Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95021
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor方啓泰zh_TW
dc.contributor.advisorChi-Tai Fangen
dc.contributor.author郭子筠zh_TW
dc.contributor.authorZi-Yun Kuoen
dc.date.accessioned2024-08-26T16:17:51Z-
dc.date.available2024-08-27-
dc.date.copyright2024-08-26-
dc.date.issued2024-
dc.date.submitted2024-08-08-
dc.identifier.citation1. 行政院衛生福利部疾管署. 疾病介紹. Available from: https://www.cdc.gov.tw/Category/Page/vleOMKqwuEbIMgqaTeXG8A.
2. 行政院. 本院新聞. 感謝工具機口罩國家隊 蘇揆:以國家力量協助業者度難關; Available from: https://www.ey.gov.tw/Page/9277F759E41CCD91/a1e5f88f-5e94-4173-af30-e7aee76f8f12.
3. Liu, C.-M., et al., Strategies for supplying face masks to the population of Taiwan during the COVID-19 pandemic. BMC Public Health, 2021. 21: p. 1-9.
4. Cheng, H.-Y. and D.-P. Liu, Early Prompt Response to COVID-19 in Taiwan: Comprehensive surveillance, decisive border control, and information technology support. Journal of the Formosan Medical Association, 2022.
5. 台視新聞. 人與人的連結引遐想 案1203社交足跡廣. Available from: https://www.youtube.com/watch?v=e1jN8GWRnhU.
6. 行政院衛生福利部疾管署. 新增13例本土COVID-19病例,9例與案1203相關,4例與萬華茶藝館群聚相關. Available from: https://www.cdc.gov.tw/Category/ListContent/EmXemht4IT-IRAPrAnyG9A?uaid=J3NvQid9xJ6TmwtaXhwi-A.
7. 行政院衛生福利部疾管署. 新增207例COVID-19確診,206例本土、1例境外移入. Available from: https://www.cdc.gov.tw/Category/ListContent/EmXemht4IT-IRAPrAnyG9A?uaid=J49fbJaEG-izHhujZpvUIw.
8. 民視新聞網. 極樂萬華茶室小姐再增確診 免實名制又「玩很開」人流複雜. Available from: https://www.ftvnews.com.tw/news/detail/2021513S05M1.
9. 蔡瑩芝, 萬華茶室勞動現場記實.
10. 公視新聞網. 【年度專題】萬華疫年後/走進「老人星巴克」 看見阿公店的孤獨與哀愁. Available from: https://news.pts.org.tw/article/580004.
11. 行政院衛生福利部疾管署. 強化COVID-19第三級疫情警戒相關措施及裁罰說明,請民眾確實遵守. Available from: https://www.cdc.gov.tw/Category/ListContent/EmXemht4IT-IRAPrAnyG9A?uaid=S5NomUGuTz7MaezDJ6B2Dg.
12. Chen, Y.-H. and C.-T. Fang, Achieving COVID-19 zero without lockdown, January 2020 to March 2022: The Taiwan model explained. Journal of the Formosan Medical Association, 2023.
13. Singh, R. and R. Adhikari, Age-structured impact of social distancing on the COVID-19 epidemic in India. arXiv preprint arXiv:2003.12055, 2020.
14. Leung, N.H., Transmissibility and transmission of respiratory viruses. Nature Reviews Microbiology, 2021. 19(8): p. 528-545.
15. Lio, C.F., et al., Effectiveness of personal protective health behaviour against COVID-19. BMC Public Health, 2021. 21(1): p. 827.
16. Block, P., et al., Social network-based distancing strategies to flatten the COVID-19 curve in a post-lockdown world. Nature human behaviour, 2020. 4(6): p. 588-596.
17. Basten, M., et al., Sexual risk behaviour trajectories among MSM at risk for HIV in Amsterdam, the Netherlands. Aids, 2018. 32(9): p. 1185-1192.
18. Endo, A., et al., Heavy-tailed sexual contact networks and monkeypox epidemiology in the global outbreak, 2022. Science, 2022. 378(6615): p. 90-94.
19. Koelle, K., et al., The changing epidemiology of SARS-CoV-2. Science, 2022. 375(6585): p. 1116-1121.
20. Kong, L., et al., Compartmental structures used in modeling COVID-19: a scoping review. Infectious diseases of poverty, 2022. 11(1): p. 72.
21. Dashtbali, M. and M. Mirzaie, A compartmental model that predicts the effect of social distancing and vaccination on controlling COVID-19. Scientific Reports, 2021. 11(1): p. 8191.
22. Choi, Y., et al., Assessment of social distancing for controlling COVID-19 in Korea: an age-structured modeling approach. International journal of environmental research and public health, 2020. 17(20): p. 7474.
23. Hunter, E. and J.D. Kelleher, Adapting an agent-based model of infectious disease spread in an Irish county to COVID-19. Systems, 2021. 9(2): p. 41.
24. Gharakhanlou, N.M. and N. Hooshangi, Spatio-temporal simulation of the novel coronavirus (COVID-19) outbreak using the agent-based modeling approach (case study: Urmia, Iran). Informatics in Medicine Unlocked, 2020. 20: p. 100403.
25. Dong, T., W. Dong, and Q. Xu, Agent Simulation Model of COVID-19 Epidemic Agent-Based on GIS: A Case Study of Huangpu District, Shanghai. Int J Environ Res Public Health, 2022. 19(16).
26. Cevik, M. and S.D. Baral, Networks of SARS-CoV-2 transmission. Science, 2021. 373(6551): p. 162-163.
27. Wang, P., X. Zheng, and H. Liu, Simulation and forecasting models of COVID-19 taking into account spatio-temporal dynamic characteristics: A review. Front Public Health, 2022. 10: p. 1033432.
28. Kerr, C.C., et al., Covasim: an agent-based model of COVID-19 dynamics and interventions. PLOS Computational Biology, 2021. 17(7): p. e1009149.
29. Aleta, A., et al., Quantifying the importance and location of SARS-CoV-2 transmission events in large metropolitan areas. Proceedings of the National Academy of Sciences, 2022. 119(26): p. e2112182119.
30. WHO. Mask use in the context of COVID-19. Available from: https://www.who.int/publications-detail/advice-on-the-use-of-masks-in-the-community-during-home-care-and-in-healthcare-settings-in-the-context-of-the-novel-coronavirus-(2019-ncov)-outbreak. .
31. Jefferson, T., et al., Physical interventions to interrupt or reduce the spread of respiratory viruses. Cochrane database of systematic reviews, 2023(1).
32. Gostin, L.O., I.G. Cohen, and J.P. Koplan, Universal masking in the United States: the role of mandates, health education, and the CDC. Jama, 2020. 324(9): p. 837-838.
33. Plümper, T. and E. Neumayer, Lockdown policies and the dynamics of the first wave of the Sars-CoV-2 pandemic in Europe. Journal of European Public Policy, 2022. 29(3): p. 321-341.
34. Yamaka, W., et al., Analysis of the lockdown effects on the economy, environment, and COVID-19 spread: lesson learnt from a global pandemic in 2020. International Journal of Environmental Research and Public Health, 2022. 19(19): p. 12868.
35. 公視新聞網. 北市擬讓萬華茶室復業 12家業者違建必須自行拆除. Available from: https://news.pts.org.tw/article/538810.
36. 台視新聞網. 公布北市確診分布圖 柯文哲:每個區都有案例. Available from: https://news.ttv.com.tw/news/11005300002800W/amp.
37. CTWANT. 三重、板橋、中永和7條橋進台北「必經萬華」 通勤族想躲開需改走這2路. Available from: https://www.ctwant.com/article/117685.
38. ETtoday新聞雲. 一橋之隔!萬華街友湧板橋、三重躲疫情 恐成防疫破口. Available from: https://today.line.me/tw/v2/article/ZzmNEL.
39. Chan, T.-C., et al., Effectiveness of controlling COVID-19 epidemic by implementing soft lockdown policy and extensive community screening in Taiwan. Scientific Reports, 2022. 12(1): p. 12053.
40. Niu, K.-Y., et al., Reply to" When calculating COVID-19 incidence, mandatory PCR testing should be preferred over voluntary antigen testing". Journal of the Formosan Medical Association= Taiwan yi zhi, 2024. 123(6): p. 721-722.
41. Chen, E.Y.-T., M.C. Sachs, and P.W. Dickman, No evidence of substantial underreporting of COVID-19 deaths in Taiwan during 2020. Journal of the Formosan Medical Association, 2021. 120(9): p. 1788.
42. 李政益, 郭宏偉, and 許建邦, COVID-19 疫苗接種後對國際疫情趨勢影響之評析. 疫情報導, 2021. 37(11): p. 153-174.
43. 李政益, et al., 我國新型冠狀病毒 (SARS-CoV-2) 血清流行病學調查與長期趨勢分析研究. 疫情報導, 2023. 39(17): p. 268-284.
44. 自由時報. 《預計九月復業》萬華阿公店服務生 北市府擬造冊打疫苗. Available from: https://news.ltn.com.tw/news/life/paper/1465059.
45. 行政院衛生福利部疾管署. 傳染病統計資料查詢系統. Available from: https://nidss.cdc.gov.tw/Home/Index.
46. Hunter, E. and J.D. Kelleher, Validating and testing an agent-based model for the spread of COVID-19 in Ireland. Algorithms, 2022. 15(8): p. 270.
47. Lin, Y.-C., et al., Impact of vaccination and high-risk group awareness on the mpox epidemic in the United States, 2022–2023: a modelling study. Eclinicalmedicine, 2024. 68.
48. Hunter, E., B. Mac Namee, and J. Kelleher, An open-data-driven agent-based model to simulate infectious disease outbreaks. PloS one, 2018. 13(12): p. e0208775.
49. Kumaresan, V., et al., Fitting and validation of an agent-based model for COVID-19 case forecasting in workplaces and universities. Plos one, 2023. 18(3): p. e0283517.
50. 行政院衛生福利部疾管署. 自3月1日起,實施居家(個別)隔離「1人1戶」新制. Available from: https://www.cdc.gov.tw/Bulletin/Detail/TjBOqylLCsyZ0ALZ8-Ef3A?typeid=9.
51. Chen, Y.-H. and C.-T. Fang, Combined interventions to suppress R0 and border quarantine to contain COVID-19 in Taiwan. Journal of the Formosan Medical Association, 2021. 120(2): p. 903.
52. Niu, K.-Y., et al., SARS-CoV-2 rapid antigen testing positive rate in community testing stations as an indicator for COVID-19 epidemic trend, Taipei, Taiwan, May to August 2021. Journal of the Formosan Medical Association, 2024. 123(6): p. 716-719.
53. Caicedo-Ochoa, Y., et al., Effective Reproductive Number estimation for initial stage of COVID-19 pandemic in Latin American Countries. International Journal of Infectious Diseases, 2020. 95: p. 316-318.
54. Chen, Y.-H. and C.-T. Fang, A simple rule for interpreting COVID-19 antibody test results, by seroprevalence and vaccination status. Journal of Microbiology, Immunology, and Infection, 2022. 55(2): p. 341.
55. 衛生福利部. 早期偵測國內COVID-19病例,指揮中心持續辦理5大加強監測方案,守護民眾健康. Available from: https://www.mohw.gov.tw/cp-16-65973-1.html.
56. Huang, C., et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The lancet, 2020. 395(10223): p. 497-506.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95021-
dc.description.abstract背景與研究目標:2021年四月至七月雙北爆發一波大規模新冠疫情。疫調顯示此波疫情可能與不戴口罩的茶室接觸網絡有關。然而,現有COVID-19代理人建模研究以日常接觸為主,並未探討傳播風險存在顯著差異時,高低風險複合網絡情境下COVID-19的傳播模式,也尚未有針對特殊服務業-如萬華茶室-這類高風險接觸網絡的討論。而這樣假設傳播風險無顯著差異的建模結果,會導向支持在COVID-19疫情期間應減少所有類型的社區中人與人的互動與接觸,進而支持封城。相反地,若口罩確實有降低COVID-19傳播的效果,存在高低風險複合網絡的前提下,則防疫時僅需針對不戴口罩的茶室等高風險網絡進行控管,即可有效控制疫情,根本不需要封城。這顯示COVID-19代理人建模研究中是否需考慮高低風險複合網絡,對公共衛生上的防疫政策有重大影響。因此,本研究進行全球第一個考量高低風險複合網絡COVID-19代理人建模研究,建立一納入茶室網絡結構之代理人模型,模擬2021年四月至七月雙北新冠疫情之流行過程,並期望能以此理解茶室網絡於本土疫情傳播之角色與重要性,同時側面證實外科口罩防護之有效性。

方法:本研究於代理人模型中建立高低風險複合網絡結構,模擬2021年5月在雙北本土爆發的疫情。本研究將臺北市萬華區、新北市板橋區、中和區、三重區等四行政區作為研究區,考量各行政區的實際人口數、年齡性別結構等人口學特徵,使用三種接觸網絡結構:茶室、工作場所與家戶網絡,來表示模型中人與人的接觸型態,作為SARS-CoV-2病毒在代理人之間的傳播方式。傳染病數理模式SEIQRS模型則表示每位代理人於模型中隨時間改變的疾病狀態。模型中假設口罩防護有效,且口罩的配戴行為差異將使得茶室網絡的傳播風險顯著高於其他網絡:茶室網絡為高風險接觸,工作場所與家戶網絡為低風險接觸,以此進行模擬,估計2021年雙北本土疫情下的每日通報病例數、Rt值與血清盛行率,並使用最小平方法對每日通報病例數進行擬合。透過分層分析,本研究進一步說明疫情期間不同階段SARS-CoV-2病毒的主要傳播對象與傳播途徑。而經過敏感度分析,本研究可驗證工作與茶室網絡每日接觸者數的變動是否影響模擬結果,以及代理人模型的最佳運行次數。

結果:根據敏感度分析,本研究將20次定為最佳運行次數進行擬合。首先,代理人模型模擬結果與實際流行曲線趨勢相符。分層分析結果顯示累積至7 月31日為止,確診案例將高度集中於茶室出入者和一般勞工。其中一般勞工佔55.412%,茶室出入者則佔37.371%。儘管過半確診者為一般勞工,然而在茶室出入者中卻有高達42.1% 的人口確診:3,400名茶室出入者中便有1,450人確診,遠高於其他族群的確診率。結果亦顯示,茶室網絡Rt值高峰為4.2,且在三級警戒之前均高於1,也高於工作場所網絡和家戶網絡,因此茶室網絡不僅是疫情初期的主要傳播途徑,也使得本土疫情進入流行階段。工作場所與家戶網絡由於Rt值持續低於1,因此即便為疫情中後期的主要傳播途徑,也並不會造成第二波的本土流行。上述結果皆顯示萬華茶室與2021年5月爆發之雙北本土疫情之間存在緊密關聯,並且高風險的茶室網絡具重要的傳播作用。綜上所述,本研究的代理人模型結果可驗證2021年雙北本土疫情中存在高低風險複合網絡,即茶室網絡的傳播風險應顯著高於工作場所與家戶網絡。

結論:不戴口罩的高風險茶室接觸網絡在2021年雙北本土新冠疫情傳播過程中扮演關鍵角色。本研究結果不僅支持口罩確實有降低COVID-19傳播的效果,亦支持在COVID-19疫情期間不需要去控管所有類型的人際接觸,僅需針對不戴口罩的茶室等高風險網絡進行控管,即可有效控制疫情。
zh_TW
dc.description.abstractBackground and Research Objective: Between April and July 2021, a significant COVID-19 outbreak occurred in Taipei and New Taipei City, linked to mask-free teahouse contact networks. Existing COVID-19 agent-based modeling studies mainly focus on daily contacts and do not consider the varying probabilities of transmission in composite networks of high and low risk. This oversight supports broad interaction reductions and lockdowns. However, if masks effectively reduce transmission, managing only high-risk networks, such as teahouses, could control the outbreak without a full lockdown. This study pioneers incorporating a composite high and low-risk network into COVID-19 agent-based models, simulating the outbreak in Taipei Metropolitan Area, and aims to understand the role of teahouse networks and the effectiveness of surgical masks.

Methods: This study develops a composite network structure of high and low risk within an agent-based model to simulate the May 2021 COVID-19 outbreak in the Taipei Metropolitan Area. Focusing on Wanhua District in Taipei City and Banqiao, Zhonghe, and Sanchong Districts in New Taipei City, it incorporates demographic characteristics such as population size and age-gender structure. The model includes teahouse, workplace, and household contact networks to represent social relationships and SARS-CoV-2 transmission among agents. Using the SEIQRS epidemiological model, it tracks the changing disease states of agents over time. Assuming effective mask protection, it differentiates the probability of transmission, with teahouses as high-risk networks and workplaces and households as low-risk networks. Simulations estimate daily new diagnoses, Rt values, and seroprevalence, fitting daily cases using the least squares method. Stratified analysis identifies primary infected populations and transmission pathways at various outbreak stages. Sensitivity analysis assesses how changes in daily contacts in workplace and teahouse networks impact results and determines the optimal number of runs for the model.

Results: The agent-based model results aligned with the actual epidemic curve with values of the 20-time average. Stratified analyses showed that by July 31, confirmed cases were highly concentrated among teahouse visitors and regular workers, with regular workers accounting for 55.412% and teahouse visitors for 37.371% of the cases. Despite the majority of cases being among workers, a striking 42.1% of teahouse visitors were infected, with 1,450 out of 3,400, a rate much higher than other groups. The results also indicated that the Rt value in teahouse networks peaked at 4.2 and remained above 1 until the Level 3 alert, higher than the Rt values in workplace and household networks. Thus, the teahouse network was not only the primary transmission pathway in the early stages but also contributed to the outbreak entering the epidemic phase. In contrast, workplace and household networks, with Rt values consistently below 1, did not cause a second wave despite being main transmission pathways in the later stages. These findings demonstrate a close association between the Wanhua teahouses and the local outbreak in the Taipei Metropolitan Area in May 2021, highlighting the significant role of the high-risk teahouse network.

Conclusion: During the 2021 COVID-19 outbreak in the Taipei Metropolitan Area, mask-less, high-risk teahouse networks played a crucial role in transmission. This study supports the effectiveness of masks in reducing COVID-19 spread and suggests that controlling high-risk settings—rather than all interpersonal contacts—is sufficient for effective epidemic management.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-26T16:17:51Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-26T16:17:51Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iv
Abstract vi
第一章 背景與研究動機 1
1.1 2021年雙北疫情概述 1
1.2 文獻回顧 3
1.3 研究動機 5
1.4 研究目標 5
第二章 研究方法與資料 6
2.1 研究倫理 6
2.2 研究設計 6
2.3 研究範圍與資料 7
2.3.1 研究範圍與時間 7
2.3.2 易感人口定義 7
2.3.3 每日新增確診數 8
2.4 代理人模型設定 9
2.4.1 建模軟體 9
2.4.2 代理人的地理與人口特徵 9
2.4.3 接觸網絡設定 9
2.4.4 每日感染率 11
2.4.5 納入SEIQRS模型 12
2.4.6 介入措施之影響 12
2.4.7 模型初始狀態 13
2.5 模型擬合與驗證方法 14
2.5.1 最小平方法-每日通報病例數 14
2.5.2 Rt值 14
2.5.3 確診者與傳染途徑分層分析 14
2.5.4 血清盛行率 15
2.5.5 敏感度分析:工作與茶室網絡每日接觸者數 15
2.5.6 敏感度分析:模型運行次數 15
第三章 研究結果 16
3.1 敏感度分析結果:模型運行次數 16
3.2擬合結果 16
3.2.1 每日通報病例數結果比較 16
3.2.2 每日通報病例數-確診對象分層 17
3.2.3 Rt值-傳播途徑分層 17
3.2.4 小結 18
3.3 血清盛行率 18
3.4 敏感度分析結果:工作與茶室網絡每日接觸者數 19
第四章 討論 20
4.1主要發現 20
4.2 延伸討論:口罩無效之假設下結果 22
4.3 研究優勢與限制 23
4.4 結論與建議 24
Acknowledgement 25
參考文獻 26
圖一、2021年四月至七月全臺累積案例數前十五名之行政區 31
A. 長條圖 31
B. 圓餅圖 31
圖二、研究區於北北基地理位置示意圖 32
圖三、SEIQRS數理模型架構圖 32
圖四、敏感度分析:模型運行次數 33
圖五、模型擬合結果 33
A. 每日通報病例數 33
B. 每日通報病例數-確診對象分層 34
C. Rt值-傳播途徑分層 34
圖六、敏感度分析:工作與茶室網絡每日接觸者數 35
A. 每日通報病例數 35
B. 每日通報病例數-確診對象分層 35
C. Rt值-傳播途徑分層 36
圖七、延伸模型 36
A. 每日通報病例數 36
B. 每日通報病例數-確診對象分層 37
C. Rt值-傳播途徑分層 37
表一、代理人性別-年齡分層 38
表二、各行政區之代理人性別-年齡分層 38
表三、研究區一般勞工人口估計 39
表四、研究區符合茶室出入者年齡性別特徵之總人口數 39
表五、高低風險複合網絡 40
表六、模型參數 40
表七、代理人族群人口估計 41
表八、敏感度分析:工作與茶室網絡每日接觸者數 41
表九、延伸模型參數 42
表十、原模型與延伸模型之比較 43
-
dc.language.isozh_TW-
dc.subjectAlpha 變異株zh_TW
dc.subject新冠病毒zh_TW
dc.subject2021年雙北本土疫情zh_TW
dc.subject茶室接觸網絡zh_TW
dc.subject代理人模型zh_TW
dc.subject高低風險複合網絡zh_TW
dc.subjectTeahouse contact networken
dc.subjectProbability of transmissionen
dc.subjectAgent-based modelen
dc.subject2021 Domestic outbreak of Taipei Metropolitan Areaen
dc.subjectCOVID-19 Alpha varianten
dc.title茶室網絡在2021年四月至七月雙北新冠疫情傳播之角色:代理人模式分析zh_TW
dc.titleThe Role of Teahouse Network in the COVID-19 Outbreak in Taipei Metropolitan Area, April to July 2021: An Agent-based Modeling Studyen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.coadvisor溫在弘zh_TW
dc.contributor.coadvisorTzai-Hung Wenen
dc.contributor.oralexamcommittee黃崇源;李文宗zh_TW
dc.contributor.oralexamcommitteeChung-Yuan Huang;Wen-Chung Leeen
dc.subject.keyword新冠病毒,Alpha 變異株,茶室接觸網絡,高低風險複合網絡,代理人模型,2021年雙北本土疫情,zh_TW
dc.subject.keywordCOVID-19 Alpha variant,Teahouse contact network,Probability of transmission,Agent-based model,2021 Domestic outbreak of Taipei Metropolitan Area,en
dc.relation.page44-
dc.identifier.doi10.6342/NTU202403916-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-08-
dc.contributor.author-college公共衛生學院-
dc.contributor.author-dept流行病學與預防醫學研究所-
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf1.81 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved