請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94997完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 梁文傑 | zh_TW |
| dc.contributor.advisor | Man-kit Leung | en |
| dc.contributor.author | 韓智斌 | zh_TW |
| dc.contributor.author | Chih-Pin Han | en |
| dc.date.accessioned | 2024-08-26T16:10:06Z | - |
| dc.date.available | 2024-08-27 | - |
| dc.date.copyright | 2024-08-26 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-13 | - |
| dc.identifier.citation | 1 Bernanose, A., Comte, M. & Vouaux, P. Sur un nouveau mode d'émission lumineuse chez certains composés organiques. J. Chim. Phys. 50, 64-68 (1953).
2 Pope, M., Kallmann, H. P. & Magnante, P. Electroluminescence in Organic Crystals. The Journal of Chemical Physics 38, 2042-2043 (1963). https://doi.org:10.1063/1.1733929 3 Tang, C. W. & VanSlyke, S. A. Organic electroluminescent diodes. Appl. Phys. Lett. 51, 913-915 (1987). https://doi.org:10.1063/1.98799 4 Tang, C. W., VanSlyke, S. A. & Chen, C. H. Electroluminescence of doped organic thin films. Journal of Applied Physics 65, 3610-3616 (1989). https://doi.org:10.1063/1.343409 5 Burroughes, J. H. et al. Light-emitting diodes based on conjugated polymers. Nature 347, 539-541 (1990). https://doi.org:10.1038/347539a0 6 Adachi, C., Tokito, S., Tsutsui, T. & Saito, S. Organic Electroluminescent Device with a Three-Layer Structure. Japanese Journal of Applied Physics 27, L713 (1988). https://doi.org:10.1143/JJAP.27.L713 7 Junsheng, Y. et al. in Proc.SPIE. 67221L. 8 O’Brien, D. F., Baldo, M. A., Thompson, M. E. & Forrest, S. R. Improved energy transfer in electrophosphorescent devices. Appl. Phys. Lett. 74, 442-444 (1999). https://doi.org:10.1063/1.123055 9 Jeon, W. S. et al. Ideal host and guest system in phosphorescent OLEDs. Org. Electron. 10, 240-246 (2009). https://doi.org:https://doi.org/10.1016/j.orgel.2008.11.012 10 dos Santos, P. L., Ward, J. S., Bryce, M. R. & Monkman, A. P. Using Guest–Host Interactions To Optimize the Efficiency of TADF OLEDs. The Journal of Physical Chemistry Letters 7, 3341-3346 (2016). https://doi.org:10.1021/acs.jpclett.6b01542 11 Piper, R. et al. in 2011 37th IEEE Photovoltaic Specialists Conference. 003632-003635. 12 Wong, K. T. in 2017 Asia Communications and Photonics Conference (ACP). 1-2. 13 Gao, Y. et al. Hybridization and de-hybridization between the locally-excited (LE) state and the charge-transfer (CT) state: a combined experimental and theoretical study. Physical Chemistry Chemical Physics 18, 24176-24184 (2016). https://doi.org:10.1039/C6CP02778D 14 Kowalska-Baron, A. et al. Heavy atom induced phosphorescence study on the influence of internal structural factors on the photophysics of tryptophan in aqueous solutions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 128, 830-837 (2014). https://doi.org:https://doi.org/10.1016/j.saa.2014.02.168 15 Naqvi, B. A. et al. What Controls the Orientation of TADF Emitters? Frontiers in Chemistry 8 (2020). https://doi.org:10.3389/fchem.2020.00750 16 Dias, F. B., Penfold, T. J. & Monkman, A. P. Photophysics of thermally activated delayed fluorescence molecules. Methods and Applications in Fluorescence 5, 012001 (2017). https://doi.org:10.1088/2050-6120/aa537e 17 Parker, I. D. Carrier tunneling and device characteristics in polymer light‐emitting diodes. Journal of Applied Physics 75, 1656-1666 (1994). https://doi.org:10.1063/1.356350 18 Kim, J. S. et al. Indium–tin oxide treatments for single- and double-layer polymeric light-emitting diodes: The relation between the anode physical, chemical, and morphological properties and the device performance. Journal of Applied Physics 84, 6859-6870 (1998). https://doi.org:10.1063/1.368981 19 Mason, M. G. et al. Characterization of treated indium–tin–oxide surfaces used in electroluminescent devices. Journal of Applied Physics 86, 1688-1692 (1999). https://doi.org:10.1063/1.370948 20 Kim, B., Lee, J., Park, Y., Lee, C. & Park, J. W. Highly efficient new hole injection materials for organic light emitting diodes base on phenothiazine derivatives. J Nanosci Nanotechnol 14, 6404-6408 (2014). https://doi.org:10.1166/jnn.2014.8456 21 Zhu, W. et al. Use of Hybrid PEDOT:PSS/Metal Sulfide Quantum Dots for a Hole Injection Layer in Highly Efficient Green Phosphorescent Organic Light-Emitting Diodes. Front Chem 9, 657557 (2021). https://doi.org:10.3389/fchem.2021.657557 22 Nagai, M. Impact of Particulate Contaminants on the Current Leakage Defect in OLED Devices. Journal of The Electrochemical Society 154, J387 (2007). https://doi.org:10.1149/1.2784167 23 Benkhelifa, F., Ashrit, P. V., Bader, G., Girouard, F. E. & Truong, V. V. Electrical and optical properties of thermally evaporated LiBO2 films. Journal of Applied Physics 74, 4691-4693 (1993). https://doi.org:10.1063/1.354361 24 Wakimoto, T. et al. Organic EL cells using alkaline metal compounds as electron injection materials. IEEE Transactions on Electron Devices 44, 1245-1248 (1997). https://doi.org:10.1109/16.605462 25 Han, K. et al. Dual enhancing properties of LiF with varying positions inside organic light-emitting devices. Org. Electron. 9, 30-38 (2008). https://doi.org:https://doi.org/10.1016/j.orgel.2007.07.005 26 Wang, F., Liu, S. & Zhang, C. The dielectric constant of materials effect the property of the OLED. Microelectronics Journal 38, 259-261 (2007). https://doi.org:https://doi.org/10.1016/j.mejo.2006.11.002 27 Wei, H.-X. et al. The role of cesium fluoride as an n-type dopant on electron transport layer in organic light-emitting diodes. Org. Electron. 14, 839-844 (2013). https://doi.org:https://doi.org/10.1016/j.orgel.2013.01.007 28 Nguyen, H. T., Duong, A. T. & Lee, S. Characterization of vacuum-deposited and solution-processed N, N′-bis-(1-naphthyl)-N, N′-diphenyl-1, 1′-biphenyl-4, 4′-diamine hole transport layers based organic light emitting devices. Optical Materials 111, 110708 (2021). https://doi.org:https://doi.org/10.1016/j.optmat.2020.110708 29 Maglione, M. G. et al. Efficiency and Aging Comparison Between N,N′-Bis (3-methylphenyl)-N,N′-diphenylbenzidine (TPD) and N,N′-Di-[(1-naphthalenyl)-N,N′-diphenyl]-1,1′-biphenyl-4,4′-diamine (NPD) Based OLED Devices. Macromolecular Symposia 247, 311-317 (2007). https://doi.org:https://doi.org/10.1002/masy.200750135 30 Sanderson, S., Philippa, B., Vamvounis, G., Burn, P. L. & White, R. D. Understanding charge transport in Ir(ppy)3:CBP OLED films. The Journal of Chemical Physics 150 (2019). https://doi.org:10.1063/1.5083639 31 Lee, S. et al. Tuning the energy level of TAPC: crystal structure and photophysical and electrochemical properties of 4,4'-(cyclohexane-1,1-diyl)bis[N,N-bis(4-methoxyphenyl)aniline]. Acta Crystallographica Section C 75, 919-926 (2019). https://doi.org:doi:10.1107/S2053229619007101 32 Kajii, H., Sekimoto, Y., Hino, Y. & Ohmori, Y. Effect of fabrication process on characteristics of phosphorescence organic light emitting diodes with methoxy-substituted starburst low-molecule as a host. Thin Solid Films 516, 2772-2775 (2008). https://doi.org:https://doi.org/10.1016/j.tsf.2007.04.113 33 Kotadiya, N. B. et al. Universal strategy for Ohmic hole injection into organic semiconductors with high ionization energies. Nature Materials 17, 329-334 (2018). https://doi.org:10.1038/s41563-018-0022-8 34 Dong, S.-C., Xu, L. & Tang, C. W. Chemical degradation mechanism of TAPC as hole transport layer in blue phosphorescent OLED. Org. Electron. 42, 379-386 (2017). https://doi.org:https://doi.org/10.1016/j.orgel.2016.11.041 35 Sharma, G. et al. Structure optimization and investigation of electrical and optical characteristics of Alq3/TAZ:Ir(ppy)3-BCP/HMTPD OLED. Optical and Quantum Electronics 54, 284 (2022). https://doi.org:10.1007/s11082-022-03654-3 36 Ritu et al. Optimization of NPD/Alq3/TPBi/Bphen OLED structure and investigation of electrical characteristics along with allied parameters. Optical and Quantum Electronics 55, 698 (2023). https://doi.org:10.1007/s11082-023-05000-7 37 Meng, G. et al. Highly efficient and stable deep-blue OLEDs based on narrowband emitters featuring an orthogonal spiro-configured indolo[3,2,1-de]acridine structure. Chemical Science 13, 5622-5630 (2022). https://doi.org:10.1039/D2SC01543A 38 Yap, C. C., Yahaya, M. & Salleh, M. M. Influence of thickness of functional layer on performance of organic salt-doped OLED with ITO/PVK:PBD:TBAPF6/Al structure. Current Applied Physics 8, 637-644 (2008). https://doi.org:https://doi.org/10.1016/j.cap.2007.11.006 39 Guo, F., Ma, D., Wang, L., Jing, X. & Wang, F. High efficiency white organic light-emitting devices by effectively controlling exciton recombination region. Semiconductor Science and Technology 20, 310 (2005). https://doi.org:10.1088/0268-1242/20/3/010 40 Adachi, C. et al. Endothermic energy transfer: A mechanism for generating very efficient high-energy phosphorescent emission in organic materials. Appl. Phys. Lett. 79, 2082-2084 (2001). https://doi.org:10.1063/1.1400076 41 Du, R. et al. Symmetrical spirobi[xanthene] based locally asymmetrical phosphine oxide host for low-voltage-driven highly efficient white thermally activated delayed fluorescence diodes. Chem. Eng. J. 392, 124870 (2020). https://doi.org:https://doi.org/10.1016/j.cej.2020.124870 42 Tsai, Y.-C. & Jou, J.-H. Long-lifetime, high-efficiency white organic light-emitting diodes with mixed host composing double emission layers. Appl. Phys. Lett. 89 (2006). https://doi.org:10.1063/1.2408663 43 Hatakeyama, T. et al. Ultrapure Blue Thermally Activated Delayed Fluorescence Molecules: Efficient HOMO–LUMO Separation by the Multiple Resonance Effect. Adv. mater. 28, 2777-2781 (2016). https://doi.org:https://doi.org/10.1002/adma.201505491 44 Kondo, Y. et al. Narrowband deep-blue organic light-emitting diode featuring an organoboron-based emitter. Nat. Photonics 13, 678-682 (2019). https://doi.org:10.1038/s41566-019-0476-5 45 Lee, D. R. et al. Design Strategy for 25% External Quantum Efficiency in Green and Blue Thermally Activated Delayed Fluorescent Devices. Adv. mater. 27, 5861-5867 (2015). https://doi.org:https://doi.org/10.1002/adma.201502053 46 Higuchi, T., Nakanotani, H. & Adachi, C. High-Efficiency White Organic Light-Emitting Diodes Based on a Blue Thermally Activated Delayed Fluorescent Emitter Combined with Green and Red Fluorescent Emitters. Adv. mater. 27, 2019-2023 (2015). https://doi.org:https://doi.org/10.1002/adma.201404967 47 Lai, S. L. et al. Efficient white organic light-emitting devices based on phosphorescent iridium complexes. Org. Electron. 11, 1511-1515 (2010). https://doi.org:https://doi.org/10.1016/j.orgel.2010.06.011 48 Zhang, T. et al. Poly(9,9-dioctylfluorene) based hyperbranched copolymers with three balanced emission colors for solution-processable hybrid white polymer light-emitting devices. Dyes and Pigments 139, 611-618 (2017). https://doi.org:https://doi.org/10.1016/j.dyepig.2016.12.029 49 Singh, A. K., Singh, S. K., Mishra, H., Prakash, R. & Rai, S. B. Structural, Thermal, and Fluorescence Properties of Eu(DBM)3Phenx Complex Doped in PMMA. The Journal of Physical Chemistry B 114, 13042-13051 (2010). https://doi.org:10.1021/jp1050063 50 Li, D. & Liao, L.-S. Highly efficient deep-red organic light-emitting diodes using exciplex-forming co-hosts and thermally activated delayed fluorescence sensitizers with extended lifetime. J. Mater. Chem. C 7, 9531-9536 (2019). https://doi.org:10.1039/C9TC02834J 51 Zhang, Z. et al. High efficiency fluorescent white organic light-emitting diodes with red, green and blue separately monochromatic emission layers. Org. Electron. 10, 491-495 (2009). https://doi.org:https://doi.org/10.1016/j.orgel.2009.02.006 52 Ledwon, P. Recent advances of donor-acceptor type carbazole-based molecules for light emitting applications. Org. Electron. 75, 105422 (2019). https://doi.org:https://doi.org/10.1016/j.orgel.2019.105422 53 Lee, J.-H. et al. Blue organic light-emitting diodes: current status, challenges, and future outlook. J. Mater. Chem. C 7, 5874-5888 (2019). https://doi.org:10.1039/C9TC00204A 54 Baldo, M. A. et al. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395, 151-154 (1998). https://doi.org:10.1038/25954 55 Yook, K. S. & Lee, J. Y. Organic Materials for Deep Blue Phosphorescent Organic Light-Emitting Diodes. Adv. mater. 24, 3169-3190 (2012). https://doi.org:https://doi.org/10.1002/adma.201200627 56 Yang, Z. et al. Recent advances in organic thermally activated delayed fluorescence materials. Chem. Soc. Rev. 46, 915-1016 (2017). https://doi.org:10.1039/C6CS00368K 57 Madayanad Suresh, S., Hall, D., Beljonne, D., Olivier, Y. & Zysman-Colman, E. Multiresonant Thermally Activated Delayed Fluorescence Emitters Based on Heteroatom-Doped Nanographenes: Recent Advances and Prospects for Organic Light-Emitting Diodes. Adv. Funct. Mater. 30, 1908677 (2020). https://doi.org:https://doi.org/10.1002/adfm.201908677 58 Uoyama, H., Goushi, K., Shizu, K., Nomura, H. & Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234-238 (2012). https://doi.org:10.1038/nature11687 59 Dias, F. B. et al. Triplet harvesting with 100% efficiency by way of thermally activated delayed fluorescence in charge transfer OLED emitters. Adv Mater 25, 3707-3714 (2013). https://doi.org:10.1002/adma.201300753 60 Hirata, S. et al. Highly efficient blue electroluminescence based on thermally activated delayed fluorescence. Nat. Mater 14, 330-336 (2015). https://doi.org:10.1038/nmat4154 61 Zhang, Q. et al. Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence. Nat. Photonics 8, 326-332 (2014). https://doi.org:10.1038/nphoton.2014.12 62 Wu, T.-L. et al. Diboron compound-based organic light-emitting diodes with high efficiency and reduced efficiency roll-off. Nat. Photonics 12, 235-240 (2018). https://doi.org:10.1038/s41566-018-0112-9 63 Kim, H. J. & Yasuda, T. Narrowband Emissive Thermally Activated Delayed Fluorescence Materials. Adv. Opt. Mater. 10, 2201714 (2022). https://doi.org:https://doi.org/10.1002/adom.202201714 64 Park, I. S., Yang, M., Shibata, H., Amanokura, N. & Yasuda, T. Achieving Ultimate Narrowband and Ultrapure Blue Organic Light-Emitting Diodes Based on Polycyclo-Heteraborin Multi-Resonance Delayed-Fluorescence Emitters. Adv. mater. 34, 2107951 (2022). https://doi.org:https://doi.org/10.1002/adma.202107951 65 Huang, J.-J. et al. Orthogonally Substituted Benzimidazole-Carbazole Benzene As Universal Hosts for Phosphorescent Organic Light-Emitting Diodes. Org. Lett. 18, 672-675 (2016). https://doi.org:10.1021/acs.orglett.5b03631 66 Huang, J.-J. et al. Networking hole and electron hopping paths by Y-shaped host molecules: promoting blue phosphorescent organic light emitting diodes. J. Mater. Chem. C 5, 3600-3608 (2017). https://doi.org:10.1039/C6TC05538A 67 Chang, S.-y. et al. Construction of Highly Efficient Carbazol-9-yl-Substituted Benzimidazole Bipolar Hosts for Blue Phosphorescent Light-Emitting Diodes: Isomer and Device Performance Relationships. ACS. Appl. Mater. Interfaces. 10, 42723-42732 (2018). https://doi.org:10.1021/acsami.8b15084 68 Huang, Y.-M. et al. Why triage materials with low luminescence quantum efficiency: the use of 35Cbz4BzCN as a universal host for organic light emitting diodes through effective triplet energy transfer. J. Mater. Chem. C 9, 2381-2391 (2021). https://doi.org:10.1039/D0TC05145D 69 Naveen, K. R. et al. Deep blue diboron embedded multi-resonance thermally activated delayed fluorescence emitters for narrowband organic light emitting diodes. Chem. Eng. J. 432, 134381 (2022). https://doi.org:https://doi.org/10.1016/j.cej.2021.134381 70 Wang, Y. et al. A periphery cladding strategy to improve the performance of narrowband emitters, achieving deep-blue OLEDs with CIEy < 0.08 and external quantum efficiency approaching 20%. Org. Electron. 97, 106275 (2021). https://doi.org:https://doi.org/10.1016/j.orgel.2021.106275 71 Lv, X. et al. Extending the π-Skeleton of Multi-Resonance TADF Materials towards High-Efficiency Narrowband Deep-Blue Emission. Angew. Chem., Int. Ed. 61, e202201588 (2022). https://doi.org:https://doi.org/10.1002/anie.202201588 72 Park, J. et al. Asymmetric Blue Multiresonance TADF Emitters with a Narrow Emission Band. ACS. Appl. Mater. Interfaces. 13, 45798-45805 (2021). https://doi.org:10.1021/acsami.1c11399 73 Han, J. et al. Simple Molecular Design Strategy for Multiresonance Induced TADF Emitter: Highly Efficient Deep Blue to Blue Electroluminescence with High Color Purity. Adv. Opt. Mater. 10, 2102092 (2022). https://doi.org:https://doi.org/10.1002/adom.202102092 74 Qu, Y.-K. et al. Steric Modulation of Spiro Structure for Highly Efficient Multiple Resonance Emitters. Angew. Chem., Int. Ed. 61, e202201886 (2022). https://doi.org:https://doi.org/10.1002/anie.202201886 75 Qiu, Y. et al. Narrowing the Electroluminescence Spectra of Multiresonance Emitters for High-Performance Blue OLEDs by a Peripheral Decoration Strategy. ACS. Appl. Mater. Interfaces. 13, 59035-59042 (2021). https://doi.org:10.1021/acsami.1c18704 76 Hua, T. et al. Sulfone-Incorporated Multi-Resonance TADF Emitter for High-Performance Narrowband Blue OLEDs with EQE of 32%. Adv. Funct. Mater. 32, 2201032 (2022). https://doi.org:https://doi.org/10.1002/adfm.202201032 77 Park, I. S., Min, H. & Yasuda, T. Ultrafast Triplet–Singlet Exciton Interconversion in Narrowband Blue Organoboron Emitters Doped with Heavy Chalcogens. Angew. Chem., Int. Ed. 61, e202205684 (2022). https://doi.org:https://doi.org/10.1002/anie.202205684 78 Park, J., Kim, K. J., Lim, J., Kim, T. & Lee, J. Y. High Efficiency of over 25% and Long Device Lifetime of over 500 h at 1000 nit in Blue Fluorescent Organic Light-Emitting Diodes. Adv. mater. 34, 2108581 (2022). https://doi.org:https://doi.org/10.1002/adma.202108581 79 Lee, Y.-S. et al. Significant facilitation of metal-free aerobic oxidative cyclization of imines with water in synthesis of benzimidazoles. Tetrahedron 71, 532-538 (2015). https://doi.org:https://doi.org/10.1016/j.tet.2014.12.043 80 Iqbal, M. A., Mehmood, H., Lv, J. & Hua, R. Base-Promoted SNAr Reactions of Fluoro- and Chloroarenes as a Route to N-Aryl Indoles and Carbazoles. Mol. 24, 1145 (2019). 81 Djurovich, P. I., Mayo, E. I., Forrest, S. R. & Thompson, M. E. Measurement of the lowest unoccupied molecular orbital energies of molecular organic semiconductors. Org. Electron. 10, 515-520 (2009). https://doi.org:https://doi.org/10.1016/j.orgel.2008.12.011 82 D’Andrade, B. W. et al. Relationship between the ionization and oxidation potentials of molecular organic semiconductors. Org. Electron. 6, 11-20 (2005). https://doi.org:https://doi.org/10.1016/j.orgel.2005.01.002 83 Tanaka, H. et al. Hypsochromic Shift of Multiple-Resonance-Induced Thermally Activated Delayed Fluorescence by Oxygen Atom Incorporation. Angew. Chem., Int. Ed. 60, 17910-17914 (2021). https://doi.org:https://doi.org/10.1002/anie.202105032 84 Wu, X. et al. The role of host–guest interactions in organic emitters employing MR-TADF. Nat. Photonics 15, 780-786 (2021). https://doi.org:10.1038/s41566-021-00870-3 85 Stavrou, K., Danos, A., Hama, T., Hatakeyama, T. & Monkman, A. Hot Vibrational States in a High-Performance Multiple Resonance Emitter and the Effect of Excimer Quenching on Organic Light-Emitting Diodes. ACS. Appl. Mater. Interfaces. 13, 8643-8655 (2021). https://doi.org:10.1021/acsami.0c20619 86 Poitras, D., Kuo, C.-C. & Py, C. Design of high-contrast OLEDs with microcavity effect. Opt. Express 16, 8003-8015 (2008). https://doi.org:10.1364/OE.16.008003 87 Tan, G. et al. Analysis and optimization on the angular color shift of RGB OLED displays. Opt. Express 25, 33629-33642 (2017). https://doi.org:10.1364/OE.25.033629 88 Kido, J., Hongawa, K., Okuyama, K. & Nagai, K. White light‐emitting organic electroluminescent devices using the poly(N‐vinylcarbazole) emitter layer doped with three fluorescent dyes. Appl. Phys. Lett. 64, 815-817 (1994). https://doi.org:10.1063/1.111023 89 Reineke, S. et al. White organic light-emitting diodes with fluorescent tube efficiency. Nature 459, 234-238 (2009). https://doi.org:10.1038/nature08003 90 Kido, J., Kimura, M. & Nagai, K. Multilayer White Light-Emitting Organic Electroluminescent Device. Science 267, 1332-1334 (1995). https://doi.org:doi:10.1126/science.267.5202.1332 91 D'Andrade, B. W. & Forrest, S. R. White Organic Light-Emitting Devices for Solid-State Lighting. Adv. mater. 16, 1585-1595 (2004). https://doi.org:https://doi.org/10.1002/adma.200400684 92 Farinola, G. M. & Ragni, R. Electroluminescent materials for white organic light emitting diodes. Chem. Soc. Rev. 40, 3467-3482 (2011). https://doi.org:10.1039/C0CS00204F 93 Sun, Y. et al. Management of singlet and triplet excitons for efficient white organic light-emitting devices. Nature 440, 908-912 (2006). https://doi.org:10.1038/nature04645 94 Tang, H. et al. Warm White Light-Emitting Diodes Based on a Novel Orange Cationic Iridium(III) Complex. Materials 10, 657 (2017). 95 Li, G., Fleetham, T. & Li, J. Efficient and Stable White Organic Light-Emitting Diodes Employing a Single Emitter. Adv. mater. 26, 2931-2936 (2014). https://doi.org:https://doi.org/10.1002/adma.201305507 96 Wang, R. et al. Highly Efficient Orange and White Organic Light-Emitting Diodes Based on New Orange Iridium Complexes. Adv. mater. 23, 2823-2827 (2011). https://doi.org:https://doi.org/10.1002/adma.201100302 97 Wei, H. et al. Antiphotobleaching: A Type of Structurally Rigid Chromophore Ready for Constructing Highly Luminescent and Highly Photostable Europium Complexes. Adv. Funct. Mater. 26, 2085-2096 (2016). https://doi.org:https://doi.org/10.1002/adfm.201505040 98 Zhang, Q.-W. et al. Multicolor Photoluminescence Including White-Light Emission by a Single Host–Guest Complex. J. Am. Chem. Soc. 138, 13541-13550 (2016). https://doi.org:10.1021/jacs.6b04776 99 Tu, G. L. et al. Highly Efficient Pure-White-Light-Emitting Diodes from a Single Polymer: Polyfluorene with Naphthalimide Moieties. Adv. Funct. Mater. 16, 101-106 (2006). https://doi.org:https://doi.org/10.1002/adfm.200500028 100 Jiang, J. X. et al. High-Efficiency White-Light-Emitting Devices from a Single Polymer by Mixing Singlet and Triplet Emission. Adv. mater. 18, 1769-1773 (2006). https://doi.org:https://doi.org/10.1002/adma.200502740 101 Liu, J. et al. White Electroluminescence from a Single-Polymer System with Simultaneous Two-Color Emission: Polyfluorene Blue Host and Side-Chain-Located Orange Dopant. Adv. Funct. Mater. 17, 1917-1925 (2007). https://doi.org:https://doi.org/10.1002/adfm.200600988 102 Kasha, M. Characterization of electronic transitions in complex molecules. Discussions of the Faraday Society 9, 14-19 (1950). https://doi.org:10.1039/DF9500900014 103 Park, Y. I. et al. A new pH sensitive fluorescent and white light emissive material through controlled intermolecular charge transfer. Chemical Science 6, 789-797 (2015). https://doi.org:10.1039/C4SC01911C 104 Zhang, Z. et al. Control of the Reversibility of Excited-State Intramolecular Proton Transfer (ESIPT) Reaction: Host-Polarity Tuning White Organic Light Emitting Diode on a New Thiazolo[5,4-d]thiazole ESIPT System. Chemistry of Materials 28, 8815-8824 (2016). https://doi.org:10.1021/acs.chemmater.6b04707 105 Li, X. et al. Multiphotoluminescence from a Triphenylamine Derivative and Its Application in White Organic Light-Emitting Diodes Based on a Single Emissive Layer. Adv. mater. 31, 1900613 (2019). https://doi.org:https://doi.org/10.1002/adma.201900613 106 Li, B. et al. Realizing Efficient Single Organic Molecular White Light-Emitting Diodes from Conformational Isomerization of Quinazoline-Based Emitters. ACS. Appl. Mater. Interfaces. 12, 14233-14243 (2020). https://doi.org:10.1021/acsami.9b20162 107 Park, S. et al. A White-Light-Emitting Molecule: Frustrated Energy Transfer between Constituent Emitting Centers. J. Am. Chem. Soc. 131, 14043-14049 (2009). https://doi.org:10.1021/ja902533f 108 Liu, J., Diwu, Z. & Leung, W.-Y. Synthesis and photophysical properties of new fluorinated benzo[c]xanthene dyes as intracellular pH indicators. Bioorganic & Medicinal Chemistry Letters 11, 2903-2905 (2001). https://doi.org:https://doi.org/10.1016/S0960-894X(01)00595-9 109 Molla, M. R. et al. Self-Assembly of Carboxylic Acid Appended Naphthalene Diimide Derivatives with Tunable Luminescent Color and Electrical Conductivity. Chemistry – A European Journal 20, 760-771 (2014). https://doi.org:https://doi.org/10.1002/chem.201303379 110 Li, X., Xie, Y. & Li, Z. Diversity of Luminescent Metal Complexes in OLEDs: Beyond Traditional Precious Metals. Chemistry – An Asian Journal 16, 2817-2829 (2021). https://doi.org:https://doi.org/10.1002/asia.202100784 111 Li, G., Zhu, Z.-Q., Chen, Q. & Li, J. Metal complex based delayed fluorescence materials. Org. Electron. 69, 135-152 (2019). https://doi.org:https://doi.org/10.1016/j.orgel.2019.02.022 112 Mahoro, G. U. et al. Recent Advances in Solid-State Lighting Devices Using Transition Metal Complexes Exhibiting Thermally Activated Delayed Fluorescent Emission Mechanism. Adv. Opt. Mater. 8, 2000260 (2020). https://doi.org:https://doi.org/10.1002/adom.202000260 113 Baldo, M. A., Lamansky, S., Burrows, P. E., Thompson, M. E. & Forrest, S. R. Very high-efficiency green organic light-emitting devices based on electrophosphorescence. Appl. Phys. Lett. 75, 4-6 (1999). https://doi.org:10.1063/1.124258 114 Adachi, C., Baldo, M. A., Thompson, M. E. & Forrest, S. R. Nearly 100% internal phosphorescence efficiency in an organic light-emitting device. Journal of Applied Physics 90, 5048-5051 (2001). https://doi.org:10.1063/1.1409582 115 Lamansky, S. et al. Highly Phosphorescent Bis-Cyclometalated Iridium Complexes: Synthesis, Photophysical Characterization, and Use in Organic Light Emitting Diodes. J. Am. Chem. Soc. 123, 4304-4312 (2001). https://doi.org:10.1021/ja003693s 116 Endo, A. et al. Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes. Appl. Phys. Lett. 98 (2011). https://doi.org:10.1063/1.3558906 117 Tanaka, H., Shizu, K., Miyazaki, H. & Adachi, C. Efficient green thermally activated delayed fluorescence (TADF) from a phenoxazine–triphenyltriazine (PXZ–TRZ) derivative. Chemical Communications 48, 11392-11394 (2012). https://doi.org:10.1039/C2CC36237F 118 Nakamura, N., Wakabayashi, S., Miyairi, K. & Fujii, T. A Novel Blue Light Emitting Material Prepared from 2-(o-Hydroxyphenyl)benzoxazole. Chemistry Letters 23, 1741-1742 (2006). https://doi.org:10.1246/cl.1994.1741 119 Kanno, H. et al. Highly efficient and stable red phosphorescent organic light-emitting device using bis[2-(2-benzothiazoyl)phenolato]zinc(II) as host material. Appl. Phys. Lett. 90 (2007). https://doi.org:10.1063/1.2643908 120 Hoffmann, K., Stahl, U. & Dähne, S. Fluorescence lifetimes of metal(III) chelates of 5-sulphoquinolin-8-ol and their modification by the internal heavy atom effect. Analytica Chimica Acta 286, 241-246 (1994). https://doi.org:https://doi.org/10.1016/0003-2670(94)80166-5 121 Lytle, F. E., Storey, D. R. & Juricich, M. E. Systematic atomic number effects in complexes exhibiting ligand luminescence. Spectrochimica Acta Part A: Molecular Spectroscopy 29, 1357-1369 (1973). https://doi.org:https://doi.org/10.1016/0584-8539(73)80199-0 122 Baleizão, C. & Berberan-Santos, M. N. External Heavy-Atom Effect on the Prompt and Delayed Fluorescence of [70]Fullerenes. ChemPhysChem 11, 3133-3140 (2010). https://doi.org:https://doi.org/10.1002/cphc.201000395 123 Osawa, M. et al. Application of neutral d10 coinage metal complexes with an anionic bidentate ligand in delayed fluorescence-type organic light-emitting diodes. J. Mater. Chem. C 1, 4375-4383 (2013). https://doi.org:10.1039/C3TC30524D 124 Cai, S. et al. Gold(I) Multi-Resonance Thermally Activated Delayed Fluorescent Emitters for Highly Efficient Ultrapure-Green Organic Light-Emitting Diodes. Angew. Chem., Int. Ed. 61, e202213392 (2022). https://doi.org:https://doi.org/10.1002/anie.202213392 125 To, W. P., Cheng, G., Tong, G. S. M., Zhou, D. & Che, C. M. Recent Advances in Metal-TADF Emitters and Their Application in Organic Light-Emitting Diodes. Front Chem 8, 653 (2020). https://doi.org:10.3389/fchem.2020.00653 126 Dumur, F. Zinc complexes in OLEDs: An overview. Synthetic Metals 195, 241-251 (2014). https://doi.org:https://doi.org/10.1016/j.synthmet.2014.06.018 127 Liu, Q.-D., Wang, R. & Wang, S. Blue phosphorescent Zn(ii) and orange phosphorescent Pt(ii) complexes of 4,4′-diphenyl-6,6′-dimethyl-2,2′-bipyrimidine. Dalton Transactions, 2073-2079 (2004). https://doi.org:10.1039/B404905E 128 Sakai, Y. et al. Zinc complexes exhibiting highly efficient thermally activated delayed fluorescence and their application to organic light-emitting diodes. Chemical Communications 51, 3181-3184 (2015). https://doi.org:10.1039/C4CC09403D 129 Xiong, J. et al. Dinuclear ZnII Complexes Exhibiting Thermally Activated Delayed Fluorescence and Luminescence Polymorphism. Chemistry – A European Journal 26, 6887-6893 (2020). https://doi.org:https://doi.org/10.1002/chem.202000572 130 Berezin, A. S. et al. Excitation-Wavelength-Dependent Emission and Delayed Fluorescence in a Proton-Transfer System. Chemistry – A European Journal 24, 12790-12795 (2018). https://doi.org:https://doi.org/10.1002/chem.201802876 131 Jang, Y.-K. et al. Electroluminescent properties of organic light emitting diodes using Zn(HPB)2 and Zn(HPB)q. Colloids and Surfaces A: Physicochemical and Engineering Aspects 284-285, 331-334 (2006). https://doi.org:https://doi.org/10.1016/j.colsurfa.2006.01.010 132 Sano, T. et al. Design of conjugated molecular materials for optoelectronics. Journal of Materials Chemistry 10, 157-161 (2000). https://doi.org:10.1039/A903239H 133 Dorel, R., Grugel, C. P. & Haydl, A. M. The Buchwald–Hartwig Amination After 25 Years. Angew. Chem., Int. Ed. 58, 17118-17129 (2019). https://doi.org:https://doi.org/10.1002/anie.201904795 134 Yu, G., Yin, S., Liu, Y., Shuai, Z. & Zhu, D. Structures, Electronic States, and Electroluminescent Properties of a Zinc(II) 2-(2-Hydroxyphenyl)benzothiazolate Complex. J. Am. Chem. Soc. 125, 14816-14824 (2003). https://doi.org:10.1021/ja0371505 135 Czerwieniec, R., Yu, J. & Yersin, H. Blue-Light Emission of Cu(I) Complexes and Singlet Harvesting. Inorganic Chemistry 50, 8293-8301 (2011). https://doi.org:10.1021/ic200811a 136 Bassoli, S., Ardizzoia, G. A., Therrien, B. & Brenna, S. Phosphorescence enhancement by close metal–metal interaction in T1 excited state in a dinuclear copper(i) complex. Dalton Transactions 48, 9276-9283 (2019). https://doi.org:10.1039/C9DT01565E 137 Chang, X.-Y. et al. Assembly of strongly phosphorescent hetero-bimetallic and -trimetallic [2]catenane structures based on a coinage metal alkynyl system. Chemical Science 8, 7815-7820 (2017). https://doi.org:10.1039/C7SC03529B 138 Chakraborty, P. et al. Influence of para substituents in controlling photophysical behavior and different non-covalent weak interactions in zinc complexes of a phenol based “end-off” compartmental ligand. Dalton Transactions 44, 20032-20044 (2015). https://doi.org:10.1039/C5DT02768C 139 Andréasson, J., Zetterqvist, H., Kajanus, J., Mårtensson, J. & Albinsson, B. Efficient Non-Radiative Deactivation and Conformational Flexibility of meso-Diaryloctaalkylporphyrins in the Excited Triplet State. The Journal of Physical Chemistry A 104, 9307-9314 (2000). https://doi.org:10.1021/jp0015574 140 Adamo, C. & Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. The Journal of Chemical Physics 110, 6158-6170 (1999). https://doi.org:10.1063/1.478522 141 Ernzerhof, M. & Scuseria, G. E. Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. The Journal of Chemical Physics 110, 5029-5036 (1999). https://doi.org:10.1063/1.478401 142 Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Physical Chemistry Chemical Physics 7, 3297-3305 (2005). https://doi.org:10.1039/B508541A 143 Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. Journal of Computational Chemistry 32, 1456-1465 (2011). https://doi.org:https://doi.org/10.1002/jcc.21759 144 Neese, F., Wennmohs, F., Hansen, A. & Becker, U. Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree–Fock exchange. Chemical Physics 356, 98-109 (2009). https://doi.org:https://doi.org/10.1016/j.chemphys.2008.10.036 145 Neese, F. The SHARK integral generation and digestion system. Journal of Computational Chemistry 44, 381-396 (2023). https://doi.org:https://doi.org/10.1002/jcc.26942 146 Neese, F. Software update: The ORCA program system—Version 5.0. WIREs Computational Molecular Science 12, e1606 (2022). https://doi.org:https://doi.org/10.1002/wcms.1606 147 Neese, F., Wennmohs, F., Becker, U. & Riplinger, C. The ORCA quantum chemistry program package. The Journal of Chemical Physics 152 (2020). https://doi.org:10.1063/5.0004608 148 Li, W. et al. Improved stability of blue TADF organic electroluminescent diodes via OXD-7 based mixed host. Frontiers of Optoelectronics 14, 491-498 (2021). https://doi.org:10.1007/s12200-020-1069-0 149 Chen, H.-F. et al. Peripheral modification of 1,3,5-triazine based electron-transporting host materials for sky blue, green, yellow, red, and white electrophosphorescent devices. Journal of Materials Chemistry 22, 15620-15627 (2012). https://doi.org:10.1039/C2JM31904G 150 Hung, W.-Y. et al. Balance the Carrier Mobility To Achieve High Performance Exciplex OLED Using a Triazine-Based Acceptor. ACS. Appl. Mater. Interfaces. 8, 4811-4818 (2016). https://doi.org:10.1021/acsami.5b11895 151 Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr C Struct Chem 71, 3-8 (2015). https://doi.org:10.1107/s2053229614024218 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94997 | - |
| dc.description.abstract | 我們報告了新的主體材料,用以增強基於多重共振誘導熱活化延遲螢光(MR-TADF)的純深藍色有機發光二極體OLED),進一步縮短發射半峰全寬(FWHM)。基於不尋常的不對稱設計概念,我們合成了兩種新的主體化合物Bz2cb和Bz2cbz。儘管在晶體中具有緻密且剛性的分子堆積,Bz2cbz 透過氣相沉積顯示出非晶像形態,正如掠入射廣角 X 射線散射 (GIWAXS) 分析所證實的那樣。透過將一種有前途的 MR-TADF 發射體 ν-DABNA-O-Me 融入 Bz2cb 和 Bz2cbz 薄膜中,成功展示了高純度的深藍色 OLED。值得注意的是,Bz2cbz元件表現出464 nm電致發光(EL),半高寬為22 nm,伴隨著0-1電子振動邊帶的減少,最大外量子效率(EQEmax)為28.2%,整體上達到了真藍色國際照明委員會座標 (CIE) 為 (0.13, 0.07),高藍色指數為 253。事實證明,非晶像薄膜的形成是一個以前未被認識到的外部微調 MR-TADF 的重要因素,而導致OLED的色純度較高。
我們在此報導了一種新合成的TADF材料,材料本身於UV光照射下放出白色光線,是由於其單體以及聚集所造成,我們透過分析其瞬態光譜以及其lifetime,可以得知其形成白色光的原理為具有兩種不同的架構,進一步透過TEM分析表明,分子經過結晶,外層的殼以及內層的堆疊形成球體狀結構,透過共軛交顯微鏡可以清楚的表明,外層為藍色,內層為綠色,並將其作成non-doped元件,元件可以顯示出國際照明委員會座標(CIE)為(0.2,0.2),此分子不僅為少數TADF發出白光分子,更提供了新一代白光單層元件的一個有潛力分子。 我們報告了一種新的鋅配合物,可以增強基於熱延遲活化螢光(TADF)的綠藍色有機發光二極體(OLED)。利用鋅和TADF配體的結合,我們成功合成了具有TADF特性的Zn(PhOBz)-PXZ。時間分辨光致發光(TrPL)研究揭示了 TADF 的發射機制。 DFT計算表明,HOMO和LUMO在基態下分離良好,激發單重態和三重態之間的能量分裂很小。這與先前僅表現出即時螢光的鋅配合物形成鮮明對比。透過氣相沉積併入綠藍色 TADF OLED 系統,成功地展示了綠藍色 OLED。 Zn(PhOBz)-PXZ元件表現出521 nm電致發光(EL)和10.6%的最大外量子效率(EQEmax),國際照明委員會(CIE)座標為(0.28,0.47)。鋅配合物具有TADF、成本效益高、自然資源更豐富、環境友善的金屬,使其成為未來貴金屬發射體的潛在替代品。 | zh_TW |
| dc.description.abstract | We reported the new host material to boost the multiple resonance-induced thermally activated delayed fluorescence (MR-TADF) based pure deep-blue organic light emitting diodes (OLEDs) toward further shortening the emission full width at the half maximum (FWHM). Based on an unusual asymmetric design concept, we synthesized two new host compounds Bz2cbz and Bz2cb, which, despite possessing a compact and rigid molecular packing in crystal, show pure amorphous morphology via vapor deposition, as confirmed by the grazing-incidence wide-angle X-ray scattering (GIWAXS) analysis. Via incorporating a promising MR-TADF emitter, ν-DABNA-O-Me, into Bz2cbz and Bz2cb films, the highly pure deep-blue OLEDs were successfully demonstrated. The blue index of the device we fabricated reaches up to 253.For the use of Bz2cbz, the device shows maximum external quantum efficiency (EQEmax) of 28.2% with a turn-on voltage of 3.0 V, electroluminescence emission peak at 464 nm. Importantly, the emission full width at half maximum (FWHM) of 22 nm accompanied by the reduction of the 0-1 vibronic sideband. As a result, the corresponding Commission Internationale de l’Eclairage (CIE) coordinates of (0.13, 0.07) are superior to the best of the reported data (FWHM: 23 nm and CIE (0.13, 0.10) using a symmetric host material DOBNA-tol. We thus propose that the amorphous environment of host Bz2cbz leads to the homogeneous distribution of the guest ν-DABNA-O-Me, resulting in a reduction of the inhomogeneous sites of ν-DABNA-O-Me and hence the spectral narrowing of the emission. The asymmetric configuration of host materials may play a necessary role for the amorphous film formation via vapor deposition, which turns out to be an important factor to externally fine-tune the MR-TADF OLEDs toward even higher colour purity.
Here, we report a newly synthesized thermally activated delayed fluorescence (TADF) material that emits white light. This phenomenon arises from both its monomer and aggregate states. Through analysis of its transient spectra and lifetime, we deduced that the generation of white light is due to the presence of two distinct structures. Further TEM analysis indicates that the molecules form a spherical structure through crystallization, with an outer shell and inner stacking. Confocal microscopy clearly shows that the outer layer emits blue light, while the inner layer emits green light. By incorporating this material into a non-doped device, the device exhibits Commission Internationale de l’Eclairage (CIE) coordinates of (0.27, 0.30). This molecule not only represents one of the few TADF emitters producing white light but also holds promise for a new generation of white light single-layer devices. We report a new zinc complex that enhances thermally activated delayed fluorescence (TADF) based greenish-blue organic light-emitting diodes (OLEDs). Utilizing the combination of zinc and TADF ligand, we successfully synthesized Zn(PhOBz)-PXZ with TADF properties. Time-resolved photoluminescence (TrPL) studies revealed the emission mechanism of TADF. DFT calculations showed that the HOMO and LUMO are well-separated in the ground state, and the energy splitting between the excited singlet and triplet states is small. This is in contrast to previous Zn complexes that only exhibited prompt fluorescence. Via vapor deposition incorporating into a greenish-blue TADF OLED system, greenish-blue OLEDs were successfully demonstrated. The Zn(PhOBz)-PXZ device exhibits 521 nm electroluminescence (EL) and a maximum external quantum efficiency (EQEmax) of 10.6%, with Commission Internationale de l’Eclairage (CIE) coordinates of (0.28, 0.47). Zinc complexes have TADF, cost-effectiveness, greater abundance of natural resources, environmentally friendly metals, making them potential replacements for future precious metal emitters. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-26T16:10:06Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-26T16:10:06Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | contents List i
審定書 iv 謝辭 v 摘要-part 1 vi Abstract-part 1 vii 摘要 part 2 ix Abstract-part 2 x 摘要 part 3 xi Abstract-part 3 xii List of figure xiii List of Table xvii Number, name and stycture of compounds xviii Chemical name and its chemical acronyms xxi 1. Introduction 1 1.1. Prologue and history of organic light-emitting diodes 1 1.2. The emission of OLEDs 3 1.2.1. The luminescent mechanism of organic molecules. 3 1.2.2. The working principle of organic light-emitting diodes 6 1.3. The emission mechanism of fluorescent and phosphorescent OLEDs 7 1.3.1. The fluorescence emission system involving both host and guest components. 9 1.4. Thermally Activated Delayed Fluorescence (TADF) 12 1.5. Introduction to the Materials of Each Layer in OLEDs 15 2. Synthesis Structural Characterization of Benzimidazole-Based and Application in MR-TADF 23 2.1. A brief review of the host for MR-TADF OLEDs 23 2.2. Molecular design 25 2.3. Synthesis route of target molecular 27 2.4. X-ray crystallography 28 2.5. Thermal properties 29 2.6. Electrochemical properties 30 2.7. Photophysical properties 32 2.8. Density functional theory (DFT) calculations 38 2.9. Applications in MR-TADF 39 2.10. GIWAX 44 2.11. Angular Dependent Photoluminescence (ADPL) 46 2.12. Result and discussion 47 2.13. Conclusions 54 3. Synthesis Structural Characterization of TADF Molecular Application in White OLEDs 56 3.1. A brief review of host for MR-TADF OLEDs 56 3.2. Molecular design 59 3.3. Synthesis route of target molecular 59 3.4. X-ray crystallography 60 3.5. Thermal properties 62 3.6. Electrochemical properties 63 3.7. Photophysical properties 64 3.8. Theory calculations 66 3.9. Applications in TADF OLEDs 67 3.10. Confocal Microscopy 69 3.11. HRTEM 69 3.12. GISAXS 71 3.13. Conclusions 72 4. Zn Complex Exhibiting Thermally Activated Delayed Fluorescence: Application in Greenish-Blue OLED Devices 73 4.1. A brief review of metal-TADF emitters OLEDs 73 4.2. Molecular design 75 4.3. Synthesis route of target molecular 76 4.4. X-ray crystallography 78 4.5. Thermal properties 79 4.6. Electrochemical properties 81 4.7. Photophysical properties 82 4.8. Theory calculations 88 4.9. Applications in TADF OLEDs 90 4.10. conclusions 92 5. Experiment Details 94 5.1. General Information 94 5.2. Synthesis of Material 96 6. NMR spectrum and X-ray data 125 7. list of reference 292 8. Appendix 306 8.1. TGA scanning 306 8.2. DSC scanning 308 8.3. CV scanning 311 8.4. Photophysical properties 314 | - |
| dc.language.iso | en | - |
| dc.subject | 多重共振誘導熱活化延遲螢光 | zh_TW |
| dc.subject | 主體材料 | zh_TW |
| dc.subject | 半波寬 | zh_TW |
| dc.subject | 有機發光二極體 | zh_TW |
| dc.subject | 雙發射放光 | zh_TW |
| dc.subject | 熱活化延遲螢光 | zh_TW |
| dc.subject | 白光有機發光二極體 | zh_TW |
| dc.subject | zn錯合物 | zh_TW |
| dc.subject | 雙配位體 | zh_TW |
| dc.subject | dinuclear | en |
| dc.subject | Multiple Resonance-Induced thermally activated delayed fluorescence | en |
| dc.subject | zinc complex | en |
| dc.subject | Host material | en |
| dc.subject | full width at the half maximum | en |
| dc.subject | organic light emitting diode | en |
| dc.subject | duel emission | en |
| dc.subject | thermally activated delayed fluorescence | en |
| dc.subject | white organic light emitting diode | en |
| dc.title | 合成與探索熱延遲活化螢光苯並咪唑材料於有機發光二極體之應用 | zh_TW |
| dc.title | Synthesis and Characterization of Thermally Activated Delayed Fluorescence Benzimidazole Materials in OLEDs and Their Applications | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.coadvisor | 周必泰 | zh_TW |
| dc.contributor.coadvisor | Pi-Tai Chou | en |
| dc.contributor.oralexamcommittee | 李君浩;邱天隆;洪文誼;李冠明 | zh_TW |
| dc.contributor.oralexamcommittee | Jiun-Haw Lee;Tien-Lung Chiu;Wen-Yi Hung;Kwang-Ming Lee | en |
| dc.subject.keyword | 多重共振誘導熱活化延遲螢光,主體材料,半波寬,有機發光二極體,雙發射放光,熱活化延遲螢光,白光有機發光二極體,zn錯合物,雙配位體, | zh_TW |
| dc.subject.keyword | Multiple Resonance-Induced thermally activated delayed fluorescence,Host material,full width at the half maximum,organic light emitting diode,duel emission,thermally activated delayed fluorescence,white organic light emitting diode,zinc complex,dinuclear, | en |
| dc.relation.page | 315 | - |
| dc.identifier.doi | 10.6342/NTU202403241 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-14 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 化學系 | - |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 10.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
