請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94995完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林士駿 | zh_TW |
| dc.contributor.advisor | Shih-Chun Lin | en |
| dc.contributor.author | 孫鍾軒 | zh_TW |
| dc.contributor.author | Chung-Hsuan Sun | en |
| dc.date.accessioned | 2024-08-26T16:09:10Z | - |
| dc.date.available | 2024-08-27 | - |
| dc.date.copyright | 2024-08-26 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-11 | - |
| dc.identifier.citation | D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic. Qsgd: Communicationefficient sgd via gradient quantization and encoding. Advancesin neural information processing systems, 30, 2017.
U. Erez, S. Litsyn, and R. Zamir. Lattices which are good for (almost) everything. IEEE Transactions on Information Theory, 51(10):3401–3416, 2005. G.-H.Lyu, B.A.Saputra, S.Rini, C.-H.Sun, and S.-C.Lin. Low-rate universal vector quantization for federated learning. IEEE International Conference on Communications (ICC) Workshop, 2024. A. Kirac and P. Vaidyanathan. Results on lattice vector quantization with dithering. IEEE Transactions on Circuits and SystemsII: Analog and Digital Signal Processing, 43(12):811–826, 1996. S.-c. Lin and H.-j. Su. Practical vector dirty paper coding for mimo gaussian broadcast channels. IEEE Journal on Selected Areas in Communications, 25(7):1345–1357, 2007. S.-C. Lin and H.-J. Su. Vector wyner-ziv coding for vector gaussian ceo problem. In 2007 41st Annual Conference on Information Sciences and Systems, pages 333–338, 2007. P. Mayekar, S. K. Jha, and H. Tyagi. Wyner-ziv compression is (almost) optimal for distributed optimization. In 2022 IEEE International Symposium on Information Theory (ISIT), pages 578–583, 2022. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. Communication-efficient learning of deep networks from decentralized data. In Artificial intelligence and statistics, pages 1273–1282. PMLR, 2017. A. Rodio, F. Faticanti, O. Marfoq, G. Neglia, and E. Leonardi. Federated learning under heterogeneous and correlated client availability. In IEEE INFOCOM 2023-IEEE Conference on Computer Communications, pages 1–10. IEEE, 2023. N. Shlezinger, M. Chen, Y. C. Eldar, H. V. Poor, and S. Cui. Uveqfed: Universal vector quantization for federated learning. IEEE Transactions on Signal Processing, 69:500–514, 2020. N. Shlezinger, S. Rini, and Y. C. Eldar. The communication-aware clustered federated learning problem. In 2020 IEEE International Symposium on Information Theory (ISIT), pages 2610–2615, 2020. Z. Tang, Y. Wang, and T.-H. Chang. z-signfedavg: A unified stochastic sign-based compression for federated learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pages 15301–15309, 2024. S. ten Brink. Convergence behavior of iteratively decoded parallel concatenated codes. IEEE Transactions on Communications, 49(10):1727–1737, 2001. S. ten Brink, G. Kramer, and A. Ashikhmin. Design of low-density parity-check codes for modulation and detection. IEEE Transactions on Communications, 52(4):670–678, 2004. Q. Wang and C. He. Design and analysis of ldgm-based codes for mse quantization. arXiv preprint arXiv:0801.2423, 2008. Y.-P. Wei, S.-C. Lin, S.-J. Lin, H.-J. Su, and H. V. Poor. Residual-quantization based code design for compressing noisy sources with arbitrary decoder side information. IEEE Transactions on Communications, 64(4):1711–1725, 2016. A. Wyner and J. Ziv. The rate-distortion function for source coding with side information at the decoder. IEEE Transactions on Information Theory, 22(1):1–10, 1976. H. Yu, R. Jin, and S. Yang. On the linear speedup analysis of communication efficient momentum sgd for distributed non-convex optimization. In International Conference on Machine Learning, pages 7184–7193. PMLR, 2019. R. Zamir, B. Nazer, Y. Kochman, and I. Bistritz. Lattice Coding for Signals and Networks: A Structured Coding Approach to Quantization, Modulation and Multiuser Information Theory. Cambridge University Press, 2014. N. Zhang, M. Tao, and J. Wang. Sum-rate-distortion function for indirect multiterminal source coding in federated learning. In 2021 IEEE International Symposium on Information Theory (ISIT), pages 2161–2166. IEEE, 2021. H. Zhu, A. Ghosh, and A. Mazumdar. Optimal compression of unit norm vectors in the high distortion regime. In 2023 IEEE International Symposium on Information Theory (ISIT), pages 719–724. IEEE, 2023. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94995 | - |
| dc.description.abstract | 聯邦式學習是一種分散式機器學習,其訓練資料因隱私性只由邊緣設備各自擁有,而參數服務器負責提供訓練模型以及協調參數更新,由於本地參數更新需經過有限容量的上行通道傳送到參數服務器,會佔據過多頻寬導致通訊效益下降,為了突破有限容量瓶頸,目前有許多研究對使用不同壓縮方式來達到更低的碼率。本文額外利用參數更新彼此在時間或空間上的相關性,在參數服務器中產生帶有本地參數更新訊息量的側訊息,此架構為只有解碼器具有測訊息的源編碼問題 (SCSI Problem),使得壓縮碼率進一步減少。本文採用 TCQ 對一半的邊緣設備做壓縮並生成測訊息,另一半使用餘式 WZC 架構再透過測訊息進行解碼,由於參數更新的收斂會使得數值不斷改變,我們提出預先縮放的 WZC 架構並對源訊息和測訊息之間的差做預測,使得每次跌代不需要重新設計 code book,模擬結果顯示,使用 TCQ 加 WZC 相較於全部使用 TCQ 可以在更低的碼率下達到相同的影像辨識精確度。 | zh_TW |
| dc.description.abstract | Federated learning is a form of decentralized machine learning, where training data is held by edge devices due to privacy concerns, and the parameter server is only responsible for providing training models and coordinating parameter updates. Due to the limited capacity of the uplink channel required for transmitting locally updated parameters to the parameter server, excessive bandwidth occupation leads to a decrease in communication efficiency. To overcome this bottleneck of limited capacity, many studies have explored the use of different compression methods to achieve lower rate. This paper additionally utilizes the temporal and spatial correlations of parameter updates to generate side information in the parameter server. This architecture presents a source coding problem with only the decoder having side information (SCSI Problem), further reducing compression bit rates. The paper adopts TCQ to compress half of the edge devices and generate side information, while the remaining half uses residual WZC architecture for decoding through side information. As parameter updates converge and numerical values continuously change, we propose a pre-scaling WZC architecture and predict the difference between source and side information to avoid the need for redesigning codebooks at each iteration. Simulation results demonstrate that using TCQ with WZC achieves the same image recognition accuracy at lower rate compared to using TCQ alone. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-26T16:09:10Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-26T16:09:10Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Contents
Page Acknowledgements i 摘要 iii Abstract v Contents vii List of Figures ix List of Tables xi Chapter 1 Introduction 1 1.1 Federated Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Related Work, Contribution and Thesis Overview . . . . . . . . . . . 2 Chapter 2 FL System model and side information generation 5 2.1 Federated Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 FL System Model and Algorithm . . . . . . . . . . . . . . . . . . . 6 2.2 Side Information Generation . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Proposed FL WZC Scheme . . . . . . . . . . . . . . . . . . . . . . 10 Chapter 3 Quantization Scheme: TCQ and WZC 13 3.1 Trellis Coded Quantization . . . . . . . . . . . . . . . . . . . . . . . 13 3.1.1 TCQ Convergence Analysis . . . . . . . . . . . . . . . . . . . . . 15 3.2 Wyner-Ziv Compression . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2.1 Wyner-Ziv Coding . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2.2 Residual Wyner-Ziv Coding Model . . . . . . . . . . . . . . . . . . 26 3.2.3 Modulo Size and Code Book Design . . . . . . . . . . . . . . . . . 31 Chapter 4 Problem Tackling 41 4.1 Variance Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.1.1 Scaling Residual Wyner-Ziv Coding Structure . . . . . . . . . . . . 43 4.1.2 Variance Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.1.3 Alternative Scaling Factor . . . . . . . . . . . . . . . . . . . . . . 50 4.1.4 LDPC quantization scheme (side work) . . . . . . . . . . . . . . . 50 Chapter 5 Simulation Results 53 5.1 Codebook degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.2 Image classification in Federated learning . . . . . . . . . . . . . . . 55 Chapter 6 Conclusions 63 Chapter 7 Future work 65 References 67 | - |
| dc.language.iso | en | - |
| dc.subject | 聯邦式學習 | zh_TW |
| dc.subject | 低馬率壓縮 | zh_TW |
| dc.subject | Wyner-Ziv壓縮 | zh_TW |
| dc.subject | 測訊息 | zh_TW |
| dc.subject | 解碼器具有測訊息的原編碼問題 | zh_TW |
| dc.subject | Federated Learning | en |
| dc.subject | Trellis Coded Quantization | en |
| dc.subject | Wyner-Ziv Compression | en |
| dc.subject | SCSI Problem | en |
| dc.subject | Side Information | en |
| dc.title | 用於聯邦式學習的高效通訊 Wyner-Ziv 壓縮方式 | zh_TW |
| dc.title | Communication Efficient Wyner-Ziv Compression for Federated Learning | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃昱智;蘇炫榮 | zh_TW |
| dc.contributor.oralexamcommittee | Yu-Chih Huang ;Hsuan-Jung Su | en |
| dc.subject.keyword | 聯邦式學習,測訊息,Wyner-Ziv壓縮,低馬率壓縮,解碼器具有測訊息的原編碼問題, | zh_TW |
| dc.subject.keyword | Federated Learning,Side Information,SCSI Problem,Wyner-Ziv Compression,Trellis Coded Quantization, | en |
| dc.relation.page | 69 | - |
| dc.identifier.doi | 10.6342/NTU202402942 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-13 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電信工程學研究所 | - |
| dc.date.embargo-lift | 2029-08-12 | - |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 此日期後於網路公開 2029-08-12 | 1.25 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
