclusion: The PEDOT:PSS/GelMA hydrogel exhibited good biodegradability, good conductivity and desirable biocompatibility. By coupling EStim with the ADSC-laden PEDOT:PSS/GelMA hydrogel, this electroactive scaffold provided an effective synergistic therapeutic strategy for accelerating the wound healing process. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-26T16:20:08Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-26T16:20:08Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 中文摘要 III 英文摘要 V INTRODUCTION 1 CHAPTER 1: THE HEALING OF PERIODONTAL WOUNDS 1 1.1 THE CHARACTERISTICS OF PERIODONTAL WOUNDS 1 1.1.1 Periodontal wound of periodontitis 2 1.1.2 Periodontal wound of mucogingival surgery 3 1.1.3 Periodontal wound affected by systemic condition 5 1.2 THE PHYSIOLOGICAL EVENTS OF WOUND HEALING (HEMOSTASIS, INFLAMMATION, PROLIFERATION, MATURATION AND REMODELING) 8 1.2.1 Cutaneous tissue 8 1.2.2 Oral mucosa and gingiva 11 CHAPTER 2: THE APPROACHES FOR FACILITATING PERIODONTAL WOUND HEALING 15 2.1 THE CURRENT THERAPEUTICS 15 2.2 TISSUE ENGINEERING APPROACHES 18 2.2.1 Biomimetic scaffold 19 2.2.2 Stem cells 24 2.3 ELECTRICAL STIMULATION 29 2.3.1 Effects of electrical stimulation on cell function 30 2.3.2 Effects of electrical stimulation on wound healing 31 2.3.3 Electrical stimulation devices and methods for skin wound healing 34 CHAPTER 3: RESEARCH GOALS 36 3.1 HYPOTHESES 37 3.2 SPECIAL AIMS 37 3.3 SCIENTIFIC RATIONALE FOR OUR STUDY 37 CHAPTER 4: MATERIALS AND METHODS 38 4.1 SYNTHESIS OF ELECTROACTIVE PEDOT:PSS/GELMA HYDROGEL 38 4.2 CHARACTERIZATION OF PEDOT:PSS/GELMA HYDROGEL 39 4.3 BIOCOMPATIBILITY OF PEDOT:PSS/GELMA HYDROGEL 41 4.3.1 Cytotoxicity 41 4.3.2 DNA quantification 41 4.4 ADSC PREPARATION FOR WOUND HEALING MODEL 42 4.4.1 Ethical statements 42 4.3.2 ADSC isolation 42 4.3.3 Loading of ADSC cells in the PEDOT:PSS/GelMA hydrogel 42 4.4 VALIDATION OF THE ADSC-LADEN ELECTROACTIVE PHOTOCURABLE HYDROGEL IN VIVO 43 4.4.1 Rat subcutaneous wound model 43 4.4.2 The protocol of electrical treatment 44 4.4.3 Gross observation of subcutaneous wounds 45 4.4.4 Histological and immunohistochemical evaluation of subcutaneous wounds 45 4.5 STATISTICAL ANALYSIS 46 CHAPTER 5: RESULTS 47 5.1 CHARACTERIZATION OF PEDOT:PSS/GELMA HYDROGEL 47 5.1.1 Appearance of PEDOT:PSS/GelMA hydrogel and degree of substitution 47 5.1.2 Swelling ratio 47 5.1.3 Conductivity 48 5.1.4 In vitro degradation 48 5.2 BIOCOMPATIBILITY OF PEDOT:PSS/GELMA HYDROGEL 49 5.2.1 Cytotoxicity of PEDOT:PSS/GelMA hydrogel 49 5.2.2 DNA quantification 50 5.3 THE EFFECT OF ESTIM ON THE ADSC-LADEN PEDOT:PSS/GELMA HYDROGEL TO PROMOTE WOUND HEALING 51 5.3.1 Gross observation 51 5.3.2 Histological and immunohistochemical evaluation of subcutaneous wounds 54 CHAPTER 6: DISCUSSION 56 CHAPTER 7: CONCLUSION 67 TABLES AND FIGURES 68 REFERENCE 80 | - |
dc.language.iso | en | - |
dc.title | 利用含脂肪幹細胞的聚二氧乙基噻吩:聚苯乙烯磺酸/甲基丙烯酸明膠水凝膠進行電刺激以促進傷口癒合 | zh_TW |
dc.title | Electrical Stimulation Using Adipose-Derived Stem Cell (ADSC)-Laden Poly(3,4-ethylenedioxythiophene) Polystyrene Sulfonate (PEDOT:PSS)/ Gelatin Methacrylate (GelMA) Hydrogel for Promoting Wound Healing | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 王振穎;張維仁 | zh_TW |
dc.contributor.oralexamcommittee | Chen-Ying Wang;Wei-Jen Chang | en |
dc.subject.keyword | 傷口癒合,PEDOT:PSS/GelMA水凝膠,脂肪幹細胞,電刺激,組織工程, | zh_TW |
dc.subject.keyword | wound healing,PEDOT:PSS/GelMA hydrogel,adipose-derived stem cell,electrical stimulation,tissue engineering, | en |
dc.relation.page | 97 | - |
dc.identifier.doi | 10.6342/NTU202403532 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-08-06 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 臨床牙醫學研究所 | - |
顯示於系所單位: | 臨床牙醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 13.13 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。