請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95004完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 官彥州 | zh_TW |
| dc.contributor.advisor | Yen-Chou Kuan | en |
| dc.contributor.author | 蕭彬俯 | zh_TW |
| dc.contributor.author | Pin-Fu Hsiao | en |
| dc.date.accessioned | 2024-08-26T16:12:16Z | - |
| dc.date.available | 2024-08-27 | - |
| dc.date.copyright | 2024-08-26 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-12 | - |
| dc.identifier.citation | 中文參考文獻
王進生、廖公益. 1993. 台灣之花菜類蔬菜(1)青花菜、(2)花椰菜, p. 197–216. 刊於:杜金池、蕭吉雄、楊偉正主編. 台灣蔬菜產業演進四十年專集. 臺灣省農業試驗所. 台中. 王香媛、陳昶霖、林慧玲. 2022. 預冷方式對青花菜貯藏品質之影響. 興大園藝 42(4):1–14. 李健、鍾瑞永、鄭榮瑞. 2017. 連續輸送式花椰菜分切機之研究. 臺南區農業改良場研究彙報 71:84–94. 林經偉、許涵鈞、陳昇寬、吳雅芳、鄭安秀. 2014. 青花菜合理化施肥及健康管理. 行政院農業委員會臺南區農業改良場編印. 臺南. 郭明池、謝明憲、彭瑞菊、張為斌、邱冠融. 2021. 加工用青花菜品種延長產期試作及省工一次施肥效益評估. 臺南區農業改良場研究彙報 78:32–45. 薛佑光. 2019. 青花菜. 國產農漁畜產品教材. 食農教育資訊整合平台. < https://fae.moa.gov.tw/theme_data.php?theme=topics&sub_theme=material&id=882>. 行政院農委會. 2024. 農情報告資源網. 農產品貿易統計查詢系統. < https://agr.afa.gov.tw/afa/afa_frame.jsp>. 財政部關務署. 2023. 海關進出口統計. 關港貿單一窗口. <https://portal.sw.nat.gov.tw/APGA/GA30>. 衛生福利部食品藥物管理署. 2023. 藥物食品安全週報. <https://www.fda.gov.tw/TC/PublishOtherEpaperContent.aspx?id=1440&tid=4186&r=1546138007>. 英文參考文獻 Acharya, B. R. and S. M. Assmann. 2009. Hormone interactions in stomatal function. Plant Mol. Biol. 69(4):451–462. Aiamla-or, S., T. Nakajima, M. Shigyo and N. Yamauchi. 2012. Pheophytinase activity and gene expression of chlorophyll-degrading enzymes relating to UV-B treatment in postharvest broccoli (Brassica oleracea L. Italica Group) florets. Postharvest Biol. Technol. 63(1):60–66. Arnao, M. B. and J. Hernández-Ruiz. 2015. Functions of melatonin in plants: a review. J. Pineal Res. 59(2):133–150. Arnon, D. I. 1949. Copper Enzymes in Isolated Chloroplasts. Polyphenoloxidase in Beta Vulgaris. Plant Physiol. 24(1):1–15. Atkinson, C. J., W. J. Davies and T. A. Mansfield. 1989. Changes in Stomatal Conductance in Intact Ageing Wheat Leaves in Response to Abscisic Acid. J. Exp. Bot. 40(9):1021–1028. Barba, F. J., N. Nikmaram, S. Roohinejad, A. Khelfa, Z. Zhu and M. Koubaa. 2016. Bioavailability of glucosinolates and their breakdown products: impact of processing. Front. Nutr. 3:24. Bárcena, A., G. Martínez and L. Costa. 2019. Low intensity light treatment improves purple kale (Brassica oleracea var. sabellica) postharvest preservation at room temperature. Heliyon 5(9):e02467. Bárcena, A., J. V. Bahima, V. Casajús, G. Martínez, D. Lauff, J. J. Guiamet and L. Costa. 2020. The degradation of chloroplast components during postharvest senescence of broccoli florets is delayed by low-intensity visible light pulses. Postharvest Biol. Technol. 168:111249. Boccalandro, H. E., C. V. González, D. A. Wunderlin and M. F. Silva. 2011. Melatonin levels, determined by LC-ESI-MS/MS, fluctuate during the day/night cycle in Vitis vinifera cv Malbec: evidence of its antioxidant role in fruits. J. Pineal Res. 51(2):226–232. Büchert, A. M., M. E. Gómez Lobato, N. M. Villarreal, P. M. Civello and G. A. Martínez. 2011. Effect of visible light treatments on postharvest senescence of broccoli (Brassica oleracea L.). J. Sci. Food Agric. 91(2):355–361. Cano, A., M. Giraldo-Acosta, S. García-Sánchez, J. Hernández-Ruiz and M. B. Arnao. 2022. Effect of Melatonin in Broccoli Postharvest and Possible Melatonin Ingestion Level. Plants 11(15):2000. Costa, L., Y. Millan Montano, C. Carrión, N. Rolny and J. J. Guiamet. 2013. Application of low intensity light pulses to delay postharvest senescence of Ocimum basilicum leaves. Postharvest Biol. Technol. 86:181–191. Dean, M. A., C. A. Letner and J. H. Eley. 1993. Effect of Autumn Foliar Senescence on Chlorophyll a:b Ratio and Respiratory Enzymes of Populus tremuloides. Source: Bulletin of the Torrey Botanical Club 120(3):269–274. Favre, N., A. Bárcena, J. V. Bahima, G. Martínez and L. Costa. 2018. Pulses of low intensity light as promising technology to delay postharvest senescence of broccoli. Postharvest Biol. Technol. 142:107–114. Gillies, S. L. and P. M. A. Toivonen. 1995. Cooling Method Influences the Postharvest Quality of Broccoli. HortScience 30(2):313–315. Gong, J., H. Yang, Y. Xu, Y. Zeng, P. Liu, C. Chen, P. Wang and X. Sun. 2023. Differential regulation of red light- and ethephon-induced degreening in postharvest kumquat fruit. Postharvest Biol. Technol. 198:112264. Hee, J., K. ․ Kyung, M. Chung, ․ Hye, R. Woo, J. H. Kim and H. R. Woo. 2011. Three positive regulators of leaf senescence in Arabidopsis, ORE1, ORE3 and ORE9, play roles in crosstalk among multiple hormone-mediated senescence pathways. Genes Genomics 33:373–381. Hetherington, A. M. and & F. I. Woodward. 2003. The role of stomata in sensing and driving environmental change. Nature 424(21):901–908. Hickman, R., C. Hill, C. A. Penfold, E. Breeze, L. Bowden, J. D. Moore, P. Zhang, A. Jackson, E. Cooke, F. Bewicke-Copley, A. Mead, J. Beynon, D. L. Wild, K. J. Denby, S. Ott and V. Buchanan-Wollaston. 2013. A local regulatory network around three NAC transcription factors in stress responses and senescence in Arabidopsis leaves. Plant Journal 75(1):26–39. Honour, S. J., A. A. R. Webb and T. A. Mansfield. 1995. The responses of stomata to abscisic acid and temperature are interrelated. Proc. R. Soc. Lond. B. Biol. Sci. 259(1356):301–306. Hsu, P. Y. and S. L. Harmer. 2014. Wheels within wheels: The plant circadian system. Trends Plant Sci. 19(4):240–249. Inoue, S. I. and T. Kinoshita. 2017. Blue Light Regulation of Stomatal Opening and the Plasma Membrane H+-ATPase. Plant Physiol. 174(2):531. Jayarajan, S. and R. R. Sharma. 2021. Melatonin: A blooming biomolecule for postharvest management of perishable fruits and vegetables. Trends Food Sci. Technol. 116:318–328. Jihua, Y., X. Jianming and S. Yingjie. 2002. Studies on the photosynthetic characteristics of broccoli. Lanzhou Daxue Xuebao (Ziran Kexue Ban) 38(2):111–114. (abstr.) Jung Kim, H., H. Gil Nam, P. Ok Lim and P. Ok. 2016. Regulatory network of NAC transcription factors in leaf senescence This review comes from a themed issue on Cell signaling and gene regulation. Curr. Opin. Plant Biol. 33:48–56. Kang, X., G. Xu, B. Lee, C. Chen, H. Zhang, R. Kuang and M. Ni. 2018. HRB2 and BBX21 interaction modulates Arabidopsis ABI5 locus and stomatal aperture. Plant Cell Environ. 41(8):1912–1925. Kim, Y.-S., Y. Sakuraba, S.-H. Han, S.-C. Yoo and N.-C. Paek. 2013. Mutation of the Arabidopsis NAC016 Transcription Factor Delays Leaf Senescence. Plant Cell Physiol. 54(10):1660–1672. King, G. A. and S. C. Morris. 1994. Physiological Changes of Broccoli during Early Postharvest Senescence and through the Preharvest-Postharvest Continuum. Journal of the American Society for Horticultural Science 119(2):270–275. Leivar, P., E. Monte, M. M. Cohn and P. H. Quail. 2012. Phytochrome Signaling in Green Arabidopsis Seedlings: Impact Assessment of a Mutually Negative phyB-PIF Feedback Loop. Mol. Plant 5(3):734–749. Lerner, A. B., J. D. Case, Y. Takahashi, T. H. Lee and W. Mori. 1958. Isolation of melatonin, the pineal gland factor that lightens melanocytes. J. Am. Chem. Soc. 80(10):2587. Li, C., P. Wang, Z. Wei, D. Liang, C. Liu, L. Yin, D. Jia, M. Fu and F. Ma. 2012. The mitigation effects of exogenous melatonin on salinity-induced stress in Malus hupehensis. J. Pineal Res. 53(3):298–306. Li, D., J. Wei, Z. Peng, W. Ma, Q. Yang, Z. Song, W. Sun, W. Yang, L. Yuan, X. Xu, W. Chang, Z. Rengel, J. Shen, R. J. Reiter, X. Cui, D. Yu and Q. Chen. 2020. Daily rhythms of phytomelatonin signaling modulate diurnal stomatal closure via regulating reactive oxygen species dynamics in Arabidopsis. J. Pineal Res. 68(3):e12640. Li, W., J. Zhang, J. Sun, K. Chen, X. Guan, K. Zhang and Y. Fang. 2023. Light irradiation with different wavelmengths modifies the quality traits and monoterpenes biosynthesis of postharvest grape berries during the shelf life. LWT 185:115164. Li, Z., J. Peng, X. Wen and H. Guo. 2013. ETHYLENE-INSENSITIVE3 Is a Senescence-Associated Gene That Accelerates Age-Dependent Leaf Senescence by Directly Repressing miR164 Transcription in Arabidopsis. Plant Cell 25(9):3311–3328. Liao, H. L., F. Alferez and J. K. Burns. 2013. Assessment of blue light treatments on citrus postharvest diseases. Postharvest Biol. Technol. 81:81–88. Liebsch, D. and O. Keech. 2016. Dark-induced leaf senescence: new insights into a complex light-dependent regulatory pathway. New Phytologist 212(3):563–570. Liu, C., H. Zheng, K. Sheng, W. Liu and L. Zheng. 2018. Effects of melatonin treatment on the postharvest quality of strawberry fruit. Postharvest Biol. Technol. 139:47–55. Loi, M., V. C. Liuzzi, F. Fanelli, S. De Leonardis, T. Maria Creanza, N. Ancona, C. Paciolla and G. Mulè. 2019. Effect of different light-emitting diode (LED) irradiation on the shelf life and phytonutrient content of broccoli (Brassica oleracea L. var. italica). Food Chem. 283:206–214. Luo, F., H. Fang, Q. Zhou, X. Zhou and S. Ji. 2022. Insights into the mechanism of chlorophyll and carotenoid metabolism regulated by BoPIF4 and BobHLH66 in broccoli. Postharvest Biol. Technol. 194:112076. Luo, F., S. C. Cheng, J. H. Cai, B. D. Wei, X. Zhou, Q. Zhou, Y. B. Zhao and S. J. Ji. 2019. Chlorophyll degradation and carotenoid biosynthetic pathways: Gene expression and pigment content in broccoli during yellowing. Food Chem. 297:124964. Mao, C., S. Lu, B. Lv, B. Zhang, J. Shen, J. He, L. Luo, D. Xi, X. Chen and F. Ming. 2017. A Rice NAC Transcription Factor Promotes Leaf Senescence via ABA Biosynthesis 1[OPEN]. Plant Physiol. 174(3):1747–1763. Mazrou, R. M., S. Hassan, M. Yang and F. A. S. Hassan. 2022. Melatonin Preserves the Postharvest Quality of Cut Roses through Enhancing the Antioxidant System. Plants 11(20):2713. Mubarok, S., E. Suminar, A. H. Abidat, C. A. Setyawati, E. Setiawan and A. S. Buswar. 2023. Overview of Melatonin’s Impact on Postharvest Physiology and Quality of Fruits. Horticulturae 9(5):586. Mukherjee, S., A. David, S. Yadav, F. Baluška and S. C. Bhatla. 2014. Salt stress-induced seedling growth inhibition coincides with differential distribution of serotonin and melatonin in sunflower seedling roots and cotyledons. Physiol. Plant 152(4):714–728. Myzak, M. C., W. M. Dashwood, G. A. Orner, E. Ho and R. H. Dashwood. 2006. Sulforaphane inhibits histone deacetylase in vivo and suppresses tumorigenesis in Apc min mice. The FASEB Journal 20(3):405–585. Park, E., J. Park, J. Kim, A. Nagatani, J. C. Lagarias and G. Choi. 2012. Phytochrome B inhibits binding of phytochrome-interacting factors to their target promoters. Plant Journal 72(4):537–546. Parker, S. E., J. R. Wheeler, C. R. Luckett, D. E. Deyton, J. Davis, T. Björkman and C. E. Sams. 2021. Postharvest cooling and storage method effects on carotenoid and chlorophyll contents in broccoli. Acta Hortic. 1329:187–195. Pokhilko, A., A. P. Fernández, K. D. Edwards, M. M. Southern, K. J. Halliday and A. J. Millar. 2012. The clock gene circuit in Arabidopsis includes a repressilator with additional feedback loops. Mol. Syst. Biol. 8:574. Poór, P., Z. Takács, G. Patyi, P. Borbély, O. Bencsik, A. Szekeres and I. Tari. 2018. Dark-induced changes in the activity and the expression of tomato hexokinase genes depend on the leaf age. South African Journal of Botany 118:98–104. Pranil, T., A. Moongngarm and P. Loypimai. 2020. Influence of pH, temperature, and light on the stability of melatonin in aqueous solutions and fruit juices. Heliyon 6(3):e03648. Rodriguez, J. L. and W. J. Davies. 1982. The Effects of Temperature and ABA on Stomata of Zea mays L. J. Exp. Bot. 33(5):977–987. Sakuraba, Y. 2021. Light-Mediated Regulation of Leaf Senescence. International Journal of Molecular Sciences 22(7):3291. Sakuraba, Y., S. H. Han, S. H. Lee, S. Hörtensteiner and N. C. Paek. 2016. Arabidopsis NAC016 promotes chlorophyll breakdown by directly upregulating STAYGREEN1 transcription. Plant Cell Rep. 35(1):155–166. Sakuraba, Y., J. Jeong, M. Y. Kang, J. Kim, N. C. Paek and G. Choi. 2014. Phytochrome-interacting transcription factors PIF4 and PIF5 induce leaf senescence in Arabidopsis. Nature Communications 5(1):1–13. Shi, W., Y. Liu, N. Zhao, L. Yao, J. Li, M. Fan, B. Zhong, M. Y. Bai and C. Han. 2024. Hydrogen peroxide is required for light-induced stomatal opening across different plant species. Nature Communications 15(1):1–14. Smart, C. M. 1994. Gene expression during leaf senescence. New Phytologist 126(3):419–448. Song, Y., Y. Jiang, B. Kuai and L. Li. 2018. Circadian clock-associated 1 inhibits leaf senescence in arabidopsis. Front. Plant Sci. 9:332928. Song, Y., C. Yang, S. Gao, W. Zhang, L. Li and B. Kuai. 2014. Age-Triggered and Dark-Induced Leaf Senescence Require the bHLH Transcription Factors PIF3, 4, and 5. Mol. Plant 7(12):1776–1787. Suetsugu, N., T. Takami, Y. Ebisu, H. Watanabe, C. Iiboshi, M. Doi and K. I. Shimazaki. 2014. Guard Cell Chloroplasts Are Essential for Blue Light-Dependent Stomatal Opening in Arabidopsis. PLOS One 9(9):e108374. Sun, Q., N. Zhang, J. Wang, Y. Cao, X. Li, H. Zhang, L. Zhang, D. X. Tan and Y. D. Guo. 2016. A label-free differential proteomics analysis reveals the effect of melatonin on promoting fruit ripening and anthocyanin accumulation upon postharvest in tomato. J. Pineal Res. 61(2):138–153. Sun, Q., N. Zhang, J. Wang, H. Zhang, D. Li, J. Shi, R. Li, S. Weeda, B. Zhao, S. Ren and Y. D. Guo. 2015. Melatonin promotes ripening and improves quality of tomato fruit during postharvest life. J. Exp. Bot. 66(3):657–668. Tallman, G. 1992. The Chemiosmotic Model of Stomatal Opening Revisited. CRC Crit. Rev. Plant Sci. 11(1):35–57. Tan, D. X. and R. J. Reiter. 2020. An evolutionary view of melatonin synthesis and metabolism related to its biological functions in plants. J. Exp. Bot. 71(16):4677–4689. Thompson, J. E., R. L. Legge and R. F. Barber. 1987. The role of free radicals in senescence and wounding. New Phytologist 105(3):317–344. Wang, F., X. Zhang, Q. Yang and Q. Zhao. 2019. Exogenous melatonin delays postharvest fruit senescence and maintains the quality of sweet cherries. Food Chem. 301:125311. Wang, H. T., L. Y. Ou, T. A. Chen and Y. C. Kuan. 2023. Refrigeration, forchlorfenuron, and gibberellic acid treatments differentially regulate chlorophyll catabolic pathway to delay yellowing of broccoli. Postharvest Biol. Technol. 197:112221. Wang, P., M. A. Abid, G. Qanmber, M. Askari, L. Zhou, Y. Song, C. Liang, Z. Meng, W. Malik, Y. Wei, Y. Wang, H. Cheng and R. Zhang. 2022. Photomorphogenesis in plants: The central role of phytochrome interacting factors (PIFs). Environ. Exp. Bot. 194:104704. Weaver, L. M. and R. M. Amasino. 2001. Senescence is induced in individually darkened Arabidopsis leaves, but inhibited in whole darkened plants. Plant Physiol. 127:876–886. Wei, J., D. X. Li, J. R. Zhang, C. Shan, Z. Rengel, Z. B. Song and Q. Chen. 2018. Phytomelatonin receptor PMTR1-mediated signaling regulates stomatal closure in Arabidopsis thaliana. J. Pineal Res. 65(2):e12500. Wei, L., C. Liu, J. Wang, S. Younas, H. Zheng and L. Zheng. 2020. Melatonin immersion affects the quality of fresh-cut broccoli (Brassica oleracea L.) during cold storage: Focus on the antioxidant system. J. Food Process. Preserv. 44(9):e14691. Wilkinson, S., M. A. Bacon and W. J. Davies. 2007. Nitrate signalling to stomata and growing leaves: interactions with soil drying, ABA, and xylem sap pH in maize. J. Exp. Bot. 58(7):1705–1716. Wolf, K., J. Kolář, E. Witters, W. Van Dongen, H. Van Onckelen and I. Macháčková. 2001. Daily profile of melatonin levels in Chenopodium rubrum L. depends on photoperiod. J. Plant Physiol. 158(11):1491–1493. Xie, C., J. Tang, J. Xiao, X. Geng and L. Guo. 2022. Purple light-emitting diode (LED) lights controls chlorophyll degradation and enhances nutraceutical quality of postharvest broccoli florets. Sci. Hortic. 294:110768. Xue-Xuan, X., S. Hong-Bo, M. Yuan-Yuan, X. Gang, S. Jun-Na, G. Dong-Gang and R. Cheng-Jiang. 2010. Biotechnological implications from abscisic acid (ABA) roles in cold stress and leaf senescence as an important signal for improving plant sustainable survival under abiotic-stressed conditions. Crit. Rev. Biotechnol. 30(3):222–230. Zentgraf, U., A. Gabriela Andrade-Galan and S. Bieker. Specificity of H2O2 signaling in leaf senescence: is the ratio of H2O2 contents in different cellular compartments sensed in Arabidopsis plants? Cellular Mol. Biol. Lett. 27(1):1-19. Zhai, R., J. Liu, F. Liu, Y. Zhao, L. Liu, C. Fang, H. Wang, X. Li, Z. Wang, F. Ma and L. Xu. 2018. Melatonin limited ethylene production, softening and reduced physiology disorder in pear (Pyrus communis L.) fruit during senescence. Postharvest Biol. Technol. 139:38–46. Zhan, L., J. Hu, Y. Li and L. Pang. 2012a. Combination of light exposure and low temperature in preserving quality and extending shelf-life of fresh-cut broccoli (Brassica oleracea L.). Postharvest Biol. Technol. 72:76–81. Zhan, L., Y. Li, J. Hu, L. Pang and H. Fan. 2012b. Browning inhibition and quality preservation of fresh-cut romaine lettuce exposed to high intensity light. Innovative Food Science & Emerging Technologies 14:70–76. Zhang, Y., D. J. Huber, M. Hu, G. Jiang, Z. Gao, X. Xu, Y. Jiang and Z. Zhang. 2018. Delay of Postharvest Browning in Litchi Fruit by Melatonin via the Enhancing of Antioxidative Processes and Oxidation Repair. J. Agric. Food Chem. 66(28):7475–7484. Zhao, Y., D. X. Tan, Q. Lei, H. Chen, L. Wang, Q. Li, Y. Gao and J. Kong. 2013. Melatonin and its potential biological functions in the fruits of sweet cherry. J. Pineal Res. 55(1):79–88. (abstr.) Zhuang, H., D. F. Hildebrand and M. M. Barth. 1995. Senescence of Broccoli Buds Is Related to Changes in Lipid Peroxidation. Food Chem. 43:2585–2591. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95004 | - |
| dc.description.abstract | 青花菜(Brassica oleracea var. italica)富營養且經濟價值高是臺灣重要蔬菜作物。青花菜於花苞未開放前採收,呼吸與代謝作用旺盛,採收後易發生黃化與老化現象。植物於持續黑暗環境下開啟黑暗誘導老化(dark-induced senescence, DIS)途徑,透過phytochrome-interacting factor (PIFs)、ABA INSENSITIVE 5 (ABI5)、ETHYLENE INSENSITIVE 3 (EIN3)等轉錄因子誘導PHEOPHORBIDE A OXYGENASE (PAO)、STAY-GREEN 1 (SGR1)與NON-YELLOW COLORING 1 (NYC1)等基因使葉綠素降解;光照則透過維持CIRCADIAN CLOCK ASSOCIATED 1 (CCA1)、LATE ELONGATED HYPOCOTYL (LHY)等基因表現抑制PIF以延緩植株老化。然而,目前對於青花菜採收後老化期間DIS扮演之角色並不清楚。本研究探討光照處理延緩青花菜貯藏期間DIS的效果,進而釐清DIS對青花菜老化之影響。結果顯示以100 μmol·m-2·s-1進行2小時光照處理可延緩於8℃貯藏之青花菜。其中100 μmol·m-2·s-1光照處理組之青花菜中BoCCA1表現量於貯藏5天後高於對照組約4倍;BoPIF5、BoEIN3、BoNYC1表現量則較對照組分別低約1.3、4.8、1.8倍,總葉綠素含量則高於對照組約1.4倍。這些結果顯示青花菜採後DIS過程中BoPIF5、BoEIN3、BoNYC1表現量提升,並導致葉綠素含量降低及花球黃化;而較高的BoCCA1表現則降低BoPIF5、BoABI5、BoPAO等DIS相關基因表現,間接延緩青花菜花球黃化現象。本研究亦發現光照會導致氣孔開啟較對照組的孔徑增加約1.5倍,導致失重率於貯藏12天後會高於對照組約2倍。因此嘗試以離層酸(ABA)抑制氣孔開啟與失重。然而於青花菜貯藏前噴施ABA無法延緩失重,因此再測試褪黑激素抑制氣孔開啟與失重之效果。以100 μM褪黑激素浸泡處理可使青花菜氣孔關閉並延緩失重。然而,若於100 μM褪黑激素浸泡處理後再以100 μmol·m-2·s-1進行光照處理則無法抑制氣孔開啟或延緩失重。本研究結果顯示採收後青花菜貯藏期間以光照處理可延緩DIS,但會使氣孔開啟導致失重率增加,且無法藉由離層酸或褪黑激素抑制氣孔開啟。此成果可作為未來對採收後青花菜DIS相關研究及開發延緩老化技術之基礎。 | zh_TW |
| dc.description.abstract | Broccoli (Brassica oleracea var. italica), renowned for its nutritional richness and high economic value, is an important vegetable crop in Taiwan. Broccoli is harvested before the flower buds open, during which its respiration and metabolic activities are vigorous. However, it is prone to yellowing and senescence after harvest. Under dark conditions, plants initiate dark-induced senescence (DIS), mediated by phytochrome-interacting factors (PIFs), which induce the expression of genes such as ABSCISIC ACID INSENSITIVE 5 (ABI5), ETHYLENE INSENSITIVE 3 (EIN3), leading to the expression of PHEOPHORBIDE A OXYGENASE (PAO), STAY-GREEN 1 (SGR1), NON-YELLOW COLORING 1 (NYC1), resulting in chlorophyll degradation. Conversely, under light conditions, genes like CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) reduce PIF expression, thereby inhibiting DIS and delaying plant senescence. However, the role of DIS in the senescence process of harvested broccoli remains unclear. Therefore, this study aimed to investigate the effect of light treatment on delaying DIS during broccoli storage, thereby understanding its impact on broccoli senescence. Results indicated that storing broccoli at 8°C with 2 hours of light exposure at 100 μmol·m-2·s-1 delayed yellowing. Expression of BoCCA1 in broccoli treated with 100 μmol·m-2·s-1 was approximately 4-fold higher after 5 days of storage compared to the control. Conversely, the expression levels of BoPIF5, BoEIN3, and BoNYC1 were approximately 1.3-, 4.8-, and 1.8-fold lower, respectively, in the treated groups compared to the control, with a corresponding approximately 1.4-fold increase in total chlorophyll content. These results indicate that during DIS, increased expression of genes such as BoPIF5, BoEIN3, and BoNYC1 led to reduced chlorophyll content and yellowing. However, higher BoCCA1 expression delayed broccoli head yellowing through downregulating DIS-related gene expression such as BoPIF5、BoABI5、BoPAO. Additionally, we found that light exposure caused stomatal opening, increasing stomatal aperture by approximately 1.5 times compared to the control, resulting in increased weight loss. Attempts were made to use abscisic acid (ABA) to inhibit stomatal opening and reduce weight loss. However, spraying ABA before broccoli storage did not delay weight loss. Therefore, we tested the effect of melatonin to inhibit stomatal opening and reduce weight loss. Pre-soaking broccoli in 100 μM melatonin before storage closed the stomata and delayed weight loss. Then, a combined experiment was conducted using 100 μM melatonin and light treatment. However, the combined treatment did not suppress stomatal opening or delay weight loss. In conclusion, we demonstrated that light treatment during post-harvest storage delayed DIS in broccoli, but at the expense of increased stomatal opening and weight loss. Strategies to optimize stomatal closure under light treatment could improve the effectiveness of this approach in extending the storage life of broccoli. These findings provide insights for future research on pathways related to DIS in post-harvest broccoli. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-26T16:12:16Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-26T16:12:16Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 i
Abstract ii 目次 iv 圖次 vii 表次 ix 縮寫表 x 第一章 前言 1 1.1 青花菜簡介與在臺灣的產業概況 1 1.2 青花菜採後生理變化及其現行商業採後處理技術 1 1.3 光照對園產品採後影響 2 1.3.1. 光照處理延緩老化現象 3 1.3.2. 黑暗誘導老化之調控途徑 4 1.3.3. 光照處理使氣孔開啟與失重率之關聯性 6 1.4 離層酸調控氣孔關閉之現象 7 1.5 褪黑激素在採後處理的運用 7 1.5.1. 園產品採後利用褪黑激素處理延長櫥架壽命 8 1.5.2. 褪黑激素降低園產品採後失重率 10 1.6 研究目的 10 第二章 材料方法 11 2.1 外觀觀察 11 2.1.1 外觀及失重率變化 11 2.1.2 氣孔觀察 11 2.1.3 顏色變化 12 2.2 葉綠素與類胡蘿蔔素含量分析 12 2.3 基因表現分析 13 2.3.1 核糖核酸(Ribonucleic Acid, RNA)萃取 13 2.3.2 RNA 品質確認 14 2.3.3 去除 RNA 萃取液中之基因體去氧核糖核酸 (Deoxyribonucleic Acid, DNA) 14 2.3.4 RNA反轉錄成互補DNA(Complementary DNA, cDNA) 14 2.3.5 cDNA檢查 15 2.3.6 引子設計 15 2.3.7 即時定量 PCR (Real-time Quantitative PCR, RT-qPCR) 16 2.4 數據統計及分析方法 16 2.5 青花菜試驗前處理 17 2.6 光照對採後青花菜品質及黑暗誘導老化相關基因表現試驗 17 2.7 不同光強度處理對採後青花菜品質及黑暗誘導老化相關基因表現試驗 17 2.7.1 試驗材料 17 2.7.2 觀察及分析項目 18 2.8 採後青花菜噴灑離層酸延緩貯藏期間失重試驗 18 2.9 採後青花菜浸泡褪黑激素延緩貯藏期間失重試驗 18 2.9 採後青花菜施用褪黑激素於光照環境貯藏試驗 18 2.10 採後青花菜施用褪黑激素並於光照貯藏之氣孔觀察試驗 19 第三章 結果 20 3.1 光照處理對採後青花菜品質及黑暗誘導老化相關基因表現之影響 20 3.2 不同光照強度處理對採後青花菜品質及黑暗誘導老化相關基因表現之影響 21 3.3 採後青花菜噴灑離層酸或浸泡褪黑激素對貯藏期間失重及外觀之影響 24 3.4 採後青花菜施用褪黑激素於光照環境貯藏之品質變化及其氣孔差異 25 第四章 討論 27 4.1 光照處理對採後青花菜品質之影響 27 4.2 光照處理對採後青花菜黑暗誘導與老化相關基因表現之影響 29 4.3 採後青花菜噴灑離層酸或浸泡褪黑激素對貯藏期間失重及外觀之影響 31 4.4 採後青花菜施用褪黑激素於光照環境貯藏之品質變化及其氣孔差異 32 4.5 研究限制及未來展望 35 第五章 結論 36 第六章 圖表 37 參考文獻 64 附錄 75 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 氣孔 | zh_TW |
| dc.subject | 褪黑激素 | zh_TW |
| dc.subject | 黑暗誘導老化 | zh_TW |
| dc.subject | 青花菜 | zh_TW |
| dc.subject | 離層酸 | zh_TW |
| dc.subject | broccoli | en |
| dc.subject | dark-induced senescence | en |
| dc.subject | abscisic acid | en |
| dc.subject | melatonin | en |
| dc.subject | stomata | en |
| dc.title | 採後光照、離層酸及褪黑激素處理調控青花菜黑暗誘導老化與相關基因表現之研究 | zh_TW |
| dc.title | Effects of Postharvest Light, Abscisic Acid, and Melatonin Treatments on the Expression of Dark-induced Senescence-associated Genes in Broccoli | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 許富鈞;王自存 | zh_TW |
| dc.contributor.oralexamcommittee | Fu-Chiun Hsu;Tsu-Tsuen Wang | en |
| dc.subject.keyword | 青花菜,黑暗誘導老化,離層酸,褪黑激素,氣孔, | zh_TW |
| dc.subject.keyword | broccoli,dark-induced senescence,abscisic acid,melatonin,stomata, | en |
| dc.relation.page | 76 | - |
| dc.identifier.doi | 10.6342/NTU202404064 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-13 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 園藝暨景觀學系 | - |
| dc.date.embargo-lift | 2029-08-08 | - |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 5.44 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
