Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95011
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 林靖愉 | zh_TW |
dc.contributor.advisor | Ching-Yu Lin | en |
dc.contributor.author | 陳亭羽 | zh_TW |
dc.contributor.author | Ting-Yu Chen | en |
dc.date.accessioned | 2024-08-26T16:14:30Z | - |
dc.date.available | 2024-08-27 | - |
dc.date.copyright | 2024-08-26 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-07 | - |
dc.identifier.citation | 丁政毓. (2024). 使用核磁共振儀探討健康照護人員在熱暴露下的尿液代謝體反應 國立臺灣大學]. 臺灣博碩士論文知識加值系統. 台北市. https://hdl.handle.net/11296/24ksb7
Au, A. (2018). Chapter Two - Metabolomics and Lipidomics of Ischemic Stroke. In G. S. Makowski (Ed.), Advances in Clinical Chemistry (Vol. 85, pp. 31-69). Elsevier. https://doi.org/https://doi.org/10.1016/bs.acc.2018.02.002 Bai, H., Li, T., Yu, Y., Zhou, N., Kou, H., Guo, Y., Yang, L., & Yan, P. (2021). Cytoprotective Effects of Taurine on Heat-Induced Bovine Mammary Epithelial Cells In Vitro. Cells, 10(2). https://doi.org/10.3390/cells10020258 Baliou, S., Kyriakopoulos, A. M., Goulielmaki, M., Panayiotidis, M. I., Spandidos, D. A., & Zoumpourlis, V. (2020). Significance of taurine transporter (TauT) in homeostasis and its layers of regulation (Review). Mol Med Rep, 22(3), 2163-2173. https://doi.org/10.3892/mmr.2020.11321 Barr Dana, B., Wilder Lynn, C., Caudill Samuel, P., Gonzalez Amanda, J., Needham Lance, L., & Pirkle James, L. (2005). Urinary Creatinine Concentrations in the U.S. Population: Implications for Urinary Biologic Monitoring Measurements. Environmental Health Perspectives, 113(2), 192-200. https://doi.org/10.1289/ehp.7337 Beckonert, O., Keun, H. C., Ebbels, T. M., Bundy, J., Holmes, E., Lindon, J. C., & Nicholson, J. K. (2007). Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nature protocols, 2(11), 2692-2703. https://doi.org/10.1038/nprot.2007.376 Belal, S. A., Kang, D. R., Cho, E. S. R., Park, G. H., & Shim, K. S. (2018). Taurine Reduces Heat Stress by Regulating the Expression of Heat Shock Proteins in Broilers Exposed to Chronic Heat. Brazilian Journal of Poultry Science, 20. Bell, J. D., Lee, J. A., Lee, H. A., Sadler, P. J., Wilkie, D. R., & Woodham, R. H. (1991). Nuclear magnetic resonance studies of blood plasma and urine from subjects with chronic renal failure: identification of trimethylamine-N-oxide. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1096(2), 101-107. https://doi.org/https://doi.org/10.1016/0925-4439(91)90046-C Bennett, S., Brocherie, F., Phelan, M. M., Tiollier, E., Guibert, E., Morales-Artacho, A. J., Lalire, P., Morton, J. P., Louis, J. B., & Owens, D. J. (2023). Acute heat stress amplifies exercise-induced metabolomic perturbations and reveals variation in circulating amino acids in endurance-trained males. Experimental Physiology, 108(6), 838-851. https://doi.org/https://doi.org/10.1113/EP090911 Butler-Dawson, J., Krisher, L., Yoder, H., Dally, M., Sorensen, C., Johnson, R. J., Asensio, C., Cruz, A., Johnson, E. C., Carlton, E. J., Tenney, L., Asturias, E. J., & Newman, L. S. (2019). Evaluation of heat stress and cumulative incidence of acute kidney injury in sugarcane workers in Guatemala. Int Arch Occup Environ Health, 92(7), 977-990. https://doi.org/10.1007/s00420-019-01426-3 Cao, C., Zhu, H., Yao, Y., & Zeng, R. (2022). Gut Dysbiosis and Kidney Diseases. Front Med (Lausanne), 9, 829349. https://doi.org/10.3389/fmed.2022.829349 Chapman, C. L., Hess, H. W., Lucas, R. A. I., Glaser, J., Saran, R., Bragg-Gresham, J., Wegman, D. H., Hansson, E., Minson, C. T., & Schlader, Z. J. (2021). Occupational heat exposure and the risk of chronic kidney disease of nontraditional origin in the United States. Am J Physiol Regul Integr Comp Physiol, 321(2), R141-r151. https://doi.org/10.1152/ajpregu.00103.2021 Chen, C. J., Cheng, M. C., Hsu, C. N., & Tain, Y. L. (2023). Sulfur-Containing Amino Acids, Hydrogen Sulfide, and Sulfur Compounds on Kidney Health and Disease. Metabolites, 13(6). https://doi.org/10.3390/metabo13060688 Chicas, R. C., Wang, Y., Jennifer Weil, E., Elon, L., Xiuhtecutli, N., M, C. H., Jones, D. P., J, M. S., Hertzberg, V., McCauley, L., & Liang, D. (2023). The impact of heat exposures on biomarkers of AKI and plasma metabolome among agricultural and non-agricultural workers. Environ Int, 180, 108206. https://doi.org/10.1016/j.envint.2023.108206 Cirillo, M. (2010). Evaluation of glomerular filtration rate and of albuminuria/proteinuria. J Nephrol, 23(2), 125-132. Contreras-Jodar, A., Nayan, N. H., Hamzaoui, S., Caja, G., & Salama, A. A. K. (2019). Heat stress modifies the lactational performances and the urinary metabolomic profile related to gastrointestinal microbiota of dairy goats. PLOS ONE, 14(2), e0202457. https://doi.org/10.1371/journal.pone.0202457 Dos Santos, I. F., Sheriff, S., Amlal, S., Ahmed, R. P. H., Thakar, C. V., & Amlal, H. (2019). Adenine acts in the kidney as a signaling factor and causes salt- and water-losing nephropathy: early mechanism of adenine-induced renal injury. American Journal of Physiology-Renal Physiology, 316(4), F743-F757. https://doi.org/10.1152/ajprenal.00142.2018 El Khayat, M., Halwani, D. A., Hneiny, L., Alameddine, I., Haidar, M. A., & Habib, R. R. (2022). Impacts of Climate Change and Heat Stress on Farmworkers' Health: A Scoping Review [Review]. Frontiers in Public Health, 10, 19, Article 782811. https://doi.org/10.3389/fpubh.2022.782811 Feng, Y. L., Cao, G., Chen, D. Q., Vaziri, N. D., Chen, L., Zhang, J., Wang, M., Guo, Y., & Zhao, Y. Y. (2019). Microbiome-metabolomics reveals gut microbiota associated with glycine-conjugated metabolites and polyamine metabolism in chronic kidney disease. Cell Mol Life Sci, 76(24), 4961-4978. https://doi.org/10.1007/s00018-019-03155-9 Fitria, L., Prihartono, N. A., Ramdhan, D. H., Wahyono, T. Y. M., Kongtip, P., & Woskie, S. (2020). Environmental and Occupational Risk Factors Associated with Chronic Kidney Disease of Unknown Etiology in West Javanese Rice Farmers, Indonesia. Int J Environ Res Public Health, 17(12). https://doi.org/10.3390/ijerph17124521 Flouris, A. D., Dinas, P. C., Ioannou, L. G., Nybo, L., Havenith, G., Kenny, G. P., & Kjellstrom, T. (2018). Workers' health and productivity under occupational heat strain: a systematic review and meta-analysis. The Lancet Planetary Health, 2(12), e521-e531. https://doi.org/10.1016/S2542-5196(18)30237-7 Gandhi, S., Devi, M., Rana, P., Pal, S., Tripathi, R., & Khushu, S. (2011). Urinary metabolic profiling in rats due to heat exposure using H high resolution NMR spectroscopy. Journal of Metabolomics and Systems Biology, 2, 1-9. Gatarek, P., & Kaluzna-Czaplinska, J. (2021). Trimethylamine N-oxide (TMAO) in human health. Excli j, 20, 301-319. https://doi.org/10.17179/excli2020-3239 Genton, L., Pruijm, M., Teta, D., Bassi, I., Cani, P. D., Gaïa, N., Herrmann, F. R., Marangon, N., Mareschal, J., Muccioli, G. G., Stoermann, C., Suriano, F., Wurzner-Ghajarzadeh, A., Lazarevic, V., & Schrenzel, J. (2021). Gut barrier and microbiota changes with glycine and branched-chain amino acid supplementation in chronic haemodialysis patients. J Cachexia Sarcopenia Muscle, 12(6), 1527-1539. https://doi.org/10.1002/jcsm.12781 Glaser, J., Lemery, J., Rajagopalan, B., Diaz, H. F., García-Trabanino, R., Taduri, G., Madero, M., Amarasinghe, M., Abraham, G., Anutrakulchai, S., Jha, V., Stenvinkel, P., Roncal-Jimenez, C., Lanaspa, M. A., Correa-Rotter, R., Sheikh-Hamad, D., Burdmann, E. A., Andres-Hernando, A., Milagres, T., . . . Johnson, R. J. (2016). Climate Change and the Emergent Epidemic of CKD from Heat Stress in Rural Communities: The Case for Heat Stress Nephropathy. Clinical Journal of the American Society of Nephrology, 11(8), 1472-1483. https://doi.org/10.2215/cjn.13841215 Goraya, N., Simoni, J., Sager, L. N., Madias, N. E., & Wesson, D. E. (2019). Urine citrate excretion as a marker of acid retention in patients with chronic kidney disease without overt metabolic acidosis. Kidney International, 95(5), 1190-1196. https://doi.org/10.1016/j.kint.2018.11.033 Guan, L., & Miao, P. (2020). The effects of taurine supplementation on obesity, blood pressure and lipid profile: A meta-analysis of randomized controlled trials. European Journal of Pharmacology, 885, 173533. https://doi.org/https://doi.org/10.1016/j.ejphar.2020.173533 Hodgson, D. R. (2014). CHAPTER 8 - Thermoregulation. In D. R. Hodgson, K. H. McKeever, & C. M. McGowan (Eds.), The Athletic Horse (Second Edition) (pp. 108-124). W.B. Saunders. https://doi.org/https://doi.org/10.1016/B978-0-7216-0075-8.00017-4 Holmes, E., Foxall, P. J., Spraul, M., Farrant, R. D., Nicholson, J. K., & Lindon, J. C. (1997). 750 MHz 1H NMR spectroscopy characterisation of the complex metabolic pattern of urine from patients with inborn errors of metabolism: 2-hydroxyglutaric aciduria and maple syrup urine disease. J Pharm Biomed Anal, 15(11), 1647-1659. https://doi.org/10.1016/s0731-7085(97)00066-6 Huang, C., Ma, J., & Li, A. (2020). Chapter 6 - Target levels. In H. D. Goodfellow & R. Kosonen (Eds.), Industrial Ventilation Design Guidebook (Second Edition) (pp. 227-243). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-816780-9.00006-X Jäger, R., Purpura, M., Shao, A., Inoue, T., & Kreider, R. B. (2011). Analysis of the efficacy, safety, and regulatory status of novel forms of creatine. Amino Acids, 40(5), 1369-1383. https://doi.org/10.1007/s00726-011-0874-6 Jakaria, M., Azam, S., Haque, M. E., Jo, S. H., Uddin, M. S., Kim, I. S., & Choi, D. K. (2019). Taurine and its analogs in neurological disorders: Focus on therapeutic potential and molecular mechanisms. Redox Biol, 24, 101223. https://doi.org/10.1016/j.redox.2019.101223 Jha, V., Garcia-Garcia, G., Iseki, K., Li, Z., Naicker, S., Plattner, B., Saran, R., Wang, A. Y., & Yang, C. W. (2013). Chronic kidney disease: global dimension and perspectives. Lancet, 382(9888), 260-272. https://doi.org/10.1016/s0140-6736(13)60687-x Jiang, L., Qin, X., Zhong, X., Liu, L., Jiang, L., Lu, Y., Fan, L., He, Z., & Chen, Q. (2011). Glycine-induced cytoprotection is mediated by ERK1/2 and AKT in renal cells with ATP depletion. European Journal of Cell Biology, 90(4), 333-341. https://doi.org/https://doi.org/10.1016/j.ejcb.2010.10.003 Jiménez-Uribe, A. P., Hernández-Cruz, E. Y., Ramírez-Magaña, K. J., & Pedraza-Chaverri, J. (2021). Involvement of Tricarboxylic Acid Cycle Metabolites in Kidney Diseases. Biomolecules, 11(9). https://doi.org/10.3390/biom11091259 Johnson, R. J., Wesseling, C., & Newman, L. S. (2019). Chronic Kidney Disease of Unknown Cause in Agricultural Communities. N Engl J Med, 380(19), 1843-1852. https://doi.org/10.1056/NEJMra1813869 Kenny, G. P., Notley, S. R., Flouris, A. D., & Grundstein, A. (2020). Climate Change and Heat Exposure: Impact on Health in Occupational and General Populations. In W. M. Adams & J. F. Jardine (Eds.), Exertional Heat Illness: A Clinical and Evidence-Based Guide (pp. 225-261). Springer International Publishing. https://doi.org/10.1007/978-3-030-27805-2_12 Kitchenham, B., Pearl Brereton, O., Budgen, D., Turner, M., Bailey, J., & Linkman, S. (2009). Systematic literature reviews in software engineering – A systematic literature review. Information and Software Technology, 51(1), 7-15. https://doi.org/10.1016/j.infsof.2008.09.009 Kiyatake, I., Nakamura, T., & Koide, H. (2004). Urinary Guanidinoacetic Acid Excretion as an Indicator of Gentamicin Nephrotoxicity in Rats. Renal Failure, 26(4), 339-344. https://doi.org/10.1081/JDI-120039812 Lenz, E. M., Bright, J., Wilson, I. D., Morgan, S. R., & Nash, A. F. (2003). A 1H NMR-based metabonomic study of urine and plasma samples obtained from healthy human subjects. J Pharm Biomed Anal, 33(5), 1103-1115. https://doi.org/10.1016/s0731-7085(03)00410-2 Litwack, G. (2018). Chapter 13 - Metabolism of Amino Acids. In G. Litwack (Ed.), Human Biochemistry (pp. 359-394). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-383864-3.00013-2 Love, S. A., Seegmiller, J. C., Kloss, J., & Apple, F. S. (2016). Urine Creatinine Concentrations in Drug Monitoring Participants and Hospitalized Patients. Journal of Analytical Toxicology, 40(8), 659-662. https://doi.org/10.1093/jat/bkw092 Lu, J., Shi, Y., Wang, S., Chen, H., Cai, S., & Feng, J. (2016). NMR-based metabolomic analysis of Haliotis diversicolor exposed to thermal and hypoxic stresses. Science of The Total Environment, 545-546, 280-288. https://doi.org/https://doi.org/10.1016/j.scitotenv.2015.12.071 Lucas, R. A., Epstein, Y., & Kjellstrom, T. (2014). Excessive occupational heat exposure: a significant ergonomic challenge and health risk for current and future workers. Extrem Physiol Med, 3, 14. https://doi.org/10.1186/2046-7648-3-14 Mallappallil, M., Friedman, E. A., Delano, B. G., McFarlane, S. I., & Salifu, M. O. (2014). Chronic kidney disease in the elderly: evaluation and management. Clin Pract (Lond), 11(5), 525-535. https://doi.org/10.2217/cpr.14.46 Menni, C., Zhu, J., Le Roy, C. I., Mompeo, O., Young, K., Rebholz, C. M., Selvin, E., North, K. E., Mohney, R. P., Bell, J. T., Boerwinkle, E., Spector, T. D., Mangino, M., Yu, B., & Valdes, A. M. (2020). Serum metabolites reflecting gut microbiome alpha diversity predict type 2 diabetes. Gut Microbes, 11(6), 1632-1642. https://doi.org/10.1080/19490976.2020.1778261 Minogue, E., Cunha, P. P., Wadsworth, B. J., Grice, G. L., Sah-Teli, S. K., Hughes, R., Bargiela, D., Quaranta, A., Zurita, J., Antrobus, R., Velica, P., Barbieri, L., Wheelock, C. E., Koivunen, P., Nathan, J. A., Foskolou, I. P., & Johnson, R. S. (2023). Glutarate regulates T cell metabolism and anti-tumour immunity. Nature Metabolism, 5(10), 1747-1764. https://doi.org/10.1038/s42255-023-00855-2 Monteiro, M. S., Barros, A. S., Pinto, J., Carvalho, M., Pires-Luís, A. S., Henrique, R., Jerónimo, C., Bastos, M. d. L., Gil, A. M., & Guedes de Pinho, P. (2016). Nuclear Magnetic Resonance metabolomics reveals an excretory metabolic signature of renal cell carcinoma. Scientific Reports, 6(1), 37275. https://doi.org/10.1038/srep37275 Muhle-Goll, C., Eisenmann, P., Luy, B., Kölker, S., Tönshoff, B., Fichtner, A., & Westhoff, J. H. (2020). Urinary NMR Profiling in Pediatric Acute Kidney Injury-A Pilot Study. Int J Mol Sci, 21(4). https://doi.org/10.3390/ijms21041187 Murakami, S., & Yamori, Y. (2013). Chapter 13 - Taurine and Longevity – Preventive Effect of Taurine on Metabolic Syndrome. In R. R. Watson & V. R. Preedy (Eds.), Bioactive Food as Dietary Interventions for the Aging Population (pp. 159-171). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-397155-5.00027-1 Nerbass, F. B., Pecoits-Filho, R., Clark, W. F., Sontrop, J. M., McIntyre, C. W., & Moist, L. (2017). Occupational Heat Stress and Kidney Health: From Farms to Factories. Kidney Int Rep, 2(6), 998-1008. https://doi.org/10.1016/j.ekir.2017.08.012 Occupational Safety and Health Administration, M. (2023). Guidelines for the Prevention of Thermal Hazards for Workers Working Outdoors in High Temperatures. In. Pan, C., Bai, X., Fan, L., Ji, Y., Li, X., & Chen, Q. (2005). Cytoprotection by glycine against ATP-depletion-induced injury is mediated by glycine receptor in renal cells. Biochem J, 390(Pt 2), 447-453. https://doi.org/10.1042/bj20050141 Posada-Ayala, M., Zubiri, I., Martin-Lorenzo, M., Sanz-Maroto, A., Molero, D., Gonzalez-Calero, L., Fernandez-Fernandez, B., de la Cuesta, F., Laborde, C. M., Barderas, M. G., Ortiz, A., Vivanco, F., & Alvarez-Llamas, G. (2014). Identification of a urine metabolomic signature in patients with advanced-stage chronic kidney disease. Kidney International, 85(1), 103-111. https://doi.org/10.1038/ki.2013.328 Prot-Bertoye, C., Vallet, M., & Houillier, P. (2019). Urinary citrate: helpful to predict acid retention in CKD patients? Kidney International, 95(5), 1020-1022. https://doi.org/https://doi.org/10.1016/j.kint.2019.01.019 Qiu, S., Cai, Y., Yao, H., Lin, C., Xie, Y., Tang, S., & Zhang, A. (2023). Small molecule metabolites: discovery of biomarkers and therapeutic targets. Signal Transduct Target Ther, 8(1), 132. https://doi.org/10.1038/s41392-023-01399-3 Sade, D., Shriki, O., Cuadros-Inostroza, A., Tohge, T., Semel, Y., Haviv, Y., Willmitzer, L., Fernie, A. R., Czosnek, H., & Brotman, Y. (2015). Comparative metabolomics and transcriptomics of plant response to Tomato yellow leaf curl virus infection in resistant and susceptible tomato cultivars. Metabolomics, 11(1), 81-97. https://doi.org/10.1007/s11306-014-0670-x Santiago-Hernandez, A., Martinez, P. J., Martin-Lorenzo, M., Ruiz-Hurtado, G., Barderas, M. G., Segura, J., Ruilope, L. M., & Alvarez-Llamas, G. (2020). Differential metabolic profile associated with the condition of normoalbuminuria in the hypertensive population. Nefrología (English Edition), 40(4), 439-445. https://doi.org/https://doi.org/10.1016/j.nefroe.2020.08.003 Sato, Y., Roncal-Jimenez, C. A., Andres-Hernando, A., Jensen, T., Tolan, D. R., Sanchez-Lozada, L. G., Newman, L. S., Butler-Dawson, J., Sorensen, C., Glaser, J., Miyazaki, M., Diaz, H. F., Ishimoto, T., Kosugi, T., Maruyama, S., Garcia, G. E., Lanaspa, M. A., & Johnson, R. J. (2019). Increase of core temperature affected the progression of kidney injury by repeated heat stress exposure. Am J Physiol Renal Physiol, 317(5), F1111-f1121. https://doi.org/10.1152/ajprenal.00259.2019 Tomlinson, J. A. P., & Wheeler, D. C. (2017). The role of trimethylamine N-oxide as a mediator of cardiovascular complications in chronic kidney disease. Kidney International, 92(4), 809-815. https://doi.org/https://doi.org/10.1016/j.kint.2017.03.053 Tounta, V., Liu, Y., Cheyne, A., & Larrouy-Maumus, G. (2021). Metabolomics in infectious diseases and drug discovery. Mol Omics, 17(3), 376-393. https://doi.org/10.1039/d1mo00017a Uyanga, V. A., Oke, E. O., Amevor, F. K., Zhao, J., Wang, X., Jiao, H., Onagbesan, O. M., & Lin, H. (2022). Functional roles of taurine, L-theanine, L-citrulline, and betaine during heat stress in poultry. Journal of Animal Science and Biotechnology, 13(1), 23. https://doi.org/10.1186/s40104-022-00675-6 Velasquez, M. T., Ramezani, A., Manal, A., & Raj, D. S. (2016). Trimethylamine N-Oxide: The Good, the Bad and the Unknown. Toxins (Basel), 8(11). https://doi.org/10.3390/toxins8110326 Viant, M. R. (2003). Improved methods for the acquisition and interpretation of NMR metabolomic data. Biochem Biophys Res Commun, 310(3), 943-948. https://doi.org/10.1016/j.bbrc.2003.09.092 Wang, Z., Zhang, J., Wang, L., Li, W., Chen, L., Li, J., Zhao, D., Zhang, H., & Guo, X. (2018). Glycine mitigates renal oxidative stress by suppressing Nox4 expression in rats with streptozotocin-induced diabetes. Journal of Pharmacological Sciences, 137(4), 387-394. https://doi.org/https://doi.org/10.1016/j.jphs.2018.08.005 Wishart, D. S., Guo, A., Oler, E., Wang, F., Anjum, A., Peters, H., Dizon, R., Sayeeda, Z., Tian, S., Lee, B. L., Berjanskii, M., Mah, R., Yamamoto, M., Jovel, J., Torres-Calzada, C., Hiebert-Giesbrecht, M., Lui, V. W., Varshavi, D., Varshavi, D., . . . Gautam, V. (2022). HMDB 5.0: the Human Metabolome Database for 2022. Nucleic Acids Res, 50(D1), D622-d631. https://doi.org/10.1093/nar/gkab1062 Xia, B., Wu, W., Fang, W., Wen, X., Xie, J., & Zhang, H. (2022). Heat stress-induced mucosal barrier dysfunction is potentially associated with gut microbiota dysbiosis in pigs. Animal Nutrition, 8, 289-299. https://doi.org/https://doi.org/10.1016/j.aninu.2021.05.012 Yang, Q., Su, S., Luo, N., & Cao, G. (2024). Adenine-induced animal model of chronic kidney disease: current applications and future perspectives. Ren Fail, 46(1), 2336128. https://doi.org/10.1080/0886022x.2024.2336128 Yin, M., Zhong, Z., Connor, H. D., Bunzendahl, H., Finn, W. F., Rusyn, I., Li, X., Raleigh, J. A., Mason, R. P., & Thurman, R. G. (2002). Protective effect of glycine on renal injury induced by ischemia-reperfusion in vivo. Am J Physiol Renal Physiol, 282(3), F417-423. https://doi.org/10.1152/ajprenal.00011.2001 Zhao, L., Zhang, H., Yang, Y., Zheng, Y., Dong, M., Wang, Y., Bai, G., Ye, X., Yan, Z., & Gao, H. (2014). Serum metabonomic analysis of protective effects of Curcuma aromatica oil on renal fibrosis rats. PLOS ONE, 9(9), e108678. https://doi.org/10.1371/journal.pone.0108678 Zhao, Y.-Y., Liu, J., Cheng, X.-L., Bai, X., & Lin, R.-C. (2012). Urinary metabonomics study on biochemical changes in an experimental model of chronic renal failure by adenine based on UPLC Q-TOF/MS. Clinica Chimica Acta, 413(5), 642-649. https://doi.org/https://doi.org/10.1016/j.cca.2011.12.014 Zixin, Y., Lulu, C., Xiangchang, Z., Qing, F., Binjie, Z., Chunyang, L., Tai, R., & Dongsheng, O. (2022). TMAO as a potential biomarker and therapeutic target for chronic kidney disease: A review. Front Pharmacol, 13, 929262. https://doi.org/10.3389/fphar.2022.929262 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95011 | - |
dc.description.abstract | 隨著全球氣溫持續上升,極端高溫事件變得更加頻繁和嚴重。熱暴露對戶外工作者健康的不利影響成為職業健康問題,特別是在重體力勞動和水分不足的情況下。許多文獻顯示,由於腎臟的易感性,熱壓力可能導致不明原因的慢性腎臟病。與其他職業相比,農民可能更容易受到熱壓力的影響,因為他們從事重體力勞動,體內產生的代謝熱和周圍環境的外部熱量共同作用,導致熱危害的風險增加。
本研究利用基於核磁共振的代謝體學方法研究農民與非農民的尿液代謝體變化。研究對象為在雲林彰化基督教醫院做健康檢查的76位農民和38位非農民,共114人。其中1人沒有提供尿液檢體,共113個尿液樣本。經過圖譜前處理後,排除17個可能影響結果的異常值,包含8個高糖尿異常、8個圖譜品質不佳和1個乳酸過高,最後共96個尿液樣本。接著將人群依照不同因子分類到不同的組別,進行多變量和單變量分析。目的是探討與環境熱壓力相關的關鍵尿液代謝物及其對腎臟可能產生的不良健康影響,並提高我們對高暴露族群熱壓力對代謝影響的了解。 多變量分析結果顯示農民與非農民的尿液代謝物存在顯著差異。單變量分析結果顯示,農民相較於非農民,尿液代謝物的濃度有顯著變化,包括creatinine的降低;taurine和trimethylamine N-oxide (TMAO)的增加。Taurine和TMAO的顯著增加與先前對醫護人員熱暴露下的尿液代謝體研究發現一致。我們的研究指出taurine和TMAO可能和熱暴露具有相關性的可能。在重體力活動的組別也有觀察到類似的代謝變化。因此造成農民與非農民差異的可能原因是從事重體力勞動。另外,根據我們目前的數據,guanidoacetate可能有潛力成為衡量熱暴露的生物標記,因為guanidoacetate的增加與戶外工作時間的增加有相關,減少則是和CKD-EPI相關,顯示guanidoacetate與腎臟傷害可能存在關聯。 這項非標的代謝體學研究發現,暴露熱的農民和沒有暴露熱的非農民之間的尿液代謝模式有顯著差異。這些資訊可能表明潛在的健康影響,並為早期診斷提供分子資訊。另外,我們發現了guanidoacetate可能是潛在的生物標記,它可能與腎損傷之間存在潛在關聯。未來的研究可以更深入地探索guanidoacetate在熱壓力調節的角色。 | zh_TW |
dc.description.abstract | As global temperatures continue to rise and extreme heat events become more frequent and severe, the adverse health effects of heat stress on outdoor workers have become an occupational health issue, particularly under conditions of physical exertion and inadequate hydration. Previous literatures have revealed that heat stress can cause chronic kidney disease of unknown etiology (CKDu) due to the susceptibility of the kidney. Compared to other occupations, farmers are more susceptible to heat stress. This may be due to their heavy physical labor, which results in a high risk of heat stress caused by the combined effects of metabolic heat generated by the body and external heat from the surrounding environment.
Nuclear magnetic resonance (NMR)-based metabolomics was used to investigate urinary metabolites in farmers and non-farmers. The study population were 114 participants with 76 farmers and 38 non-farmers in health examinations at Yunlin Christian Hospital. One participant did not provide a urine sample, a total of 113 urine samples were collected. After spectral processing, 17 outliers that might affect the results were excluded, including 8 with abnormally high glucose levels, 8 with poor spectral quality, and 1 with high lactate levels, resulting in a total of 96 urine samples. The population was then classified into different groups based on various factors, and multivariate and univariate analyses were performed. We examined critical urinary metabolites related to environmental heat stress and their possible adverse health effects on the kidney. The goal is to improve our understanding of the metabolic mechanisms of heat stress in highly exposed populations. The results of multivariate analysis revealed that there were significant differences in urinary metabolites between farmers and non-farmers in the partial least squares discriminant analysis model. In addition, independent t-tests results showed that compared with non-farmers, decreased creatinine level and increased taurine and trimethylamine N-oxide (TMAO) levels were found in the urine of farmers. Increased taurine and TMAO were consistent with previous findings on urinary metabolites in healthcare workers exposed to heat. Our study raised the possibility that taurine and TMAO might be related to heat exposure. In addition, similar metabolic changes were observed in the heavy physical labor group. The possible reason for the difference between farmers and non-farmers might be engaged in heavy physical labor. Additionally, guanidoacetate may have the potential to become a biomarker for measuring heat exposure. This was because an increase in guanidoacetate was correlated with longer outdoor working hours, whereas its decrease was associated with chronic kidney disease epidemiology collaboration (CKD-EPI). This suggests a possible link between guanidoacetate and kidney injury. This untargeted metabolomics study revealed significant differences in urinary metabolic patterns between farmers exposed to heat and non-farmers not exposed to heat. This information might indicate adverse health effects and provide molecular information for early diagnosis. In addition, we found that guanidoacetate may be a potential biomarker association with renal injury. Future studies could further examine the role of guanidoacetate in regulation of heat stress. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-26T16:14:30Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-26T16:14:30Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii Abstract v Content vii Figure Index ix Table Index x Chapter 1 Introduction 1 1.1 Background 1 1.1.1 Heat stress 1 1.1.2 Heat stress-induced kidney disease 2 1.2 Nuclear magnetic resonance (NMR)-based metabolomics 4 1.3 Previous studies on heat stress using metabolomics 5 1.4 Study objectives 6 Chapter 2 Materials and methods 8 2.1 Study population (from Dr. Hsiao Yu Yang’s group) 9 2.2 Sample collection 10 2.3 Sample preparation for NMR measurement 10 2.4 1H NMR spectral acquisition 11 2.5 NMR spectral processing 11 2.6 Metabolite identification 12 2.7 Statistical analysis 12 Chapter 3 Results 14 3.1 Variation of urinary metabolomes within all participants 14 3.2 Comparison of urinary metabolomes between farmers and non-farmers 15 3.3 Comparison of urinary metabolomes in heavy-work and no-heavy-work groups 17 3.4 Comparison of urinary metabolomes based on different outdoor time group 18 3.4.1 Outdoor time above or below 8 hours 18 3.4.2 Outdoor time above or below median hours 19 3.4.3 Outdoor time <4 or 4~8 or ≥8 hours 19 3.5 Comparison of urinary metabolomes in CKD and non-CKD groups 20 3.5.1 CKD vs non-CKD based on MDRD 20 3.5.2 CKD vs non-CKD based on CKD-EPI 21 Chapter 4 Discussion 22 4.1 Urinary metabolic variation between farmers and non-farmers groups 22 4.1.1 Increased Taurine and TMAO in farmers 22 4.2 Urinary metabolic variation between heavy-work and non-heavy-work groups 25 4.3 Outdoor working hours on urinary metabolic changes 26 4.3.1 Increased guanidoacetate along with increased outdoor working hours 26 4.3.2 Decreased glutarate and phenylalanine in the group of more than 8 hours outdoor of working time 27 4.4 CKD-EPI-related metabolic changes 27 4.5 Study contribution and implication 30 4.6 Study limitation 31 4.7 Conclusion 32 References 33 Figures 41 Tables 55 | - |
dc.language.iso | en | - |
dc.title | 利用代謝體學揭示農民尿液代謝模式與熱危害暴露之間的相關性 | zh_TW |
dc.title | Revealing the Association between Urinary Metabolic Patterns and Heat Stress Exposure in Farmers by Metabolomics | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 楊孝友;劉貞佑;羅宇軒;李昇翰 | zh_TW |
dc.contributor.oralexamcommittee | Hsiao-Yu Yang;Chen-Yu Liu;Yu-Syuan Luo;Sheng-Han Lee | en |
dc.subject.keyword | 代謝體學,熱應力,農民,尿液,腎臟, | zh_TW |
dc.subject.keyword | metabolomics,heat stress,farmers,urine,kidney, | en |
dc.relation.page | 64 | - |
dc.identifier.doi | 10.6342/NTU202401131 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-08-07 | - |
dc.contributor.author-college | 公共衛生學院 | - |
dc.contributor.author-dept | 環境與職業健康科學研究所 | - |
Appears in Collections: | 環境與職業健康科學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-112-2.pdf Restricted Access | 5.48 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.