請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95009完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 杜裕康 | zh_TW |
| dc.contributor.advisor | Yu-Kang Tu | en |
| dc.contributor.author | 夏昀 | zh_TW |
| dc.contributor.author | Yun Hsia | en |
| dc.date.accessioned | 2024-08-26T16:13:52Z | - |
| dc.date.available | 2024-08-27 | - |
| dc.date.copyright | 2024-08-26 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-06 | - |
| dc.identifier.citation | Reference
1. Weinreb RN, Aung T and Medeiros FA (2014) The pathophysiology and treatment of glaucoma: a review. Jama 311 (18):1901-1911. doi:10.1001/jama.2014.3192 2. Chang EE and Goldberg JL (2012) Glaucoma 2.0: neuroprotection, neuroregeneration, neuroenhancement. Ophthalmology 119 (5):979-986. doi:10.1016/j.ophtha.2011.11.003 3. Stein JD, Khawaja AP and Weizer JS (2021) Glaucoma in Adults-Screening, Diagnosis, and Management: A Review. Jama 325 (2):164-174. doi:10.1001/jama.2020.21899 4. (2021) Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study. Lancet Glob Health 9 (2):e144-e160. doi:10.1016/s2214-109x(20)30489-7 5. Stowell C, Burgoyne CF, Tamm ER and Ethier CR (2017) Biomechanical aspects of axonal damage in glaucoma: A brief review. Exp Eye Res 157:13-19. doi:10.1016/j.exer.2017.02.005 6. Flammer J, Orgül S, Costa VP, Orzalesi N, Krieglstein GK, Serra LM, Renard JP and Stefánsson E (2002) The impact of ocular blood flow in glaucoma. Prog Retin Eye Res 21 (4):359-393. doi:10.1016/s1350-9462(02)00008-3 7. Musch DC, Gillespie BW, Niziol LM, Lichter PR and Varma R (2011) Intraocular pressure control and long-term visual field loss in the Collaborative Initial Glaucoma Treatment Study. Ophthalmology 118 (9):1766-1773. doi:10.1016/j.ophtha.2011.01.047 8. Khaw PT, Shah P and Elkington AR (2004) Glaucoma--1: diagnosis. Bmj 328 (7431):97-99. doi:10.1136/bmj.328.7431.97 9. Braunger BM, Fuchshofer R and Tamm ER (2015) The aqueous humor outflow pathways in glaucoma: A unifying concept of disease mechanisms and causative treatment. Eur J Pharm Biopharm 95 (Pt B):173-181. doi:10.1016/j.ejpb.2015.04.029 10. Gordon MO and Kass MA (2018) What We Have Learned From the Ocular Hypertension Treatment Study. Am J Ophthalmol 189:xxiv-xxvii. doi:10.1016/j.ajo.2018.02.016 11. Leung DYL and Tham CC (2022) Normal-tension glaucoma: Current concepts and approaches-A review. Clin Exp Ophthalmol 50 (2):247-259. doi:10.1111/ceo.14043 12. Anand N, Klug E, Nirappel A and Solá-Del Valle D (2020) A Review of Cyclodestructive Procedures for the Treatment of Glaucoma. Semin Ophthalmol 35 (5-6):261-275. doi:10.1080/08820538.2020.1810711 13. Conlon R, Saheb H and Ahmed, II (2017) Glaucoma treatment trends: a review. Can J Ophthalmol 52 (1):114-124. doi:10.1016/j.jcjo.2016.07.013 14. Wang T, Cao L, Jiang Q and Zhang T (2021) Topical Medication Therapy for Glaucoma and Ocular Hypertension. Front Pharmacol 12:749858. doi:10.3389/fphar.2021.749858 15. Lichter PR, Musch DC, Gillespie BW, Guire KE, Janz NK, Wren PA and Mills RP (2001) Interim clinical outcomes in the Collaborative Initial Glaucoma Treatment Study comparing initial treatment randomized to medications or surgery. Ophthalmology 108 (11):1943-1953. doi:10.1016/s0161-6420(01)00873-9 16. Tanna AP and Johnson M (2018) Rho Kinase Inhibitors as a Novel Treatment for Glaucoma and Ocular Hypertension. Ophthalmology 125 (11):1741-1756. doi:10.1016/j.ophtha.2018.04.040 17. Fechtner RD and Realini T (2004) Fixed combinations of topical glaucoma medications. Curr Opin Ophthalmol 15 (2):132-135. doi:10.1097/00055735-200404000-00013 18. Shim SR, Kim SJ, Lee J and Rücker G (2019) Network meta-analysis: application and practice using R software. Epidemiol Health 41:e2019013. doi:10.4178/epih.e2019013 19. Lee JW, Ahn HS, Chang J, Kang HY, Chang DJ, Suh JK and Lee H (2022) Comparison of Netarsudil/Latanoprost Therapy with Latanoprost Monotherapy for Lowering Intraocular Pressure: A Systematic Review and Meta-analysis. Korean J Ophthalmol 36 (5):423-434. doi:10.3341/kjo.2022.0061 20. He M, Wang W and Huang W (2013) Efficacy and tolerability of the fixed combinations latanoprost/timolol versus dorzolamide/timolol in patients with elevated intraocular pressure: a meta-analysis of randomized controlled trials. PLoS One 8 (12):e83606. doi:10.1371/journal.pone.0083606 21. Cheng JW, Cheng SW, Gao LD, Lu GC and Wei RL (2012) Intraocular pressure-lowering effects of commonly used fixed-combination drugs with timolol: a systematic review and meta-analysis. PLoS One 7 (9):e45079. doi:10.1371/journal.pone.0045079 22. Wu JH, Chang SN, Nishida T, Kuo BI and Lin JW (2022) Intraocular pressure-lowering efficacy and ocular safety of Rho-kinase inhibitor in glaucoma: a meta-analysis and systematic review of prospective randomized trials. Graefes Arch Clin Exp Ophthalmol 260 (3):937-948. doi:10.1007/s00417-021-05379-7 23. van der Valk R, Webers CA, Lumley T, Hendrikse F, Prins MH and Schouten JS (2009) A network meta-analysis combined direct and indirect comparisons between glaucoma drugs to rank effectiveness in lowering intraocular pressure. J Clin Epidemiol 62 (12):1279-1283. doi:10.1016/j.jclinepi.2008.04.012 24. Inoue K, Ishida K, Tomita G and Noma H (2020) A scoping review and network meta-analysis for efficacy and safety of glaucoma medication in Japanese patients. Jpn J Ophthalmol 64 (2):103-113. doi:10.1007/s10384-019-00708-0 25. Li T, Lindsley K, Rouse B, Hong H, Shi Q, Friedman DS, Wormald R and Dickersin K (2016) Comparative Effectiveness of First-Line Medications for Primary Open-Angle Glaucoma: A Systematic Review and Network Meta-analysis. Ophthalmology 123 (1):129-140. doi:10.1016/j.ophtha.2015.09.005 26. Harasymowycz P, Royer C, Cui AX, Barbeau M, Jobin-Gervais K, Mathurin K, Lachaine J and Beauchemin C (2022) Short-term efficacy of latanoprostene bunod for the treatment of open-angle glaucoma and ocular hypertension: a systematic literature review and a network meta-analysis. Br J Ophthalmol 106 (5):640-647. doi:10.1136/bjophthalmol-2020-317262 27. Li F, Huang W and Zhang X (2018) Efficacy and safety of different regimens for primary open-angle glaucoma or ocular hypertension: a systematic review and network meta-analysis. Acta Ophthalmol 96 (3):e277-e284. doi:10.1111/aos.13568 28. Mehran NA, Sinha S and Razeghinejad R (2020) New glaucoma medications: latanoprostene bunod, netarsudil, and fixed combination netarsudil-latanoprost. Eye (Lond) 34 (1):72-88. doi:10.1038/s41433-019-0671-0 29. Saeki T, Ota T, Aihara M and Araie M (2009) Effects of prostanoid EP agonists on mouse intraocular pressure. Invest Ophthalmol Vis Sci 50 (5):2201-2208. doi:10.1167/iovs.08-2800 30. Matsuo M, Matsuoka Y and Tanito M (2022) Efficacy and Patient Tolerability of Omidenepag Isopropyl in the Treatment of Glaucoma and Ocular Hypertension. Clin Ophthalmol 16:1261-1279. doi:10.2147/opth.S340386 31. Inoue K, Shiokawa M, Katakura S, Tsuruoka M, Kunimatsu-Sanuki S, Shimizu K, Ishida K and Tomita G (2022) Periocular Adverse Reactions to Omidenepag Isopropyl. Am J Ophthalmol 237:114-121. doi:10.1016/j.ajo.2021.12.011 32. Tanito M, Ishida A, Ichioka S, Takayanagi Y, Tsutsui A, Manabe K, Shirakami T, Sugihara K and Matsuo M (2021) Proposal of a simple grading system integrating cosmetic and tonometric aspects of prostaglandin-associated periorbitopathy. Medicine (Baltimore) 100 (34):e26874. doi:10.1097/md.0000000000026874 33. Aihara M, Ropo A, Lu F, Kawata H, Iwata A, Odani-Kawabata N and Shams N (2020) Intraocular pressure-lowering effect of omidenepag isopropyl in latanoprost non-/low-responder patients with primary open-angle glaucoma or ocular hypertension: the FUJI study. Jpn J Ophthalmol 64 (4):398-406. doi:10.1007/s10384-020-00748-x 34. Kuo HT, Yeh CY, Hsu AY, Ho JH, Lin CJ and Tsai YY (2023) Clinical Efficacy of Omidenepag Isopropyl for Primary Open-Angle Glaucoma, Normal Tension Glaucoma, or Ocular Hypertension: A Meta-Analysis. J Ocul Pharmacol Ther. doi:10.1089/jop.2023.0058 35. Stamer WD, Braakman ST, Zhou EH, Ethier CR, Fredberg JJ, Overby DR and Johnson M (2015) Biomechanics of Schlemm's canal endothelium and intraocular pressure reduction. Prog Retin Eye Res 44:86-98. doi:10.1016/j.preteyeres.2014.08.002 36. Saha BC, Kumari R, Kushumesh R, Ambasta A and Sinha BP (2022) Status of Rho kinase inhibitors in glaucoma therapeutics-an overview. Int Ophthalmol 42 (1):281-294. doi:10.1007/s10792-021-02002-w 37. Tanihara H, Inoue T, Yamamoto T, Kuwayama Y, Abe H, Fukushima A, Suganami H and Araie M (2016) One-year clinical evaluation of 0.4% ripasudil (K-115) in patients with open-angle glaucoma and ocular hypertension. Acta Ophthalmol 94 (1):e26-34. doi:10.1111/aos.12829 38. Inoue K, Ishida K and Tomita G (2018) Effectiveness and safety of switching from prostaglandin analog monotherapy to prostaglandin/timolol fixed combination therapy or adding ripasudil. Jpn J Ophthalmol 62 (4):508-516. doi:10.1007/s10384-018-0599-0 39. Kazemi A, McLaren JW, Kopczynski CC, Heah TG, Novack GD and Sit AJ (2018) The Effects of Netarsudil Ophthalmic Solution on Aqueous Humor Dynamics in a Randomized Study in Humans. J Ocul Pharmacol Ther 34 (5):380-386. doi:10.1089/jop.2017.0138 40. Wang RF, Williamson JE, Kopczynski C and Serle JB (2015) Effect of 0.04% AR-13324, a ROCK, and norepinephrine transporter inhibitor, on aqueous humor dynamics in normotensive monkey eyes. J Glaucoma 24 (1):51-54. doi:10.1097/IJG.0b013e3182952213 41. Clement Freiberg J, von Spreckelsen A, Kolko M, Azuara-Blanco A and Virgili G (2022) Rho kinase inhibitor for primary open-angle glaucoma and ocular hypertension. Cochrane Database Syst Rev 6 (6):Cd013817. doi:10.1002/14651858.CD013817.pub2 42. Cheng JW, Li Y and Wei RL (2009) Systematic review of intraocular pressure-lowering effects of adjunctive medications added to latanoprost. Ophthalmic Res 42 (2):99-105. doi:10.1159/000225963 43. Tanna AP, Rademaker AW, Stewart WC and Feldman RM (2010) Meta-analysis of the efficacy and safety of alpha2-adrenergic agonists, beta-adrenergic antagonists, and topical carbonic anhydrase inhibitors with prostaglandin analogs. Arch Ophthalmol 128 (7):825-833. doi:10.1001/archophthalmol.2010.131 44. Belfort R, Jr., Paula JS, Lopes Silva MJ, Della Paolera M, Kim T, Chen MY and Goodkin ML (2020) Fixed-combination Bimatoprost/Brimonidine/Timolol in Glaucoma: A Randomized, Masked, Controlled, Phase III Study Conducted in Brazil(☆). Clin Ther 42 (2):263-275. doi:10.1016/j.clinthera.2019.12.008 45. Hartleben C, Parra JC, Batoosingh A, Bernstein P and Goodkin M (2017) A Masked, Randomized, Phase 3 Comparison of Triple Fixed-Combination Bimatoprost/Brimonidine/Timolol versus Fixed-Combination Brimonidine/Timolol for Lowering Intraocular Pressure. J Ophthalmol 2017:4586763. doi:10.1155/2017/4586763 46. Bournias TE and Lai J (2009) Brimonidine tartrate 0.15%, dorzolamide hydrochloride 2%, and brinzolamide 1% compared as adjunctive therapy to prostaglandin analogs. Ophthalmology 116 (9):1719-1724. doi:10.1016/j.ophtha.2009.03.050 47. Konstas AG, Karabatsas CH, Lallos N, Georgiadis N, Kotsimpou A, Stewart JA and Stewart WC (2005) 24-hour intraocular pressures with brimonidine purite versus dorzolamide added to latanoprost in primary open-angle glaucoma subjects. Ophthalmology 112 (4):603-608. doi:10.1016/j.ophtha.2004.11.032 48. Day DG and Hollander DA (2008) Brimonidine purite 0.1% versus brinzolamide 1% as adjunctive therapy to latanoprost in patients with glaucoma or ocular hypertension. Curr Med Res Opin 24 (5):1435-1442. doi:10.1185/030079908x301848 49. Simmons ST and Earl ML (2002) Three-month comparison of brimonidine and latanoprost as adjunctive therapy in glaucoma and ocular hypertension patients uncontrolled on beta-blockers: tolerance and peak intraocular pressure lowering. Ophthalmology 109 (2):307-314; discussion 314-305. doi:10.1016/s0161-6420(01)00936-8 50. Tabet R, Stewart WC, Feldman R and Konstas AG (2008) A review of additivity to prostaglandin analogs: fixed and unfixed combinations. Surv Ophthalmol 53 Suppl1:S85-92. doi:10.1016/j.survophthal.2008.08.011 51. Feldman RM, Tanna AP, Gross RL, Chuang AZ, Baker L, Reynolds A and Prager TC (2007) Comparison of the ocular hypotensive efficacy of adjunctive brimonidine 0.15% or brinzolamide 1% in combination with travoprost 0.004%. Ophthalmology 114 (7):1248-1254. doi:10.1016/j.ophtha.2007.03.012 52. Franks W (2006) Ocular hypotensive efficacy and safety of brinzolamide ophthalmic suspension 1% added to travoprost ophthalmic solution 0.004% therapy in patients with open-angle glaucoma or ocular hypertension. Curr Med Res Opin 22 (9):1643-1649. doi:10.1185/030079906x120904 53. Kimal Arici M, Topalkara A and Güler C (1998) Additive effect of latanoprost and dorzolamide in patients with elevated intraocular pressure. Int Ophthalmol 22 (1):37-42. doi:10.1023/a:1006176713983 54. van der Valk R, Webers CA, Schouten JS, Zeegers MP, Hendrikse F and Prins MH (2005) Intraocular pressure-lowering effects of all commonly used glaucoma drugs: a meta-analysis of randomized clinical trials. Ophthalmology 112 (7):1177-1185. doi:10.1016/j.ophtha.2005.01.042 55. Konstas AG, Schmetterer L, Costa VP, Holló G, Katsanos A, Denis P, Quaranta L, Irkec M, Castejón MA, Teus MA and Robin AL (2020) Current and emerging fixed combination therapies in glaucoma: a safety and tolerability review. Expert Opin Drug Saf 19 (11):1445-1460. doi:10.1080/14740338.2020.1826928 56. Rücker G, Petropoulou M and Schwarzer G (2020) Network meta-analysis of multicomponent interventions. Biom J 62 (3):808-821. doi:10.1002/bimj.201800167 57. Camras CB and Hedman K (2003) Rate of response to latanoprost or timolol in patients with ocular hypertension or glaucoma. J Glaucoma 12 (6):466-469. doi:10.1097/00061198-200312000-00004 58. Ussa F, Fernandez I, Brion M, Carracedo A, Blazquez F, Garcia MT, Sanchez-Jara A, De Juan-Marcos L, Jimenez-Carmona S, Juberias JR, Martinez-de-la-Casa JM and Pastor JC (2015) Association between SNPs of Metalloproteinases and Prostaglandin F2α Receptor Genes and Latanoprost Response in Open-Angle Glaucoma. Ophthalmology 122 (5):1040-1048.e1044. doi:10.1016/j.ophtha.2014.12.038 59. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P and Moher D (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Bmj 372:n71. doi:10.1136/bmj.n71 60. Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C, Ioannidis JP, Straus S, Thorlund K, Jansen JP, Mulrow C, Catalá-López F, Gøtzsche PC, Dickersin K, Boutron I, Altman DG and Moher D (2015) The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med 162 (11):777-784. doi:10.7326/m14-2385 61. Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, Cates CJ, Cheng HY, Corbett MS, Eldridge SM, Emberson JR, Hernán MA, Hopewell S, Hróbjartsson A, Junqueira DR, Jüni P, Kirkham JJ, Lasserson T, Li T, McAleenan A, Reeves BC, Shepperd S, Shrier I, Stewart LA, Tilling K, White IR, Whiting PF and Higgins JPT (2019) RoB 2: a revised tool for assessing risk of bias in randomised trials. Bmj 366:l4898. doi:10.1136/bmj.l4898 62. Nikolakopoulou A, Higgins JPT, Papakonstantinou T, Chaimani A, Del Giovane C, Egger M and Salanti G (2020) CINeMA: An approach for assessing confidence in the results of a network meta-analysis. PLoS Med 17 (4):e1003082. doi:10.1371/journal.pmed.1003082 63. Papakonstantinou T, Nikolakopoulou A, Higgins JPT, Egger M and Salanti G (2020) CINeMA: Software for semiautomated assessment of the confidence in the results of network meta-analysis. Campbell Syst Rev 16 (1):e1080. doi:10.1002/cl2.1080 64. DerSimonian R and Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7 (3):177-188. doi:10.1016/0197-2456(86)90046-2 65. Higgins JP, Jackson D, Barrett JK, Lu G, Ades AE and White IR (2012) Consistency and inconsistency in network meta-analysis: concepts and models for multi-arm studies. Res Synth Methods 3 (2):98-110. doi:10.1002/jrsm.1044 66. Tu YK (2014) Use of generalized linear mixed models for network meta-analysis. Med Decis Making 34 (7):911-918. doi:10.1177/0272989x14545789 67. Salanti G, Higgins JP, Ades AE and Ioannidis JP (2008) Evaluation of networks of randomized trials. Stat Methods Med Res 17 (3):279-301. doi:10.1177/0962280207080643 68. Balduzzi S, Rücker G, Nikolakopoulou A, Papakonstantinou T, Salanti G, Efthimiou O and Schwarzer G (2023) netmeta: An R Package for Network Meta-Analysis Using Frequentist Methods. Journal of Statistical Software 106 (2):1 - 40. doi:10.18637/jss.v106.i02 69. Rücker G (2012) Network meta-analysis, electrical networks and graph theory. Res Synth Methods 3 (4):312-324. doi:10.1002/jrsm.1058 70. Neupane B, Richer D, Bonner AJ, Kibret T and Beyene J (2014) Network meta-analysis using R: a review of currently available automated packages. PLoS One 9 (12):e115065. doi:10.1371/journal.pone.0115065 71. Salanti G, Ades AE and Ioannidis JP (2011) Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial. J Clin Epidemiol 64 (2):163-171. doi:10.1016/j.jclinepi.2010.03.016 72. Rücker G and Schwarzer G (2015) Ranking treatments in frequentist network meta-analysis works without resampling methods. BMC Medical Research Methodology 15 (1):58. doi:10.1186/s12874-015-0060-8 73. Cipriani A, Higgins JP, Geddes JR and Salanti G (2013) Conceptual and technical challenges in network meta-analysis. Ann Intern Med 159 (2):130-137. doi:10.7326/0003-4819-159-2-201307160-00008 74. White IR, Barrett JK, Jackson D and Higgins JP (2012) Consistency and inconsistency in network meta-analysis: model estimation using multivariate meta-regression. Res Synth Methods 3 (2):111-125. doi:10.1002/jrsm.1045 75. Krahn U, Binder H and König J (2013) A graphical tool for locating inconsistency in network meta-analyses. BMC Med Res Methodol 13:35. doi:10.1186/1471-2288-13-35 76. Dias S, Welton NJ, Caldwell DM and Ades AE (2010) Checking consistency in mixed treatment comparison meta-analysis. Stat Med 29 (7-8):932-944. doi:10.1002/sim.3767 77. Dias S, Welton NJ, Sutton AJ, Caldwell DM, Lu G, and Ades AE (2011) NICE DSU Technical Support Document 4: Inconsistency in Networks of Evidence Based on Randomised Controlled Trials. 78. Bucher HC, Guyatt GH, Griffith LE and Walter SD (1997) The results of direct and indirect treatment comparisons in meta-analysis of randomized controlled trials. J Clin Epidemiol 50 (6):683-691. doi:10.1016/s0895-4356(97)00049-8 79. Mills HL, Higgins JPT, Morris RW, Kessler D, Heron J, Wiles N, Davey Smith G and Tilling K (2021) Detecting Heterogeneity of Intervention Effects Using Analysis and Meta-analysis of Differences in Variance Between Trial Arms. Epidemiology 32 (6):846-854. doi:10.1097/ede.0000000000001401 80. Garway-Heath DF, Crabb DP, Bunce C, Lascaratos G, Amalfitano F, Anand N, Azuara-Blanco A, Bourne RR, Broadway DC, Cunliffe IA, Diamond JP, Fraser SG, Ho TA, Martin KR, McNaught AI, Negi A, Patel K, Russell RA, Shah A, Spry PG, Suzuki K, White ET, Wormald RP, Xing W and Zeyen TG (2015) Latanoprost for open-angle glaucoma (UKGTS): a randomised, multicentre, placebo-controlled trial. Lancet 385 (9975):1295-1304. doi:10.1016/s0140-6736(14)62111-5 81. DuBiner HB, Mroz M, Shapiro AM and Dirks MS (2001) A comparison of the efficacy and tolerability of brimonidine and latanoprost in adults with open-angle glaucoma or ocular hypertension: a three-month, multicenter, randomized, double-masked, parallel-group trial. Clin Ther 23 (12):1969-1983. doi:10.1016/s0149-2918(01)80150-8 82. Ming-Li J and Kui-Qing Z (2017) Effects of drug combination on optic disc parameters and retinal nerve fiber layer thickness of high intraocular pressure type POAG patients. International Eye Science:2292-2295 83. Wang J, Wang H and Dang Y (2023) Rho-Kinase Inhibitors as Emerging Targets for Glaucoma Therapy. Ophthalmol Ther 12 (6):2943-2957. doi:10.1007/s40123-023-00820-y 84. Sharif NA, Odani-Kawabata N, Lu F and Pinchuk L (2023) FP and EP2 prostanoid receptor agonist drugs and aqueous humor outflow devices for treating ocular hypertension and glaucoma. Exp Eye Res 229:109415. doi:10.1016/j.exer.2023.109415 85. Aihara M, Lu F, Kawata H, Iwata A, Odani-Kawabata N and Shams NK (2020) Omidenepag Isopropyl Versus Latanoprost in Primary Open-Angle Glaucoma and Ocular Hypertension: The Phase 3 AYAME Study. Am J Ophthalmol 220:53-63. doi:10.1016/j.ajo.2020.06.003 86. Kuo HT, Yeh CY, Hsu AY, Ho JH, Lin CJ and Tsai YY (2023) Clinical Efficacy of Omidenepag Isopropyl for Primary Open-Angle Glaucoma, Normal Tension Glaucoma, or Ocular Hypertension: A Meta-Analysis. J Ocul Pharmacol Ther 39 (10):705-715. doi:10.1089/jop.2023.0058 87. Aihara M, Lu F, Kawata H, Iwata A and Odani-Kawabata N (2021) Twelve-month efficacy and safety of omidenepag isopropyl, a selective EP2 agonist, in open-angle glaucoma and ocular hypertension: the RENGE study. Japanese Journal of Ophthalmology 65:810-819 88. Weinreb RN, Scassellati Sforzolini B, Vittitow J and Liebmann J (2016) Latanoprostene Bunod 0.024% versus Timolol Maleate 0.5% in Subjects with Open-Angle Glaucoma or Ocular Hypertension: The APOLLO Study. Ophthalmology 123 (5):965-973. doi:10.1016/j.ophtha.2016.01.019 89. Medeiros FA, Martin KR, Peace J, Scassellati Sforzolini B, Vittitow JL and Weinreb RN (2016) Comparison of Latanoprostene Bunod 0.024% and Timolol Maleate 0.5% in Open-Angle Glaucoma or Ocular Hypertension: The LUNAR Study. Am J Ophthalmol 168:250-259. doi:10.1016/j.ajo.2016.05.012 90. Lo TC, Chen YY, Hung MC and Chou P (2022) Latanoprostene Bunod 0.024% in the Treatment of Open-Angle Glaucoma and Ocular Hypertension: A Meta-Analysis. J Clin Med 11 (15). doi:10.3390/jcm11154325 91. Islam S, and Spry C (2020) Prostaglandin Analogues for Ophthalmic Use: A Review of Comparative Clinical Effectiveness, Cost-Effectiveness, and Guidelines. 92. Nazir N, Ali Z, Ejaz Latif IN and Alvi Z (2019) Comparison of Efficacy of Latanoprost 0.005% with Bimatoprost 0.01% in Patients with Open Angle Glaucoma. National Editorial Advisory Board 30 (7) 93. El Hajj Moussa WG, Farhat RG, Nehme JC, Sahyoun MA, Schakal AR, Jalkh AE, Abi Karam MP and Azar GG (2018) Comparison of Efficacy and Ocular Surface Disease Index Score between Bimatoprost, Latanoprost, Travoprost, and Tafluprost in Glaucoma Patients. J Ophthalmol 2018:1319628. doi:10.1155/2018/1319628 94. Tang W, Zhang F, Liu K and Duan X (2019) Efficacy and safety of prostaglandin analogues in primary open-angle glaucoma or ocular hypertension patients: A meta-analysis. Medicine (Baltimore) 98 (30):e16597. doi:10.1097/md.0000000000016597 95. Mishra D, Sinha BP and Kumar MS (2014) Comparing the efficacy of latanoprost (0.005%), bimatoprost (0.03%), travoprost (0.004%), and timolol (0.5%) in the treatment of primary open angle glaucoma. Korean J Ophthalmol 28 (5):399-407. doi:10.3341/kjo.2014.28.5.399 96. Faridi UA, Saleh TA, Ewings P, Venkateswaran M, Cadman DH, Samarasinghe RA, Vodden J and Claridge KG (2010) Comparative study of three prostaglandin analogues in the treatment of newly diagnosed cases of ocular hypertension, open-angle and normal tension glaucoma. Clin Exp Ophthalmol 38 (7):678-682. doi:10.1111/j.1442-9071.2010.02305.x 97. Cantor LB, Hoop J, Morgan L, Wudunn D and Catoira Y (2006) Intraocular pressure-lowering efficacy of bimatoprost 0.03% and travoprost 0.004% in patients with glaucoma or ocular hypertension. Br J Ophthalmol 90 (11):1370-1373. doi:10.1136/bjo.2006.094326 98. Koz OG, Ozsoy A, Yarangumeli A, Kose SK and Kural G (2007) Comparison of the effects of travoprost, latanoprost and bimatoprost on ocular circulation: a 6-month clinical trial. Acta Ophthalmol Scand 85 (8):838-843. doi:10.1111/j.1600-0420.2007.00960.x 99. Arcieri ES, Santana A, Rocha FN, Guapo GL and Costa VP (2005) Blood-aqueous barrier changes after the use of prostaglandin analogues in patients with pseudophakia and aphakia: a 6-month randomized trial. Arch Ophthalmol 123 (2):186-192. doi:10.1001/archopht.123.2.186 100. Birt CM, Buys YM, Ahmed, II and Trope GE (2010) Prostaglandin efficacy and safety study undertaken by race (the PRESSURE study). J Glaucoma 19 (7):460-467. doi:10.1097/IJG.0b013e3181c4aeac 101. Parrish RK, Palmberg P and Sheu WP (2003) A comparison of latanoprost, bimatoprost, and travoprost in patients with elevated intraocular pressure: a 12-week, randomized, masked-evaluator multicenter study. Am J Ophthalmol 135 (5):688-703. doi:10.1016/s0002-9394(03)00098-9 102. Gandolfi S, Simmons ST, Sturm R, Chen K and VanDenburgh AM (2001) Three-month comparison of bimatoprost and latanoprost in patients with glaucoma and ocular hypertension. Adv Ther 18 (3):110-121. doi:10.1007/bf02850299 103. Yildirim N, Sahin A and Gultekin S (2008) The effect of latanoprost, bimatoprost, and travoprost on circadian variation of intraocular pressure in patients with open-angle glaucoma. J Glaucoma 17 (1):36-39. doi:10.1097/IJG.0b013e318133fb70 104. Schoene RB, Abuan T, Ward RL and Beasley CH (1984) Effects of topical betaxolol, timolol, and placebo on pulmonary function in asthmatic bronchitis. Am J Ophthalmol 97 (1):86-92. doi:10.1016/0002-9394(84)90450-1 105. Atkins JM, Pugh BR, Jr. and Timewell RM (1985) Cardiovascular effects of topical beta-blockers during exercise. Am J Ophthalmol 99 (2):173-175. doi:10.1016/0002-9394(85)90227-2 106. Sica DA (2001) Current concepts of pharmacotherapy in hypertension--ophthalmically administered beta blockers and their cardiopulmonary effects. J Clin Hypertens (Greenwich) 3 (3):175-178. doi:10.1111/j.1524-6175.2001.00466.x 107. Netland PA, Weiss HS, Stewart WC, Cohen JS and Nussbaum LL (1997) Cardiovascular effects of topical carteolol hydrochloride and timolol maleate in patients with ocular hypertension and primary open-angle glaucoma. Night Study Group. Am J Ophthalmol 123 (4):465-477. doi:10.1016/s0002-9394(14)70172-2 108. Stewart WC, Dubiner HB, Mundorf TK, Laibovitz RA, Sall KN, Katz LJ, and Apostolaros M(1999). Effects of carteolol and timolol on plasma lipid profiles in older women with ocular hypertension or primary open-angle glaucoma. American journal of ophthalmology, 127(2), 142-147. 109. Frishman WH, Fuksbrumer MS and Tannenbaum M (1994) Topical ophthalmic beta-adrenergic blockade for the treatment of glaucoma and ocular hypertension. J Clin Pharmacol 34 (8):795-803. doi:10.1002/j.1552-4604.1994.tb02042.x 110. Hughes F (1989) Clinical studies of systemic effects of topical β‐blockers. Int Ophthalmol Clin 29 (suppl):S19-S20 111. Stewart WC, Day DG, Stewart JA, Holmes KT and Jenkins JN (2004) Short-term ocular tolerability of dorzolamide 2% and brinzolamide 1% vs placebo in primary open-angle glaucoma and ocular hypertension subjects. Eye 18 (9):905-910. doi:10.1038/sj.eye.6701353 112. Ishibashi T, Mori K, Ikeda Y, Naruse S, Hozono Y, Ikushima T and Kinoshita S (2004) Blurred vision after instillation of brinzolamide and dorzolamide. Investigative Ophthalmology & Visual Science 45 (13):4473-4473 113. Inoue K, Komori R, Kunimatsu-Sanuki S, Ishida K and Tomita G (2022) Frequency of Use of Fixed-Combination Eye Drops by Patients with Glaucoma at Multiple Private Practices in Japan. Clin Ophthalmol 16:557-565. doi:10.2147/opth.S345944 114. Lou H, Wang H, Zong Y, Cheng JW and Wei RL (2015) Efficacy and tolerability of prostaglandin-timolol fixed combinations: an updated systematic review and meta-analysis. Curr Med Res Opin 31 (6):1139-1147. doi:10.1185/03007995.2015.1039504 115. Aptel F, Cucherat M and Denis P (2012) Efficacy and tolerability of prostaglandin-timolol fixed combinations: a meta-analysis of randomized clinical trials. Eur J Ophthalmol 22 (1):5-18. doi:10.5301/ejo.5000009 116. Sanseau A, Sampaolesi J, Suzuki ER, Jr., Lopes JF and Borel H (2013) Preference for a fixed combination of brinzolamide/timolol versus dorzolamide/timolol among patients with open-angle glaucoma or ocular hypertension. Clin Ophthalmol 7:357-362. doi:10.2147/opth.S38575 117. Altafini R, Scherzer ML, Hubatsch DA and Frezzotti P (2015) Brinzolamide 1%/timolol versus dorzolamide 2%/timolol in the treatment of open-angle glaucoma or ocular hypertension: prospective randomized patient-preference study. Clin Ophthalmol 9:2263-2270. doi:10.2147/opth.S88891 118. Mundorf TK, Rauchman SH, Williams RD and Notivol R (2008) A patient preference comparison of Azarga (brinzolamide/timolol fixed combination) vs Cosopt (dorzolamide/timolol fixed combination) in patients with open-angle glaucoma or ocular hypertension. Clin Ophthalmol 2 (3):623-628. doi:10.2147/opth.s4088 119. Vold SD, Evans RM, Stewart RH, Walters T and Mallick S (2008) A one-week comfort study of BID-dosed brinzolamide 1%/timolol 0.5% ophthalmic suspension fixed combination compared to BID-dosed dorzolamide 2%/timolol 0.5% ophthalmic solution in patients with open-angle glaucoma or ocular hypertension. J Ocul Pharmacol Ther 24 (6):601-605. doi:10.1089/jop.2008.0030 120. Agarwal P, Tayal S and Gautum A (2022) Comparative study to assess efficacy and safety of brinzolamide1% and timolol0.5% fixed combination eye drops versus dorzolamide2% and timolol0.5% fixed combination eye drops in management of open-angle glaucoma. J Family Med Prim Care 11 (5):2167-2171. doi:10.4103/jfmpc.jfmpc_1578_21 121. Miura K, Ito K, Okawa C, Sugimoto K, Matsunaga K and Uji Y (2008) Comparison of ocular hypotensive effect and safety of brinzolamide and timolol added to latanoprost. J Glaucoma 17 (3):233-237. doi:10.1097/IJG.0b013e31815072fe 122. O'Connor DJ, Martone JF and Mead A (2002) Additive intraocular pressure lowering effect of various medications with latanoprost. Am J Ophthalmol 133 (6):836-837. doi:10.1016/s0002-9394(02)01418-6 123. Martinez-de-la-Casa JM, Castillo A, Garcia-Feijoo J, Mendez-Hernandez C, Fernandez-Vidal A and Garcia-Sanchez J (2004) Concomitant administration of travoprost and brinzolamide versus fixed latanoprost/timolol combined therapy: three-month comparison of efficacy and safety. Curr Med Res Opin 20 (9):1333-1339. doi:10.1185/030079904125004529 124. Liu Y, Zhao J, Zhong X, Wei Q and Huang Y (2019) Efficacy and Safety of Brinzolamide as Add-On to Prostaglandin Analogues or β-Blocker for Glaucoma and Ocular Hypertension: A Systematic Review and Meta-Analysis. Front Pharmacol 10:679. doi:10.3389/fphar.2019.00679 125. Reis R, Queiroz CF, Santos LC, Avila MP and Magacho L (2006) A randomized, investigator-masked, 4-week study comparing timolol maleate 0.5%, brinzolamide 1%, and brimonidine tartrate 0.2% as adjunctive therapies to travoprost 0.004% in adults with primary open-angle glaucoma or ocular hypertension. Clin Ther 28 (4):552-559. doi:10.1016/j.clinthera.2006.04.007 126. Pfeiffer N (2011) Timolol versus brinzolamide added to travoprost in glaucoma or ocular hypertension. Graefes Arch Clin Exp Ophthalmol 249 (7):1065-1071. doi:10.1007/s00417-011-1650-8 127. Holló G, Chiselita D, Petkova N, Cvenkel B, Liehneova I, Izgi B, Berta A, Szaflik J, Turacli E and Stewart WC (2006) The efficacy and safety of timolol maleate versus brinzolamide each given twice daily added to travoprost in patients with ocular hypertension or primary open-angle glaucoma. Eur J Ophthalmol 16 (6):816-823. doi:10.1177/112067210601600606 128. Konstas AG, Holló G, Haidich AB, Mikropoulos DG, Giannopoulos T, Voudouragkaki IC, Paschalinou E, Konidaris V and Samples JR (2013) Comparison of 24-hour intraocular pressure reduction obtained with brinzolamide/timolol or brimonidine/timolol fixed-combination adjunctive to travoprost therapy. J Ocul Pharmacol Ther 29 (7):652-657. doi:10.1089/jop.2012.0195 129. Tanna AP and Lin AB (2015) Medical therapy for glaucoma: what to add after a prostaglandin analogs? Curr Opin Ophthalmol 26 (2):116-120. doi:10.1097/icu.0000000000000134 130. Shim MS, Kim KY and Ju WK (2017) Role of cyclic AMP in the eye with glaucoma. BMB Rep 50 (2):60-70. doi:10.5483/bmbrep.2017.50.2.200 131. Chen S, Inoue R, Inomata H and Ito Y (1994) Role of cyclic AMP-induced Cl conductance in aqueous humour formation by the dog ciliary epithelium. Br J Pharmacol 112 (4):1137-1145. doi:10.1111/j.1476-5381.1994.tb13202.x 132. Bill A (1969) Early effects of epinephrine on aqueous humor dynamics in vervet monkeys (Cercopithecus ethiops). Exp Eye Res 8 (1):35-43. doi:10.1016/s0014-4835(69)80078-3 133. Toris CB, Gleason ML, Camras CB and Yablonski ME (1995) Effects of brimonidine on aqueous humor dynamics in human eyes. Arch Ophthalmol 113 (12):1514-1517. doi:10.1001/archopht.1995.01100120044006 134. Neufeld AH, Dueker DK, Vegge T and Sears ML (1975) Adenosine 3',5'-monophosphate increases the outflow of aqueous humor from the rabbit eye. Invest Ophthalmol 14 (1):40-42 135. Boas RS, Messenger MJ, Mittag TW and Podos SM (1981) The effects of topically applied epinephrine and timolol on intraocular pressure and aqueous humor cyclic-AMP in the rabbit. Exp Eye Res 32 (6):681-690. doi:10.1016/0014-4835(81)90017-8 136. Bill A (1970) Effects of norepinephrine, isoproterenol and sympathetic stimulation on aqueous humour dynamics in vervet monkeys. Exp Eye Res 10 (1):31-46. doi:10.1016/s0014-4835(70)80006-9 137. Nilsson SF, Mäepea O, Samuelsson M and Bill A (1990) Effects of timolol on terbutaline- and VIP-stimulated aqueous humor flow in the cynomolgus monkey. Curr Eye Res 9 (9):863-872. doi:10.3109/02713689008999558 138. Kazemi A, McLaren JW, Trese MGJ, Toris CB, Gulati V, Fan S, Reed DM, Kristoff T, Gilbert J, Moroi SE and Sit AJ (2019) Effect of Timolol on Aqueous Humor Outflow Facility in Healthy Human Eyes. Am J Ophthalmol 202:126-132. doi:10.1016/j.ajo.2019.02.014 139. Shahidullah M, Mandal A, Wei G, Levin LR, Buck J and Delamere NA (2014) Nonpigmented ciliary epithelial cells respond to acetazolamide by a soluble adenylyl cyclase mechanism. Invest Ophthalmol Vis Sci 55 (1):187-197. doi:10.1167/iovs.13-12717 140. Puscas I and Coltau M (1995) Prostaglandins with vasodilating effects inhibit carbonic anhydrase while vasoconstrictive prostaglandins and leukotriens B4 and C4 increase CA activity. Int J Clin Pharmacol Ther 33 (3):176-181 141. Bhorade AM, Gordon MO, Wilson B, Weinreb RN and Kass MA (2009) Variability of intraocular pressure measurements in observation participants in the ocular hypertension treatment study. Ophthalmology 116 (4):717-724. doi:10.1016/j.ophtha.2008.12.036 142. Dasso L, Al-Khaled T, Sonty S and Aref AA (2018) Profile of netarsudil ophthalmic solution and its potential in the treatment of open-angle glaucoma: evidence to date. Clin Ophthalmol 12:1939-1944. doi:10.2147/opth.S154001 143. Serle JB, Katz LJ, McLaurin E, Heah T, Ramirez-Davis N, Usner DW, Novack GD and Kopczynski CC (2018) Two Phase 3 Clinical Trials Comparing the Safety and Efficacy of Netarsudil to Timolol in Patients With Elevated Intraocular Pressure: Rho Kinase Elevated IOP Treatment Trial 1 and 2 (ROCKET-1 and ROCKET-2). Am J Ophthalmol 186:116-127. doi:10.1016/j.ajo.2017.11.019 144. Bacharach J, Dubiner HB, Levy B, Kopczynski CC and Novack GD (2015) Double-masked, randomized, dose-response study of AR-13324 versus latanoprost in patients with elevated intraocular pressure. Ophthalmology 122 (2):302-307. doi:10.1016/j.ophtha.2014.08.022 145. Kaufman AR, Elhusseiny AM, Edward DP, Vajaranant TS, Aref AA and Abbasian J (2023) Topical netarsudil for treatment of glaucoma with elevated episcleral venous pressure: A pilot investigation in sturge-weber syndrome. Eur J Ophthalmol 33 (5):1969-1976. doi:10.1177/11206721231159694 146. Hedman K and Alm A (2000) A Pooled-Data Analysis of Three Randomized, Double-Masked, Six-Month Clinical Studies Comparing the Intraocular Pressure Reducing Effect of Latanoprost and Timolol. European Journal of Ophthalmology 10 (2):95-104. doi:10.1177/112067210001000201 147. Lee SS, Robinson MR and Weinreb RN (2019) Episcleral Venous Pressure and the Ocular Hypotensive Effects of Topical and Intracameral Prostaglandin Analogs. J Glaucoma 28 (9):846-857. doi:10.1097/ijg.0000000000001307 148. Netland PA, Michael M, Rosner SA, Katzman B and Macy JI (2003) Brimonidine Purite and bimatoprost compared with timolol and latanoprost in patients with glaucoma and ocular hypertension. Adv Ther 20 (1):20-30. doi:10.1007/bf02850116 149. Baiza-Durán LM, Llamas-Moreno JF and Ayala-Barajas C (2012) Comparison of timolol 0.5% + brimonidine 0.2% + dorzolamide 2% versus timolol 0.5% + brimonidine 0.2% in a Mexican population with primary open-angle glaucoma or ocular hypertension. Clin Ophthalmol 6:1051-1055. doi:10.2147/opth.S33578 150. Kirihara T, Taniguchi T, Yamamura K, Iwamura R, Yoneda K, Odani-Kawabata N, Shimazaki A, Matsugi T, Shams N and Zhang JZ (2018) Pharmacologic Characterization of Omidenepag Isopropyl, a Novel Selective EP2 Receptor Agonist, as an Ocular Hypotensive Agent. Invest Ophthalmol Vis Sci 59 (1):145-153. doi:10.1167/iovs.17-22745 151. Miki A, Miyamoto E, Ishida N, Shii D, Hori K and Group LR (2022) Efficacy and Safety of Omidenepag Isopropyl 0.002% Ophthalmic Solution: A Retrospective Analysis of Real-World Data in Japan. Advances in Therapy 39 (5):2085-2095. doi:10.1007/s12325-022-02069-6 152. Inoue K, Shiokawa M, Kunimatsu-Sanuki S, Nozaki N, Shimizu K, Ishida K and Tomita G (2022) One-Year Efficacy and Safety of Omidenepag Isopropyl in Patients with Normal-Tension Glaucoma. J Ocul Pharmacol Ther 38 (5):354-358. doi:10.1089/jop.2021.0122 153. Boger WP, 3rd (1983) Shortterm "escape" and longterm "drift." The dissipation effects of the beta adrenergic blocking agents. Surv Ophthalmol 28 Suppl:235-242. doi:10.1016/0039-6257(83)90138-8 154. Freeman SC, Saeedi E, Ordóñez-Mena JM, Nevill CR, Hartmann-Boyce J, Caldwell DM, Welton NJ, Cooper NJ and Sutton AJ (2023) Data visualisation approaches for component network meta-analysis: visualising the data structure. BMC Med Res Methodol 23 (1):208. doi:10.1186/s12874-023-02026-z 155. Riley RD, Debray TPA, Fisher D, Hattle M, Marlin N, Hoogland J, Gueyffier F, Staessen JA, Wang J, Moons KGM, Reitsma JB and Ensor J (2020) Individual participant data meta-analysis to examine interactions between treatment effect and participant-level covariates: Statistical recommendations for conduct and planning. Stat Med 39 (15):2115-2137. doi:10.1002/sim.8516 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95009 | - |
| dc.description.abstract | 本篇系統性回顧與網絡統合分析旨在評估青光眼藥物之降眼壓效果,比較單方和複方藥物在原發性隅角開放型青光眼或高眼壓症之病患的療效。共納入224項研究,42,260名參與者,比較36種和17類青光眼藥物的治療效果。在所有納入之藥物中,前三名有效皆為複方藥,分別為travoprost/ brinzolamide, latanoprost/brimonidine, brimonidine/ timolol/ dorzolamide。而前三名有效的單方藥為bimatoprost, latanoprostene bunod, latanoprost。此外本研究欲探討新型藥物相較於原有藥物的療效,發現新型的前列腺素omidenepag isopropyl (OMDI) 效果不如已有的前列腺素衍生物(PG),降低眼壓效果排在bimatoprost, latanoprostene bunod, latanoprost, travoprost, tafluprost之後。然而,OMDI/timolol的組合療效較好,僅略低於bimatoprost/timolol,優於latanoprost, travoprost, tafluprost和timolol的組合。在ROCK激脢抑制劑(ROCKI)中netarsudil優於ripasudil和carbonic anhydrase inhibitors(C),而和β-阻滯劑(B)和α-2腎上腺素能促進劑(A)差不多,但效果不如前列腺素衍生物。而latanoprostene bunod作為一種效果優良的單一療法,效果僅次於bimatoprost。在複方藥物療效的部分,前列腺素衍生物之複方藥物優於非前列腺素衍生物之複方藥。而非前列腺素衍生物之複方藥物與效果較優良之前列腺素衍生物單方藥差不多,例如bimatoprost、latanoprostene bunod,較排名在後之前列腺素衍生物單方藥效果好,例如tafluprost、OMDI。在所有前列腺素衍生物之複方藥中,效果排名依次為PG+C、PG+A、PG+B+A、PG+ROCKI和PG+B。PG+B+A效果反而比PG+A來得弱,以及C作為降壓效果最弱的單方藥,其和PG之結合反而是效果最強的複方藥,這些與元件網絡統合分析的互動模式發現PG和C有加乘效應,而PG和B有拮抗效應互相應證。本研究提供了現有青光眼藥物的降低眼壓效果排名,為青光眼臨床治療選用藥物提供參考,並指出藥物間可能的交互作用,為開發新的複方療法提供基礎。 | zh_TW |
| dc.description.abstract | This systematic review and network meta-analysis (NMA) assessed the efficacy of monotherapy versus combination therapy in treating primary open angle glaucoma or ocular hypertension. We included 224 studies involving 42,260 participants to compare the treatment efficacy of 36 kinds and 17 categories of glaucoma medications. The top combination therapies, based on P-score, were travoprost/ brinzolamide, latanoprost/brimonidine, and brimonidine/ timolol/ dorzolamide, while the leading monotherapies included bimatoprost, latanoprostene bunod, and latanoprost. The effectiveness of newer glaucoma medications was also explored. Omidenepag isopropyl (OMDI) was less effective than established prostaglandin analog (PG), placing it after bimatoprost, latanoprostene bunod, latanoprost, travoprost, and tafluprost. However, its combination with timolol showed improved efficacy and was only inferior to bimatoprost/timolol. Netarsudil outperformed ripasudil (ROCKI) and carbonic anhydrase inhibitors (C) and matched β-blockers (B) and α-2 adrenergic agonists (A), though it was less effective than prostaglandin analogs. Latanoprostene bunod, positioned as a superior monotherapy ranking just below bimatoprost. Prostaglandin combinations generally surpassed non-prostaglandin combinations. Non-prostaglandin combinations demonstrated similar efficacy to high-ranking prostaglandin monotherapies, such as bimatoprost and latanoprostene bunod, and outperformed lower-ranking prostaglandin monotherapies like tafluprost and OMDI. The hierarchy of prostaglandin-based combination therapies—categorized as PG+C, PG+A, PG+B+A, PG+ROCKI, and PG+B—mirrored the interactive component NMA model findings of a synergistic effect between PG and C, contrasted with an antagonistic effect between PG and B. This research offers a detailed efficacy ranking of the extant glaucoma medications, providing a strategic guide for clinical practice and a foundation for developing novel combination therapies. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-26T16:13:52Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-26T16:13:52Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii 英文摘要 iv Chapter1Introduction 1 1.1 Overview of glaucoma 1 1.2 Medical treatment of glaucoma 4 Chapter 2 Literature review 6 2.1 Efficacy of glaucoma medications 6 2.2 Limitations and gaps in the present literature 9 2.3 The interaction between different categories of medications 12 2.4 Heterogeneity of the treatment response of different medications 13 Chapter 3 Materials and Methods 14 3.1 Systemic review 14 3.1.1 Eligibility criteria 14 3.1.2 Search methods 17 3.1.3 Study selection and data extraction 17 3.1.4 Quality assessment 18 3.1.5 Certainty of Evidence in Network Estimates 18 3.2 Pairwise meta-analysis 19 3.3 Network meta-analysis 21 3.3.1 Contrast-based random-effect model 21 3.3.2 Reporting the outcomes 22 3.3.3 Assessment of transitivity 24 3.3.4 Assessment of network heterogeneity and consistency 24 3.4 Component network meta-analysis 27 3.5 Detecting the heterogeneity of treatment effects 28 3.6 Statistical significance 29 Chapter 4 Results 30 4.1 Systemic review 30 4.2 The assessment of transitivity and risk of bias 31 4.3 The results of NMA for the treatment efficacy of glaucoma medications 36 4.3.1 Treatment efficacy of different kinds of glaucoma medications 36 4.3.1.1 The results of pairwise comparisons 36 4.3.1.2 The results of network meta-analysis 41 4.3.1.3 The treatment efficacy of ROCKI 44 4.3.1.4 The treatment efficacy of EP2 receptor agonist 45 4.3.1.5 The treatment efficacy of latanoprostene bunod 46 4.3.1.6 The comparison of treatment efficacy between different combination therapies 48 4.3.2 Treatment efficacy of different categories of glaucoma medications 50 4.3.2.1 The results of pairwise comparison 50 4.3.2.2 The results of network meta-analysis 53 4.3.2.3 The comparison of monotherapies 57 4.3.2.4 The treatment efficacy of ROCKI 57 4.3.2.5 The treatment efficacy of EP2 receptor agonists 58 4.3.2.6 The treatment efficacy of latanoprostene bunod 59 4.3.2.7 The comparison of combination therapies 60 4.4 The assessment of network heterogeneity and consistency 62 4.5 The results of component network meta-analysis 64 4.5.1 The results of additive model 64 4.5.2 The results of interactive model 67 4.6 The results of the heterogeneity of treatment efficacy 71 Chapter 5 Discussion 75 5.1 Treatment efficacy of glaucoma medications 75 5.1.1 The efficacy of different categories of monotherapies 77 5.1.2 The efficacy of the newly introduced glaucoma medications 77 5.1.3 The comparison of efficacy within the same class of monotherapies 83 5.1.4 The comparison of efficacy between different combination therapies 85 5.2 The interaction between glaucoma medications 91 5.2.1 The possible mechanism of drug-drug interaction 93 5.3 The heterogeneity of treatment efficacy 94 5.4 Strengths and limitations 97 5.5 Conclusion 103 Reference 106 Appendix I Search strategy 119 Appendix II List of included articles 123 Appendix III The summary of characteristics of studies included in the present network meta-analysis 142 | - |
| dc.language.iso | en | - |
| dc.subject | 元件網絡統合分析 | zh_TW |
| dc.subject | 網絡統合分析 | zh_TW |
| dc.subject | 眼壓 | zh_TW |
| dc.subject | 青光眼藥物 | zh_TW |
| dc.subject | 青光眼 | zh_TW |
| dc.subject | glaucoma | en |
| dc.subject | glaucoma medication | en |
| dc.subject | intraocular pressure | en |
| dc.subject | component network meta-analysis | en |
| dc.subject | network meta-analysis | en |
| dc.title | 單方暨複方青光眼藥物之降低眼壓效果與交互作用:系統性文獻回顧與網絡統合分析 | zh_TW |
| dc.title | Comparative efficacy and drug interaction of monotherapy and combination medication for primary open angle glaucoma: a systemic review and network meta-analysis | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蕭朱杏;謝易庭 | zh_TW |
| dc.contributor.oralexamcommittee | Chu-Hsing Hsiao;Yi-Ting Hsieh | en |
| dc.subject.keyword | 網絡統合分析,元件網絡統合分析,青光眼,青光眼藥物,眼壓, | zh_TW |
| dc.subject.keyword | network meta-analysis,component network meta-analysis,glaucoma,glaucoma medication,intraocular pressure, | en |
| dc.relation.page | 150 | - |
| dc.identifier.doi | 10.6342/NTU202403561 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-07 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 流行病學與預防醫學研究所 | - |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 3.31 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
