請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95010
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃正雅 | zh_TW |
dc.contributor.advisor | Cheng-Ya Huang | en |
dc.contributor.author | 黃淞徽 | zh_TW |
dc.contributor.author | Sung-Hui Huang | en |
dc.date.accessioned | 2024-08-26T16:14:10Z | - |
dc.date.available | 2024-08-27 | - |
dc.date.copyright | 2024-08-26 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-08 | - |
dc.identifier.citation | Kasahara S, Saito H. Effect of loading parameters on motor performance during a dynamic weight-shift task. Gait Posture. 2015;41:100-105.
Beckley DJ, Panzer VP, Remler MP, Ilog LB, Bloem BR. Clinical correlates of motor performance during paced postural tasks in Parkinson's disease. J Neurol Sci. 1995;132:133-138. Jonsson E, Henriksson M, Hirschfeld H. Age-related differences in postural adjustments in connection with different tasks involving weight transfer while standing. Gait Posture. 2007;26:508-515. Conradsson D, Paquette C, Franzén E. Medio-lateral stability during walking turns in older adults. PLoS One. 2018;13:e0198455. Inkster LM, Eng JJ. Postural control during a sit-to-stand task in individuals with mild Parkinson's disease. Exp Brain Res. 2004;154:33-38. Weaver TB, Robinovitch SN, Laing AC, Yang Y. Falls and Parkinson's Disease: evidence from video recordings of actual fall events. J Am Geriatr Soc. 2016;64:96-101. Oude Nijhuis LB, Allum JH, Nanhoe-Mahabiew W, Bloem BR. Influence of perturbation velocity on balance control in Parkinson's disease. PloS one, 2014;9:e86650. Dijkstra BW, Gilat M, Cofré Lizama LE, et al. Impaired weight-shift amplitude in people with Parkinson's Disease with freezing of gait. J Parkinsons Dis. 2021;11:1367-1380. Prediger RD, Matheus FC, Schwarzbold ML, Lima MM, Vital MA. Anxiety in Parkinson's disease: a critical review of experimental and clinical studies. Neuropharmacology. 2012;62:115-124. Nègre-Pagès L, Grandjean H, Lapeyre-Mestre M, Montastruc JL, Fourrier A, Lépine JP, Rascol O; DoPaMiP Study Group. Anxious and depressive symptoms in Parkinson's disease: the French cross-sectional DoPaMiP study. Mov Disord. 2010;30;25:157-166. Chang YP, Chien CF, Hsieh SW, Huang LC, Lin CF, Hsu CC, Yang YH. Prevalence and risk factors of neuropsychiatric symptoms in institutionalized patients with Parkinson's Disease in Taiwan: a nationwide observational study. Healthcare. 2023;13;11:258. Burn DJ, Landau S, Hindle JV, Samuel M, Wilson KC, Hurt CS, Brown RG; PROMS-PD Study Group. Parkinson's disease motor subtypes and mood. Mov Disord. 2012;27:379-386. Coakeley S, Martens KE, Almeida QJ. Management of anxiety and motor symptoms in Parkinson's disease. Expert Rev Neurother. 2014;14:937-946. Siemers ER, Shekhar A, Quaid K, Dickson H. Anxiety and motor performance in Parkinson's disease. Mov Disord. 1993;8:501-506. Jazaeri SZ, Azad A, Mehdizadeh H, Habibi SA, Mandehgary Najafabadi M, Saberi ZS, Rahimzadegan H, Moradi S, Behzadipour S, Parnianpour M, Taghizadeh G, Khalaf K. The effects of anxiety and external attentional focus on postural control in patients with Parkinson's disease. PLoS One. 2018;1;13:e0192168. Ehgoetz Martens KA, Lefaivre SC, Beck EN, Chow R, Pieruccini-Faria F, Ellard CG, Almeida QJ. Anxiety provokes balance deficits that are selectively dopa-responsive in Parkinson's disease. Neuroscience. 2017;6;340:436-444. Carey G, Görmezoğlu M, de Jong JJA, et al. Neuroimaging of anxiety in Parkinson's Disease: a systematic review. Mov Disord. 2021;36:327-39. Pontone GM, Mills KA. Optimal treatment of depression and anxiety in Parkinson's Disease. Am J Geriatr Psychiatry. 2021;29:530-540. Ferreira RM, Alves WMGDC, de Lima TA, et al. The effect of resistance training on the anxiety symptoms and quality of life in elderly people with Parkinson's disease: a randomized controlled trial. Arq Neuropsiquiatr. 2018;76:499-506. Kwok JYY, Kwan JCY, Auyeung M, et al. Effects of mindfulness yoga vs stretching and resistance training exercises on anxiety and depression for people with Parkinson Disease: a randomized clinical trial. JAMA Neurol. 2019;76:755-763. Zheng HB, Liu B, Shen J, Xie F, Ji QM, Zhu XY. Non-invasive brain stimulation for treating psychiatric symptoms in Parkinson's disease: a systematic review and meta-analysis. J Clin Neurosci. 2022;106:83-90. Bremner JD, Gurel NZ, Wittbrodt MT, et al. Application of noninvasive vagal nerve stimulation to stress-related psychiatric disorders. J Pers Med. 2020;10:119. Noble LJ, Meruva VB, Hays SA, Rennaker RL, Kilgard MP, McIntyre CK. Vagus nerve stimulation promotes generalization of conditioned fear extinction and reduces anxiety in rats. Brain Stimul. 2019;12:9-18. Shivaswamy T, Souza RR, Engineer CT, McIntyre CK. Vagus Nerve Stimulation as a treatment for fear and anxiety in individuals with Autism Spectrum Disorder. J Psychiatr Brain Sci. 2022;7(4):e220007. Garcia RG, Cohen JE, Stanford AD, et al. Respiratory-gated auricular vagal afferent nerve stimulation (RAVANS) modulates brain response to stress in major depression. J Psychiatr Res. 2021;142:188-197. Yap JYY, Keatch C, Lambert E, Woods W, Stoddart PR, Kameneva T. Critical review of transcutaneous vagus nerve stimulation: challenges for translation to clinical practice. Front Neurosci. 2020;28;14:284. Johnson RL, Wilson CG. A review of vagus nerve stimulation as a therapeutic intervention. J Inflamm Res. 2018;16;11:203-213. Burger AM, Van der Does W, Thayer JF, Brosschot JF, Verkuil B. Transcutaneous vagus nerve stimulation reduces spontaneous but not induced negative thought intrusions in high worriers. Biol Psychol. 2019;142:80-89. Sanchez-Perez JA, Gazi AH, Rahman FN, et al. Transcutaneous auricular vagus nerve stimulation and median nerve stimulation reduce acute stress in young healthy adults: a single-blind sham-controlled crossover study. Front Neurosci. 2023;17:1213982. Woodworth RS. The accuracy of voluntary movement. Psycho Rev. 1899;3:1-119. Fitts PM. The information capacity of the human motor system in controlling the amplitude of movement. J Exp Psychol Gen. 1992;121(3):262-269. Mazzoni P, Hristova A, Krakauer JW. Why don't we move faster? Parkinson's disease, movement vigor, and implicit motivation. J Neurosci. 2007;4;27:7105-7116. Okuuchi S, Tani K, Kushiro K. Temporal properties of the speed-accuracy trade-off for arm-pointing movements in various directions around the body. PLoS One. 2023;18:e0291715. Al Borno M, Vyas S, Shenoy KV, Delp SL. High-fidelity musculoskeletal modeling reveals that motor planning variability contributes to the speed-accuracy tradeoff. Elife. 2020;9:e57021. Huang CY, Su JH, Hwang IS. Rate control and quality assurance during rhythmic force tracking. Behav Brain Res. 2014;259:186-195. Almeida QJ, Wishart LR, Lee TD. Bimanual coordination deficits with Parkinson's disease: the influence of movement speed and external cueing. Mov Disord. 2002;17:30-37. Schrag A, Choudhury M, Kaski D, Gallagher DA. Why do patients with Parkinson's disease fall? A cross-sectional analysis of possible causes of falls. NPJ Parkinsons Dis. 2015;1:15011. Kasahara S, Saito H. Effect of loading parameters on motor performance during a dynamic weight-shift task. Gait Posture. 2015;41:100-105. Beckley DJ, Panzer VP, Remler MP, Ilog LB, Bloem BR. Clinical correlates of motor performance during paced postural tasks in Parkinson's disease. J Neurol Sci. 1995;132:133-138.. Jonsson E, Henriksson M, Hirschfeld H. Age-related differences in postural adjustments in connection with different tasks involving weight transfer while standing. Gait Posture. 2007;26:508-515. Conradsson D, Paquette C, Franzén E. Medio-lateral stability during walking turns in older adults. PLoS One. 2018;13(6):e0198455. Weaver TB, Robinovitch SN, Laing AC, Yang Y. Falls and Parkinson's Disease: evidence from video recordings of actual fall events. J Am Geriatr Soc. 2016;64:96-101. Oude Nijhuis LB, Allum JH, Nanhoe-Mahabiew W, Bloem BR. Influence of perturbation velocity on balance control in Parkinson's disease. PloS one, 2014;9:e86650. Adkin AL, Frank JS, Carpenter MG, Peysar GW. Postural control is scaled to level of postural threat. Gait Posture. 2000;12:87-93. Carpenter MG, Frank JS, Silcher CP, Peysar GW. The influence of postural threat on the control of upright stance. Exp Brain Res. 2001;138:210-218. Johnson KJ, Watson AM, Tokuno CD, Carpenter MG, Adkin AL. The effects of distraction on threat-related changes in standing balance control. Neurosci Lett. 2020;18;716:134635. Hauck LJ, Carpenter MG, Frank JS. Task-specific measures of balance efficacy, anxiety, and stability and their relationship to clinical balance performance. Gait Posture. 2008;27:676-682. Huffman JL, Horslen BC, Carpenter MG, Adkin AL. Does increased postural threat lead to more conscious control of posture? Gait Posture. 2009;30:528-532. Bolmont B, Gangloff P, Vouriot A, Perrin PP. Mood states and anxiety influence abilities to maintain balance control in healthy human subjects. Neurosci Lett. 2002;23;329:96-100. Ohno H, Wada M, Saitoh J, Sunaga N, Nagai M. The effect of anxiety on postural control in humans depends on visual information processing. Neurosci Lett. 2004;24;364:37-39. Wada M, Sunaga N, Nagai M. Anxiety affects the postural sway of the antero-posterior axis in college students. Neurosci Lett. 2001; 20;302:157-159. Prediger RD, Matheus FC, Schwarzbold ML, Lima MM, Vital MA. Anxiety in Parkinson's disease: a critical review of experimental and clinical studies. Neuropharmacology. 2012;62:115-124. Burn DJ, Landau S, Hindle JV, Samuel M, Wilson KC, Hurt CS, Brown RG; PROMS-PD Study Group. Parkinson's disease motor subtypes and mood. Mov Disord. 2012;27:379-386. Coakeley S, Martens KE, Almeida QJ. Management of anxiety and motor symptoms in Parkinson's disease. Expert Rev Neurother. 2014;14:937-946. Siemers ER, Shekhar A, Quaid K, Dickson H. Anxiety and motor performance in Parkinson's disease. Mov Disord. 1993;8:501-506. Ehgoetz Martens KA, Silveira CRA, Intzandt BN, Almeida QJ. Overload from anxiety: a non-motor cause for gait impairments in Parkinson's Disease. J Neuropsychiatry Clin Neurosci. 2018;30:77-80. Ehgoetz Martens KA, Ellard CG, Almeida QJ. Anxiety-provoked gait changes are selectively dopa-responsive in Parkinson's disease. Eur J Neurosci. 2015;42:2028-2035. Hung YT, Wu RM, Huang CY. Differentiation in theta and gamma activation in weight-shifting learning between people with Parkinson's disease of different anxiety severities. Geroscience. 2024;18. Dissanayaka NN, Torbey E, Pachana NA. Anxiety rating scales in Parkinson's disease: a critical review updating recent literature. Int Psychogeriatr. 2015;27:1777-1784. Beck AT, Epstein N, Brown G, Steer RA. An inventory for measuring clinical anxiety: psychometric properties. J Consult Clin Psychol. 1988;56:893-897. Leentjens AF, Dujardin K, Marsh L, Richard IH, Starkstein SE, Martinez-Martin P. Anxiety rating scales in Parkinson's disease: a validation study of the Hamilton anxiety rating scale, the Beck anxiety inventory, and the hospital anxiety and depression scale. Mov Disord. 2011;15;26:407-415. Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand. 1983;67(6):361-370. Hamilton M. The assessment of anxiety states by rating. Br J Med Psychol. 1959;32:50-55. Spielberger CD. Manual for the state-trait-anxiety inventory, Consulting Psychologists Press. 1983. Kvaal K, Ulstein I, Nordhus IH, Engedal K. The Spielberger State-Trait Anxiety Inventory (STAI): the state scale in detecting mental disorders in geriatric patients. Int J Geriatr Psychiatry. 2005 Jul;20(7):629-634. Leentjens AF, Dujardin K, Marsh L, Martinez-Martin P, Richard IH, Starkstein SE, Weintraub D, Sampaio C, Poewe W, Rascol O, Stebbins GT, Goetz CG. Anxiety rating scales in Parkinson's disease: critique and recommendations. Mov Disord. 2008;30;23:2015-2025. Leentjens AF, Dujardin K, Pontone GM, Starkstein SE, Weintraub D, Martinez-Martin P. The Parkinson Anxiety Scale (PAS): development and validation of a new anxiety scale. Mov Disord. 2014;29:1035-1043. Pontone GM, Dissanayka N, Apostolova L, Brown RG, Dobkin R, Dujardin K, Friedman JH, Leentjens AFG, Lenze EJ, Marsh L, Mari L, Monchi O, Richard IH, Schrag A, Strafella AP, Vernaleo B, Weintraub D, Mari Z. Report from a multidisciplinary meeting on anxiety as a non-motor manifestation of Parkinson's disease. NPJ Parkinsons Dis. 2019;11;5:30. Najström M, Jansson B. Skin conductance responses as predictor of emotional responses to stressful life events. Behav Res Ther. 2007;45:2456-2463. Centifanti LCM, Gillespie SM, Thomson ND. Skin conductance responses to a discrete threat in virtual reality: associations with psychopathy and anxiety. J Psychopathol Behav Assess. 2022;44:39-50. Boucsein W. Electrodermal activity. 2nd ed. New York: Springer. 2012 Thomos PE, Korr IM. Relationship between sweat gland activity and electrical resistance of the skin. J Appl Physiol. 1957;10:505-510. Critchley HD, Elliott R, Mathias CJ, Dolan RJ. Neural activity relating to generation and representation of galvanic skin conductance responses: a functional magnetic resonance imaging study. J Neurosci. 2000;15;20:3033-3040. Bradley MM, Codispoti M, Cuthbert BN, Lang PJ. Emotion and motivation I: defensive and appetitive reactions in picture processing. Emotion. 2001;1:276-298. Kim DJ, Kim H, Kim K, Kim MJ, Jeon HJ. Association between anxiety and skin conductance according to the intensity of shaking of virtual reality images. Front Psychiatry. 2023;3;14:1196767. Croft RJ, Gonsalvez CJ, Gander J, Lechem L, Barry RJ. Differential relations between heart rate and skin conductance, and public speaking anxiety. J Behav Ther Exp Psychiatry. 2004;35:259-271. Wang CA, Baird T, Huang J, Coutinho JD, Brien DC, Munoz DP. Arousal effects on pupil size, heart Rate, and skin conductance in an emotional face task. Front Neurol. 2018;3;9:1029. Figner B, Murphy RO. Using skin conductance in judgment and decision making research. New York, NY: Psychology Press. 2011. Frith CD, Allen HA. The skin conductance orienting response as an index of attention. Biol Psychol. 1983;17:27-39. Hyde J, Ryan KM, Waters AM. Psychophysiological markers of fear and anxiety. Curr Psychiatry Rep. 2019;4;21:56. Ehgoetz Martens KA, Ellard CG, Almeida QJ. Evaluating the link between dopaminergic treatment, gait impairment, and anxiety in Parkinson's disease. Mov Disord Clin Pract. 2016;9;3:389-394. Khatri DK, Choudhary M, Sood A, Singh SB. Anxiety: An ignored aspect of Parkinson's disease lacking attention. Biomed Pharmacother. 2020;131:110776. Blier P, Steinberg S, Chaput Y, de Montigny C. Electrophysiological assessment of putative antagonists of 5-hydroxytryptamine receptors: a single-cell study in the rat dorsal raphe nucleus. Can J Physiol Pharmacol. 1989;67:98-105. Price LH, Charney DS, Delgado PL, Anderson GM, Heninger GR. Effects of desipramine and fluvoxamine treatment on the prolactin response to tryptophan. Serotonergic function and the mechanism of antidepressant action. Arch Gen Psychiatry. 1989;46:625-631. Troeung L, Egan SJ, Gasson N. A meta-analysis of randomised placebo-controlled treatment trials for depression and anxiety in Parkinson's disease. PLoS One. 2013;13;8:e79510. Ferguson JM. SSRI Antidepressant medications: adverse effects and tolerability. prim care companion J Clin Psychiatry. 2001;3:22-27. Davidson JR, DuPont RL, Hedges D, Haskins JT. Efficacy, safety, and tolerability of venlafaxine extended release and buspirone in outpatients with generalized anxiety disorder. J Clin Psychiatry. 1999 Aug;60(8):528-35. Casacchia M, Zamponi A, Squitieri G, Meco G. Treatment of anxiety in Parkinson's disease with bromazepam. Riv Neurol. 1975;45:326-338. Watanabe N, Churchill R, Furukawa TA. Combined psychotherapy plus benzodiazepines for panic disorder. Cochrane Database Syst Rev. 2009;21;CD005335. Guina J, Merrill B. Benzodiazepines I: upping the care on downers: the evidence of risks, benefits and alternatives. J Clin Med. 2018;30;7:17. Yusupov E, Chen D, Krishnamachari B. Medication use and falls: applying beers criteria to medication review in Parkinson's disease. SAGE Open Med. 2017;20;5:2050312117743673. Walsh K, Bennett G. Parkinson's disease and anxiety. Postgrad Med J. 2001 Feb;77(904):89-93. By the 2019 American Geriatrics Society Beers Criteria® Update Expert Panel. American Geriatrics Society 2019 Updated AGS Beers Criteria® for potentially inappropriate medication use in older adults. Journal of the American Geriatrics Society. 2019;67,674-694. Schlenstedt C, Paschen S, Kruse A, Raethjen J, Weisser B, Deuschl G. Resistance versus balance training to improve postural control in Parkinson's disease: a randomized rater blinded controlled study. PLoS One. 2015;26;10:e0140584. Corcos DM, Robichaud JA, David FJ, Leurgans SE, Vaillancourt DE, Poon C, Rafferty MR, Kohrt WM, Comella CL. A two-year randomized controlled trial of progressive resistance exercise for Parkinson's disease. Mov Disord. 2013;28:1230-1240. Carvalho A, Barbirato D, Araujo N, Martins JV, Cavalcanti JL, Santos TM, Coutinho ES, Laks J, Deslandes AC. Comparison of strength training, aerobic training, and additional physical therapy as supplementary treatments for Parkinson's disease: pilot study. Clin Interv Aging. 2015;7;10:183-191. Beck EN, Wang MTY, Intzandt BN, Almeida QJ, Ehgoetz Martens KA. Sensory focused exercise improves anxiety in Parkinson's disease: A randomized controlled trial. PLoS One. 2020;16;15:e0230803 Feng XJ, Huang YT, Huang YZ, Kuo CW, Peng CW, Rotenberg A, Juan CH, Pei YC, Chen YH, Chen KY, Chiang YH, Liu HH, Wu JX, Hsieh TH. Early transcranial direct current stimulation treatment exerts neuroprotective effects on 6-OHDA-induced Parkinsonism in rats. Brain Stimul. 2020;13:655-663. Doruk D, Gray Z, Bravo GL, Pascual-Leone A, Fregni F. Effects of tDCS on executive function in Parkinson's disease. Neurosci Lett. 2014;17;582:27-31. Epstein CM, Evatt ML, Funk A, Girard-Siqueira L, Lupei N, Slaughter L, Athar S, Green J, McDonald W, DeLong MR. An open study of repetitive transcranial magnetic stimulation in treatment-resistant depression with Parkinson's disease. Clin Neurophysiol. 2007;118:2189-2194. Nemeroff CB, Mayberg HS, Krahl SE, McNamara J, Frazer A, Henry TR, George MS, Charney DS, Brannan SK. VNS therapy in treatment-resistant depression: clinical evidence and putative neurobiological mechanisms. Neuropsychopharmacology. 2006;31:1345-1355. Butt MF, Albusoda A, Farmer AD, Aziz Q. The anatomical basis for transcutaneous auricular vagus nerve stimulation. J Anat. 2020;236:588-611. Peuker ET, Filler TJ. The nerve supply of the human auricle. Clin Anat. 2002;15:35-37. Stefan H, Kreiselmeyer G, Kerling F, Kurzbuch K, Rauch C, Heers M, Kasper BS, Hammen T, Rzonsa M, Pauli E, Ellrich J, Graf W, Hopfengärtner R. Transcutaneous vagus nerve stimulation (t-VNS) in pharmacoresistant epilepsies: a proof of concept trial. Epilepsia. 2012;53(7):e115-118. Fang J, Rong P, Hong Y, Fan Y, Liu J, Wang H, Zhang G, Chen X, Shi S, Wang L, Liu R, Hwang J, Li Z, Tao J, Wang Y, Zhu B, Kong J. Transcutaneous vagus nerve stimulation modulates default mode network in major depressive disorder. Biol Psychiatry. 2016;15;79:266-273. Hein E, Nowak M, Kiess O, Biermann T, Bayerlein K, Kornhuber J, Kraus T. Auricular transcutaneous electrical nerve stimulation in depressed patients: a randomized controlled pilot study. J Neural Transm (Vienna). 2013;120:821-827. Berthoud HR, Neuhuber WL. Functional and chemical anatomy of the afferent vagal system. Auton Neurosci. 2000;20;85:1-17. Yakunina N, Kim SS, Nam EC. Optimization of transcutaneous vagus nerve stimulation using functional MRI. Neuromodulation. 2017;20:290-300. Dietrich S, Smith J, Scherzinger C, Hofmann-Preiss K, Freitag T, Eisenkolb A, Ringler R. A novel transcutaneous vagus nerve stimulation leads to brainstem and cerebral activations measured by functional MRI. Biomed Tech (Berl). 2008;53:104-111. Frangos E, Ellrich J, Komisaruk BR. Non-invasive access to the vagus nerve central projections via electrical stimulation of the external ear: fMRI evidence in humans. Brain Stimul. 2015;8:624-636. Kraus T, Kiess O, Hösl K, Terekhin P, Kornhuber J, Forster C. CNS BOLD fMRI effects of sham-controlled transcutaneous electrical nerve stimulation in the left outer auditory canal - a pilot study. Brain Stimul. 2013;6:798-804. Badran BW, Dowdle LT, Mithoefer OJ, LaBate NT, Coatsworth J, Brown JC, DeVries WH, Austelle CW, McTeague LM, George MS. Neurophysiologic effects of transcutaneous auricular vagus nerve stimulation (taVNS) via electrical stimulation of the tragus: A concurrent taVNS/fMRI study and review. Brain Stimul. 2018;11:492-500. Bretherton B, Atkinson L, Murray A, Clancy J, Deuchars S, Deuchars J. Effects of transcutaneous vagus nerve stimulation in individuals aged 55 years or above: potential benefits of daily stimulation. Aging (Albany NY). 2019;30;11:4836-4857. Liu J, Fang J, Wang Z, Rong P, Hong Y, Fan Y, Wang X, Park J, Jin Y, Liu C, Zhu B, Kong J. Transcutaneous vagus nerve stimulation modulates amygdala functional connectivity in patients with depression. J Affect Disord. 2016;15;205:319-326. Fang J, Rong P, Hong Y, Fan Y, Liu J, Wang H, Zhang G, Chen X, Shi S, Wang L, Liu R, Hwang J, Li Z, Tao J, Wang Y, Zhu B, Kong J. Transcutaneous vagus nerve stimulation modulates default mode network in major depressive disorder. Biol Psychiatry. 2016;15;79:266-273. Mazzoni P, Hristova A, Krakauer JW. Why don't we move faster? Parkinson's disease, movement vigor, and implicit motivation. J Neurosci. 2007;4;27:7105-7116. Nieuwenhuys A, Oudejans RR. Anxiety and perceptual-motor performance: toward an integrated model of concepts, mechanisms, and processes. Psychol Res. 2012;76:747-759. Blundell EK, Grover LE, Stott J, Schrag A. The experience of Anxiety for people with Parkinson's disease. NPJ Parkinsons Dis. 2023;9:75. Dan R, Růžička F, Bezdicek O, et al. Separate neural representations of depression, anxiety and apathy in Parkinson's disease. Sci Rep. 2017;7:12164. Wittenberg E, Thompson J, Nam CS, Franz JR. Neuroimaging of human balance control: a systematic review. Front Hum Neurosci. 2017;10;11:170. Deane KHO, Flaherty H, Daley DJ, et al. Priority setting partnership to identify the top 10 research priorities for the management of Parkinson's disease. BMJ Open. 2014;4:e006434. Dubois B, Burn D, Goetz C, et al. Diagnostic procedures for Parkinson's disease dementia: recommendations from the movement disorder society task force. Mov Disord. 2007;22:2314-2324. Jiang Y, Jiang Y, Peng T, Wang M, Li M, Zhang M, Li L, Zhang Q. The psychometric properties of the Chinese version of the Parkinson Anxiety Scale (C-PAS) among Parkinson’s disease. BMC Neurology. 2023;23:60 Hung YT, Chen LC, Wu RM, Huang CY. The Effects of task prioritization on dual-tasking postural control in patients with Parkinson Disease who have different postural impairments. Arch Phys Med Rehabil. 2020;101(7):1212-1219. Sigurdsson HP, Hunter H, Alcock L, et al. Safety and tolerability of adjunct non-invasive vagus nerve stimulation in people with Parkinson's: a study protocol. BMC Neurol. 2023;23:58. Bradley MM, Lang PJ. Measuring emotion: the self-assessment Manikin and the semantic differential. J Behav Ther Exp Psychiatry. 1994;25:49-59. Hogan N. An organizing principle for a class of voluntary movements. J Neurosci. 1984;4:2745-2754 Maetzler W, Mancini M, Liepelt-Scarfone I, et al. Impaired trunk stability in individuals at high risk for Parkinson’s disease. PLoS One. 2012;7:e32240. Kholinne E, Gandhi MJ, Adikrishna A, Hong H, Kim H, Hong J, Jeon IH. The dimensionless squared jerk: an objective parameter that improves assessment of hand motion analysis during simulated shoulder arthroscopy. Biomed Res Int. 2018:7816160. Jolliffe IT and Cadima J. Principal component analysis: a review and recent developments. Philos Trans A Math Phys Eng Sci. 2016;374:20150202. Keute M, Barth D, Liebrand M, et al. Effects of transcutaneous vagus nerve stimulation (tVNS) on conflict-related behavioral performance and frontal midline theta activity. J Cogn Enhanc 2020;4:121-130. Chen Y, Lu X, Hu L. Transcutaneous auricular vagus nerve stimulation facilitates cortical arousal and alertness. Int J Environ Res Public Health. 2023;12:1402. Fischer R, Ventura-Bort C, Hamm A, Weymar M. Transcutaneous vagus nerve stimulation (tVNS) enhances conflict-triggered adjustment of cognitive control. Cogn Affect Behav Neurosci. 2018;18:680-693. Frangos E, Ellrich J, Komisaruk BR. Non-invasive access to the vagus nerve central projections via electrical stimulation of the external ear: fMRI evidence in humans. Brain Stimul. 2015;8:624-636. Benarroch EE. The locus coeruleus norepinephrine system: functional organization and potential clinical significance. Neurology. 2009 Nov 17;73(20):1699-704. Sara SJ, Bouret S. Orienting and reorienting: the locus coeruleus mediates cognition through arousal. Neuron. 2012 Oct 4;76:130-141. Poe GR, Foote S, Eschenko O, Johansen JP, Bouret S, Aston-Jones G, Harley CW, Manahan-Vaughan D, Weinshenker D, Valentino R, Berridge C, Chandler DJ, Waterhouse B, Sara SJ. Locus coeruleus: a new look at the blue spot. Nat Rev Neurosci. 2020 Nov;21:644-659. Son S, Moon J, Kim YJ, Kang MS, Lee J. Frontal-to-visual information flow explains predictive motion tracking. Neuroimage. 2023 Apr 1;269:119914. Bank PJM, Dobbe LRM, Meskers CGM, de Groot JH, de Vlugt E. Manipulation of visual information affects control strategy during a visuomotor tracking task. Behav Brain Res. 2017 Jun 30;329:205-214. Lewine JD, Paulson K, Bangera N, Simon BJ. Exploration of the impact of brief noninvasive vagal nerve stimulation on EEG and event-related potentials. neuromodulation. 2019;22:564-572. Ioakeimidis V, Lennuyeux-Comnene L, Khachatoorian N, Gaigg SB, Haenschel C, Kyriakopoulos M, Dima D. Trait and state anxiety effects on mismatch negativity and sensory gating event-related potentials. Brain Sci. 2023;13:1421. Sigurdsson HP, Raw R, Hunter H, Baker MR, Taylor JP, Rochester L, Yarnall AJ. Noninvasive vagus nerve stimulation in Parkinson's disease: current status and future prospects. Expert Rev Med Devices. 2021;18:971-984 Müller ML, Bohnen NI. Cholinergic dysfunction in Parkinson's disease. Curr Neurol Neurosci Rep. 2013;13:377. Morris R, Martini DN, Madhyastha T, Kelly VE, Grabowski TJ, Nutt J, Horak F. Overview of the cholinergic contribution to gait, balance and falls in Parkinson's disease. Parkinsonism Relat Disord. 2019;63:20-30. Mondal B, Choudhury S, Simon B, Baker MR, Kumar H. Noninvasive vagus nerve stimulation improves gait and reduces freezing of gait in Parkinson's disease. Mov Disord. 2019;34:917-918. Morris R, Yarnall AJ, Hunter H, Taylor JP, Baker MR, Rochester L. Noninvasive vagus nerve stimulation to target gait impairment in Parkinson's disease. Mov Disord. 2019;34:918-919. De Micco R, Satolli S, Siciliano M, Di Nardo F, Caiazzo G, Russo A, Giordano A, Esposito F, Tedeschi G, Tessitore A. Connectivity correlates of anxiety symptoms in drug-naive Parkinson's Disease patients. Mov Disord. 2021;36:96-105. Chen X, Zhang C, Li Y, Huang P, Lv Q, Yu W, Chen S, Sun B, Wang Z. Functional connectivity-based modelling simulates subject-specific network spreading effects of focal brain stimulation. Neurosci Bull. 2018;34:921-938. Berret B, Jean F. Why don't we move slower? The value of time in the neural control of action. J Neurosci. 2016;27;36:1056-1070. Krampe RT, Doumas M, Lavrysen A, Rapp M. The costs of taking it slowly: fast and slow movement timing in older age. Psychol Aging. 2010 Dec;25(4):980-990. Fujiyama H, Hinder MR, Garry MI, & Summers JJ. Slow and steady is not as easy as it sounds: interlimb coordination at slow speed is associated with elevated attentional demand especially in older adults. Experimental Brain Research, 2013;227:289-300. Beckley DJ, Panzer VP, Remler MP, Ilog LB, Bloem BR. Clinical correlates of motor performance during paced postural tasks in Parkinson's disease. J Neurol Sci. 1995;132:133-138. Ehgoetz Martens KA, Ellard CG, Almeida QJ. Does anxiety cause freezing of gait in Parkinson's disease?. PLOS ONE 2014;9: e106561. De Smet S, Ottaviani C, Verkuil B, Kappen M, Baeken C, Vanderhasselt MA. Effects of non-invasive vagus nerve stimulation on cognitive and autonomic correlates of perseverative cognition. Psychophysiology. 2023;60:e14250. Gurel NZ, Wittbrodt MT, Jung H, Shandhi MMH, Driggers EG, Ladd SL, Huang M, Ko YA, Shallenberger L, Beckwith J, Nye JA, Pearce BD, Vaccarino V, Shah AJ, Inan OT, Bremner JD. Transcutaneous cervical vagal nerve stimulation reduces sympathetic responses to stress in posttraumatic stress disorder: A double-blind, randomized, sham controlled trial. Neurobiol Stress. 2020;13:100264. Gurel NZ, Huang M, Wittbrodt MT, Jung H, Ladd SL, Shandhi MMH, Ko YA, Shallenberger L, Nye JA, Pearce B, Vaccarino V, Shah AJ, Bremner JD, Inan OT. Quantifying acute physiological biomarkers of transcutaneous cervical vagal nerve stimulation in the context of psychological stress. Brain Stimul. 2020;13:47-59. Horvers A, Tombeng N, Bosse T, Lazonder AW, Molenaar I. Detecting emotions through electrodermal activity in learning contexts: a systematic review. Sensors (Basel). 2021;26;2:7869. Roos AL, Goetz T, Voracek M. Test anxiety and physiological arousal: a systematic review and meta-analysis. Educ Psychol Rev. 2021;33:579-618. Cavanagh JF, Frank MJ. Frontal theta as a mechanism for cognitive control. Trends Cogn Sci. 2014;18:414-421. Cavanagh JF, Shackman AJ. Frontal midline theta reflects anxiety and cognitive control: meta-analytic evidence. J Physiol Paris. 2015 Feb-Jun;109(1-3):3-15. Sauseng P, Griesmayr B, Freunberger R, Klimesch W. Control mechanisms in working memory: a possible function of EEG theta oscillations. Neurosci Biobehav Rev. 2010;34:1015-1022. Knyazev GG, Slobodskaya HR, Wilson GD. Psychophysiological correlates of behavioural inhibition and activation. Personal. Individ. Differ. 2002;33,647-660. Knyazev GG, Slobodskaya HR, Safronova MV, Sorokin OV, Goodman R, Wilson GD. Personality, psychopathology and brain oscillations. Personal. Individ. Differ. 2003;35,1331-1349. Knyazev GG, Savostyanov AN, Levin EA. Alpha oscillations as a correlate of trait anxiety. Int. J. Psychophysiol. 2004;53,147-160, Saletu-Zyhlarz G, Saletu B, Anderer P, Brandstätter N, Frey R, Gruber G, Klösch G, Mandl M, Grünberger J, Linzmayer L. Nonorganic insomnia in generalized anxiety disorder. Neuropsychobiology 1997;36,117-129. Foxe JJ, Snyder AC. The role of alpha-band brain oscillations as a sensory suppression mechanism during selective attention. Front Psychol. 2011;5;2:154. Nieuwenhuys A, Oudejans RR. Anxiety and perceptual-motor performance: toward an integrated model of concepts, mechanisms, and processes. Psychol Res. 2012;76:747-759. Cisler JM, Koster EH. Mechanisms of attentional biases towards threat in anxiety disorders: an integrative review. Clin Psychol Rev. 2010;30:203-16. Aoki F, Fetz EE, Shupe L, Lettich E, Ojemann GA. Increased gamma-range activity in human sensorimotor cortex during performance of visuomotor tasks. Clin Neurophysiol. 1999;110:524-537. Tamás G, Chirumamilla VC, Anwar AR, Raethjen J, Deuschl G, Groppa S, Muthuraman M. Primary sensorimotor cortex drives the common cortical network for gamma synchronization in voluntary hand movements. Front Hum Neurosci. 2018;6;12:130. Teixeira S, Velasques B, Machado S, Cunha M, Domingues CA, Budde H, Anghinah R, Basile LF, Cagy M, Piedade R, Ribeiro P. γ-band oscillations in fronto-central areas during performance of a sensorimotor integration task: a qEEG coherence study. Neurosci Lett. 2010;1;483:114-117. Omlor W, Patino L, Hepp-Reymond MC, Kristeva R. Gamma-range corticomuscular coherence during dynamic force output. Neuroimage. 2007;1;34:1191-1198. Seeber M, Scherer R, Wagner J, Solis-Escalante T, Müller-Putz GR. High and low gamma EEG oscillations in central sensorimotor areas are conversely modulated during the human gait cycle. Neuroimage. 2015;15;112:318-326. Frangos E, Ellrich J, Komisaruk BR. Non-invasive access to the vagus nerve central projections via electrical stimulation of the external ear: fMRI evidence in humans. Brain Stimul. 2015;8:624-636. Van Leusden JW, Sellaro R, Colzato LS. Transcutaneous Vagal Nerve Stimulation (tVNS): a new neuromodulation tool in healthy humans? Front Psychol. 2015;10;6:102. Ben-Menachem E, Hamberger A, Hedner T, Hammond EJ, Uthman BM, Slater J, Treig T, Stefan H, Ramsay RE, Wernicke JF, et al. Effects of vagus nerve stimulation on amino acids and other metabolites in the CSF of patients with partial seizures. Epilepsy Res. 1995;20:221-227. Marrosu F, Serra A, Maleci A, Puligheddu M, Biggio G, Piga M. Correlation between GABA(A) receptor density and vagus nerve stimulation in individuals with drug-resistant partial epilepsy. Epilepsy Res. 2003;55:59-70. Ricci L, Croce P, Lanzone J, Boscarino M, Zappasodi F, Tombini M, Di Lazzaro V, Assenza G. Transcutaneous vagus nerve stimulation modulates EEG microstates and delta activity in healthy subjects. Brain Sci. 2020;25;10:668. Keute M, Ruhnau P, Heinze HJ, Zaehle T. Behavioral and electrophysiological evidence for GABAergic modulation through transcutaneous vagus nerve stimulation. Clin Neurophysiol. 2018 Sep;129:1789-1795. Harmony T. The functional significance of delta oscillations in cognitive processing. Front Integr Neurosci. 2013;5;7:83. Alekseichuk I, Turi Z, Amador de Lara G, Antal A, Paulus W. Spatial working memory in humans depends on theta and high gamma synchronization in the prefrontal cortex. Curr Biol. 2016;20;26:1513-1521. Polanía R, Paulus W, Nitsche MA. Noninvasively decoding the contents of visual working memory in the human prefrontal cortex within high-gamma oscillatory patterns. J Cogn Neurosci. 2012;24:304-314. Gao Z, Cui X, Wan W, Zheng W, Gu Z. Long-range correlation analysis of high frequency prefrontal electroencephalogram oscillations for dynamic emotion recognition. Biomed Signal Process Control. 2022;72:103291. Li Y, Cao D, Wei L, Tang Y, Wang J. Abnormal functional connectivity of EEG gamma band in patients with depression during emotional face processing. Clin Neurophysiol. 2015;126:2078-2089. Chen L, Zhang Y, Wang H, Li J, Zhou W, Zhang Y, Fang J. Influence of transcutaneous vagus nerve stimulation on motor planning: a resting-state and task-state EEG Study. IEEE J Biomed Health Inform. 2024;28:1374-1385. Szurhaj W, Derambure P. Intracerebral study of gamma oscillations in the human sensorimotor cortex. Prog Brain Res. 2006;159:297-310. Ulloa JL. The control of movements via motor gamma oscillations. Front Hum Neurosci. 2022;17;15:787157. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95010 | - |
dc.description.abstract | 背景與研究目的:良好的重心轉移為巴金森患者姿勢控制的重要因素之一,尤其在快速移動下,正確的重心轉移可降低跌倒發生率。除動作症狀,焦慮問題亦會惡化巴金森患者姿勢平衡控制能力。經皮迷走神經刺激為一種降低焦慮的神經電刺激介入法,然而目前尚無研究探討巴金森患者在不同姿勢動作速度下,經皮迷走神經電刺激對焦慮與姿勢控制的影響。本研究目的為探討經皮迷走神經電刺激是否有助於巴金森患者焦慮程度降低與提升不同速度下重心轉移控制表現,並探討其相對應之大腦皮質活動變化。
方法:本研究共招募15名患具焦慮症狀的巴金森患者與15名不具焦慮症狀的巴金森患者。每位受試者分別於接受主動經皮迷走神經電刺與假性經皮迷走神經電刺下,站立於力板進行不同節律重心轉移動作,分別為:慢速(0.25 Hz)、中速(0.33 Hz)、快速(0.50 H),於重心轉移動作過程中,同時量測皮膚電導訊號與腦電圖訊號。主要參數為:重心轉移軌跡誤差量、重心轉移軌跡急動值、重心轉移幅度、、各頻帶大腦活動強度、動作時主觀與客觀焦慮程度。除主觀焦慮程度採無母數分析,其餘參數以2×2混合變異數分析(2×2 mixed ANOVA)與邦佛洛尼校正(Bonferroni correction)進行事後檢定,分析主動、假性迷走神經電刺激對有焦慮組、無焦慮組於各重心轉移速度下,各行為表現參數及腦電圖頻譜強度的影響。 結果:於行為表現上,僅有焦慮組在接受迷走神經刺激時,於各種速度情境下皆可顯著降低重心轉移軌跡誤差量與增加重心轉移軌跡急動值,非焦慮組的行為表現則在中速(0.33 Hz)情境下,給予迷走神經刺激反而降低重心轉移幅度。於慢速與中速情境下,焦慮組比起非焦慮組有更高的主觀焦慮強度。無論重心轉移運動的速度如何,焦慮組在前額葉、額葉、感覺運動、頂葉-枕葉皮質區的theta波和alpha波功率都較非焦慮組高;相反的,非焦慮組在感覺動作區有較高的的high gamma頻帶功率。而經皮迷走神經電刺激對腦電圖相對功率的調節主要影響在較慢的速度情境(0.25 Hz與 0.33 Hz)。經皮迷走神經刺激會增加非焦慮患者前額葉區delta與降低high gamma頻帶強度,並降低焦慮患者額葉區low gamma頻帶強度。 結論:短時間的經皮迷走神經電刺激可改善具有焦慮症狀的巴金森患者的重心轉移控制表現,並在較慢的重心轉移速度上呈現大腦活動調節。於臨床上可利用經皮迷走神經促進巴金森患者重心轉移表現。本研究並無發現經皮迷走神經電刺激對焦慮程度的效果,未來可探討經皮迷走神經刺激的長時間介入效果,以更完整探討經皮迷走神經刺激對巴金森患者平衡控制、焦慮調節與大腦活動之效益。 | zh_TW |
dc.description.abstract | Background and purpose: Effective weight-shifting is a crucial factor in posture control for people with Parkinson's disease (PD), especially during rapid movements, as proper weight-shifting could reduce fall incidence. In addition to motor symptoms, anxiety would deteriorate posture control in people with PD. Transcutaneous vagus nerve stimulation (tVNS) is a neuroelectric intervention which has been used to reduce anxiety. However, no studies have explored the impact of tVNS on anxiety and posture control in at different movement speeds in PD. Therefore, the aim of this study was to investigate tVNS effects on weight-shifting performance, anxiety, and related cortical activities at different shifting speeds in people with PD.
Methods: The study recruited 15 PD patients with anxiety and 15 PD patients without anxiety. Each participant performed weight-shifting tasks on a force plate at different speed (slow: 0.25 Hz, medium: 0.33 Hz, fast: 0.50 Hz) with receiving active tVNS or sham tVNS. During the weight-shifting tasks, skin conductance signals and electroencephalogram (EEG) signals were also recorded. The primary outcomes included weight-shifting tracking error, weight-shifting trajectory jerk, weight-shifting amplitude, relative power of EEG, and subjective and objective anxiety levels. Statistical analyses were conducted by 2×2 mixed ANOVA with Bonferroni correction for post-hoc tests, to examine the effects of tVNS and group in each parameter except subjective anxiety level. The subjective anxiety level was examined by nonparametric analysis. Results: In terms of behavioral performance, the anxiety group showed reduced weight-shifting tracking error and increased weight-shifting trajectory jerk in active tVNS session, regardless of weight-shifting speed. On the other hand, the weight-shifting amplitude decreased under the 0.33 Hz condition in the non-anxiety group. The anxiety group reported higher subjective anxiety levels than the non-anxiety group under both 0.25 Hz and 0.33 Hz conditions. Regardless of the speed of weight-shifting, the anxiety group exhibited greater theta and alpha power at prefrontal, frontal, sensorimotor, and parietal-occipital cortices compared to the non-anxiety group. In contrast, the non-anxiety group exhibited greater high gamma power at sensorimotor area than the anxiety group. tVNS related EEG modulation was observed in slower speeds (0.25 Hz and 0.33 Hz) conditions. tVNS led to increased delta power and decreased high gamma power at prefrontal cortex in the non-anxiety group. In addition, tVNS resulted in decreased low gamma power at frontal cortex in the anxiety group. Conclusion: Brief tVNS could improve weight-shifting performance in anxiety PD group, and modulated brain activity particularly in the conditions with slower shifting speed. tVNS could be used as an adjunct intervention for improving weight-shifting performance for people with PD in the clinic. However, the tVNS effect on anxiety reduction was not observed in the present study. Further studies are needed with long-term tVNS intervention to confirm the benefits of tVNS to balance control, anxiety regulation, and brain activity in people with PD. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-26T16:14:10Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-26T16:14:10Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 中文摘要 i
Abstract iii Chapter 1 Introduction 1 1.1. Overview of posture control in Parkinson’s disease with anxiety 1 1.2. Literature review 3 1.2.1. Effect of speed on postural control in PD 3 1.2.2. Effect of anxiety on postural control in PD 7 1.2.3. Current assessments and interventions for anxiety 12 1.2.4. Effects of transcutaneous vagus nerve stimulation on anxiety 20 1.3. Limitation of previous studies about postural control under different speeds in PD with anxiety 26 1.4. Purpose and significance 29 1.5. Hypothesis 30 Chapter 2 Methods 31 2.1. Participants 31 2.2. Study procedures and data recording 32 2.3. Data analyses 35 2.4. Statistical analyses 38 Chapter 3 Results 39 3.1. Behavioral performance 39 3.2. Anxiety level 41 3.3. Correlation between PAS and changes behavior/anxiety parameters 43 3.4. Relative power of EEG 43 Chapter 4 Discussion 54 4.1. tVNS effect on behavior 54 4.2. Anxiety level and tVNS benefits 57 4.3. EEG modulation between the anxiety and non-anxiety groups 60 4.4. EEG modulation between active tVNS and sham tVNS sessions 62 4.5. Methodology concerns and study limitations 65 Chapter 5 Conclusion 66 References 67 List of Figures 95 List of Tables 124 Appendices 127 | - |
dc.language.iso | en | - |
dc.title | 經皮迷走神經電刺激對有、無焦慮症狀巴金森患者重心轉移控制的影響:於不同轉移速度下討論 | zh_TW |
dc.title | The Impact of Transcutaneous Vagus Nerve Stimulation on Weight-Shifting Control in People with Parkinson's Disease with and without Anxiety: under Different Shifting Speeds | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 吳瑞美;周立偉;蔡宜穎 | zh_TW |
dc.contributor.oralexamcommittee | Ruey-Meei Wu;Li-Wei Chou;Yi-Ying Tsai | en |
dc.subject.keyword | 巴金森,焦慮,姿勢控制,迷走神經電刺激,腦電圖, | zh_TW |
dc.subject.keyword | Parkinson,anxiety,postural control,vagus nerve stimulation,electroencephalogram, | en |
dc.relation.page | 127 | - |
dc.identifier.doi | 10.6342/NTU202403646 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-08-09 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 物理治療學研究所 | - |
顯示於系所單位: | 物理治療學系所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf | 1.76 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。