請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94980完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊瑋誠 | zh_TW |
| dc.contributor.advisor | Wei-Cheng Yang | en |
| dc.contributor.author | 廖柏睿 | zh_TW |
| dc.contributor.author | Bo-Jui Liao | en |
| dc.date.accessioned | 2024-08-23T16:15:02Z | - |
| dc.date.available | 2025-08-07 | - |
| dc.date.copyright | 2024-08-23 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-07 | - |
| dc.identifier.citation | Al Hasan, M., Martin, P. E., Shu, X., Patterson, S., & Bartholomew, C. (2021). Type III Collagen is Required for Adipogenesis and Actin Stress Fibre Formation in 3T3-L1 Preadipocytes. Biomolecules, 11(2). https://doi.org/10.3390/biom11020156
Arif, S., Attiogbe, E., & Moulin, V. J. (2021). Granulation tissue myofibroblasts during normal and pathological skin healing: The interaction between their secretome and the microenvironment. Wound Repair and Regeneration, 29(4), 563-572. https://doi.org/https://doi.org/10.1111/wrr.12919 Bohling, M. W., Henderson, R. A., Swaim, S. F., Kincaid, S. A., & Wright, J. C. (2006). Comparison of the role of the subcutaneous tissues in cutaneous wound healing in the dog and cat. Vet Surg, 35(1), 3-14. https://doi.org/10.1111/j.1532-950X.2005.00105.x Bossley, M. I., & Woolfall, M. A. (2014). Recovery from severe cutaneous injury in two free ranging bottlenose dolphins (Tursiops spp.). Brant, J. O., Lopez, M. C., Baker, H. V., Barbazuk, W. B., & Maden, M. (2015). A Comparative Analysis of Gene Expression Profiles during Skin Regeneration in Mus and Acomys. PLoS One, 10(11), e0142931. https://doi.org/10.1371/journal.pone.0142931 Brant, J. O., Yoon, J. H., Polvadore, T., Barbazuk, W. B., & Maden, M. (2016). Cellular events during scar-free skin regeneration in the spiny mouse, Acomys. Wound Repair Regen, 24(1), 75-88. https://doi.org/10.1111/wrr.12385 Brewer, C. M., Nelson, B. R., Wakenight, P., Collins, S. J., Okamura, D. M., Dong, X. R., Mahoney, W. M., Jr., McKenna, A., Shendure, J., Timms, A., Millen, K. J., & Majesky, M. W. (2021). Adaptations in Hippo-Yap signaling and myofibroblast fate underlie scar-free ear appendage wound healing in spiny mice. Developmental Cell, 56(19), 2722-2740.e2726. https://doi.org/10.1016/j.devcel.2021.09.008 Bruce-Allen, L. J., & Geraci, J. R. (1985). Wound Healing in the Bottlenose Dolphin (Tursiops truncatus). Canadian Journal of Fisheries and Aquatic Sciences, 42(2), 216-228. https://doi.org/10.1139/f85-029 Carwardine, M., Camm, M., Robinson, R., & Llobet, T. (2022). Field Guide to Whales, Dolphins and Porpoises. Bloomsbury USA. https://books.google.com.tw/books?id=fpBLEAAAQBAJ Case, B., & Valenstein, E. S. (1963). Methyl methacrylate monomer: a solvent for removal of implanted electrodes. Stain Technol, 38, 201-202. https://doi.org/10.3109/10520296309067167 Chou, L.-S., Yao, C.-J., Wang, M.-C., Chi, W.-L., Ho, Y., & Yang, W.-C. (2024). Cetacean Stranding Response Program and Spatial–Temporal Analysis in Taiwan, 1994–2018. Animals, 14(12), 1823. https://www.mdpi.com/2076-2615/14/12/1823 Chuang, L.-T. (2024). Histopathological Study on Hypopigmented Scars in Risso’s Dolphins (Grampus griseus). Corvera, S., Solivan-Rivera, J., & Yang Loureiro, Z. (2022). Angiogenesis in adipose tissue and obesity. Angiogenesis, 25(4), 439-453. https://doi.org/10.1007/s10456-022-09848-3 Ehrlich, F., Fischer, H., Langbein, L., Praetzel-Wunder, S., Ebner, B., Figlak, K., Weissenbacher, A., Sipos, W., Tschachler, E., & Eckhart, L. (2018). Differential Evolution of the Epidermal Keratin Cytoskeleton in Terrestrial and Aquatic Mammals. Molecular Biology and Evolution, 36(2), 328-340. https://doi.org/10.1093/molbev/msy214 Elwen, S., & Leeney, R. (2010). Injury and Subsequent Healing of a Propeller Strike Injury to a Heaviside's Dolphin ( Cephalorhynchus heavisidii ). Aquatic Mammals, 36, 382-387. https://doi.org/10.1578/AM.36.4.2010.382 Erdag, G., Qureshi, H. S., Patterson, J. W., & Wick, M. R. (2008). CD34-positive dendritic cells disappear from scars but are increased in pericicatricial tissue. J Cutan Pathol, 35(8), 752-756. https://doi.org/10.1111/j.1600-0560.2007.00895.x Espregueira Themudo, G., Alves, L. Q., Machado, A. M., Lopes-Marques, M., da Fonseca, R. R., Fonseca, M., Ruivo, R., & Castro, L. F. C. (2020). Losing Genes: The Evolutionary Remodeling of Cetacea Skin [Mini Review]. Frontiers in Marine Science, 7. https://doi.org/10.3389/fmars.2020.592375 Gaire, J., Varholick, J. A., Rana, S., Sunshine, M. D., Doré, S., Barbazuk, W. B., Fuller, D. D., Maden, M., & Simmons, C. S. (2021). Spiny mouse (Acomys): an emerging research organism for regenerative medicine with applications beyond the skin. npj Regenerative Medicine, 6(1), 1. https://doi.org/10.1038/s41536-020-00111-1 Gajbhiye, S., & Wairkar, S. (2022). Collagen fabricated delivery systems for wound healing: A new roadmap. Biomaterials Advances, 142, 213152. https://doi.org/https://doi.org/10.1016/j.bioadv.2022.213152 Geraci, J. R., & Bruce-Allen, L. J. (1987). Slow Process of Wound Repair in Beluga Whales, Delphinapterus leucas. Canadian Journal of Fisheries and Aquatic Sciences, 44(9), 1661-1665. https://doi.org/10.1139/f87-203 Gilaberte, Y., Prieto-Torres, L., Pastushenko, I., & Juarranz, Á. (2016). Chapter 1 - Anatomy and Function of the Skin. In M. R. Hamblin, P. Avci, & T. W. Prow (Eds.), Nanoscience in Dermatology (pp. 1-14). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-802926-8.00001-X Godwin, J., Kuraitis, D., & Rosenthal, N. (2014). Extracellular matrix considerations for scar-free repair and regeneration: Insights from regenerative diversity among vertebrates. The International Journal of Biochemistry & Cell Biology, 56, 47-55. https://doi.org/https://doi.org/10.1016/j.biocel.2014.10.011 Goldbogen, J. A., Pyenson, N. D., & Madsen, P. T. (2023). How Whales Dive, Feast, and Fast: The Ecophysiological Drivers and Limits of Foraging in the Evolution of Cetaceans. Annual Review of Ecology, Evolution, and Systematics, 54(Volume 54, 2023), 307-325. https://doi.org/https://doi.org/10.1146/annurev-ecolsys-102220-025458 Grada, A., Mervis, J., & Falanga, V. (2018). Research Techniques Made Simple: Animal Models of Wound Healing. Journal of Investigative Dermatology, 138(10), 2095-2105.e2091. https://doi.org/https://doi.org/10.1016/j.jid.2018.08.005 Guerrero-Juarez, C. F., Dedhia, P. H., Jin, S., Ruiz-Vega, R., Ma, D., Liu, Y., Yamaga, K., Shestova, O., Gay, D. L., Yang, Z., Kessenbrock, K., Nie, Q., Pear, W. S., Cotsarelis, G., & Plikus, M. V. (2019). Single-cell analysis reveals fibroblast heterogeneity and myeloid-derived adipocyte progenitors in murine skin wounds. Nature Communications, 10(1), 650. https://doi.org/10.1038/s41467-018-08247-x Guo, Q., Liu, Z., Zheng, J., Zhao, H., & Li, C. (2021). Substances for regenerative wound healing during antler renewal stimulated scar-less restoration of rat cutaneous wounds. Cell and Tissue Research, 386(1), 99-116. https://doi.org/10.1007/s00441-021-03505-9 Gurtner, G. C., Werner, S., Barrandon, Y., & Longaker, M. T. (2008). Wound repair and regeneration. Nature, 453(7193), 314-321. https://doi.org/10.1038/nature07039 Hashimoto, O., Ohtsuki, H., Kakizaki, T., Amou, K., Sato, R., Doi, S., Kobayashi, S., Matsuda, A., Sugiyama, M., Funaba, M., Matsuishi, T., Terasawa, F., Shindo, J., & Endo, H. (2015). Brown Adipose Tissue in Cetacean Blubber. PLoS One, 10(2), e0116734. https://doi.org/10.1371/journal.pone.0116734 Hicks, B. D., St Aubin, D. J., Geraci, J. R., & Brown, W. R. (1985). Epidermal growth in the bottlenose dolphin, Tursiops truncatus. J Invest Dermatol, 85(1), 60-63. https://doi.org/10.1111/1523-1747.ep12275348 Ho, J. D., Chung, H. J., Ms Barron, A., Ho, D. A., Sahni, D., Browning, J. L., & Bhawan, J. (2019). Extensive CD34-to-CD90 Fibroblast Transition Defines Regions of Cutaneous Reparative, Hypertrophic, and Keloidal Scarring. Am J Dermatopathol, 41(1), 16-28. https://doi.org/10.1097/dad.0000000000001254 Iaizzo, P. A., Laske, T. G., Harlow, H. J., McClay, C. B., & Garshelis, D. L. (2012). Wound healing during hibernation by black bears (Ursus americanus) in the wild: elicitation of reduced scar formation. Integr Zool, 7(1), 48-60. https://doi.org/10.1111/j.1749-4877.2011.00280.x Iverson, S. J. (2009). Blubber. In W. F. Perrin, B. Würsig, & J. G. M. Thewissen (Eds.), Encyclopedia of Marine Mammals (Second Edition) (pp. 115-120). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-373553-9.00032-8 Jiang, D., Correa-Gallegos, D., Christ, S., Stefanska, A., Liu, J., Ramesh, P., Rajendran, V., De Santis, M. M., Wagner, D. E., & Rinkevich, Y. (2018). Two succeeding fibroblastic lineages drive dermal development and the transition from regeneration to scarring. Nature Cell Biology, 20(4), 422-431. https://doi.org/10.1038/s41556-018-0073-8 Jiang, D., & Rinkevich, Y. (2020). Scars or Regeneration?—Dermal Fibroblasts as Drivers of Diverse Skin Wound Responses. International Journal of Molecular Sciences, 21(2), 617. https://www.mdpi.com/1422-0067/21/2/617 Jiang, Y., Berry, D. C., Jo, A., Tang, W., Arpke, R. W., Kyba, M., & Graff, J. M. (2017). A PPARγ transcriptional cascade directs adipose progenitor cell-niche interaction and niche expansion. Nature Communications, 8(1), 15926. https://doi.org/10.1038/ncomms15926 Joblon, M., Pokras, M., Morse, B., Harry, C. T., Rose, K. S., Sharp, S., Niemeyer, M. E., Patchett, K. M., Sharp, W. B., & Moore, M. J. (2014). Body condition scoring system for Delphinids based on short-beaked common dolphins (Delphinus delphis). J. Mar. Anim. Ecol., 7, 5-13. Kalgudde Gopal, S., Dai, R., Stefanska, A. M., Ansari, M., Zhao, J., Ramesh, P., Bagnoli, J. W., Correa-Gallegos, D., Lin, Y., Christ, S., Angelidis, I., Lupperger, V., Marr, C., Davies, L. C., Enard, W., Machens, H.-G., Schiller, H. B., Jiang, D., & Rinkevich, Y. (2023). Wound infiltrating adipocytes are not myofibroblasts. Nature Communications, 14(1), 3020. https://doi.org/10.1038/s41467-023-38591-6 Landén, N. X., Li, D., & Ståhle, M. (2016). Transition from inflammation to proliferation: a critical step during wound healing. Cell Mol Life Sci, 73(20), 3861-3885. https://doi.org/10.1007/s00018-016-2268-0 Levame, M., & Meyer, F. (1987). [Herovici's picropolychromium. Application to the identification of type I and III collagens]. Pathol Biol (Paris), 35(8), 1183-1188. (Le picropolychrome de Herovici. Application à l'identification des collagènes de types I et III.) Limandjaja, G. C., Belien, J. M., Scheper, R. J., Niessen, F. B., & Gibbs, S. (2020). Hypertrophic and keloid scars fail to progress from the CD34−/α‐smooth muscle actin (α‐SMA)+ immature scar phenotype and show gradient differences in α‐SMA and p16 expression. British Journal of Dermatology, 182(4), 974-986. https://doi.org/10.1111/bjd.18219 Louella, M., & Dolar, L. (2018). Fraser’s Dolphin: Lagenodelphis hosei. In B. Würsig, J. G. M. Thewissen, & K. M. Kovacs (Eds.), Encyclopedia of Marine Mammals (Third Edition) (pp. 392-395). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-804327-1.00134-5 Lucas, T., Waisman, A., Ranjan, R., Roes, J., Krieg, T., Müller, W., Roers, A., & Eming, S. A. (2010). Differential roles of macrophages in diverse phases of skin repair. J Immunol, 184(7), 3964-3977. https://doi.org/10.4049/jimmunol.0903356 Lux, C. N. (2022). Wound healing in animals: a review of physiology and clinical evaluation. Veterinary Dermatology, 33(1), 91-e27. https://doi.org/https://doi.org/10.1111/vde.13032 Maden, M., & Brant, J. O. (2019). Insights into the regeneration of skin from Acomys, the spiny mouse. Exp Dermatol, 28(4), 436-441. https://doi.org/10.1111/exd.13847 Mahdavian Delavary, B., van der Veer, W. M., van Egmond, M., Niessen, F. B., & Beelen, R. H. (2011). Macrophages in skin injury and repair. Immunobiology, 216(7), 753-762. https://doi.org/10.1016/j.imbio.2011.01.001 McGowen, M. R., Tsagkogeorga, G., Álvarez-Carretero, S., dos Reis, M., Struebig, M., Deaville, R., Jepson, P. D., Jarman, S., Polanowski, A., Morin, P. A., & Rossiter, S. J. (2020). Phylogenomic Resolution of the Cetacean Tree of Life Using Target Sequence Capture. Systematic Biology, 69(3), 479-501. https://doi.org/10.1093/sysbio/syz068 Peña, O. A., & Martin, P. (2024). Cellular and molecular mechanisms of skin wound healing. Nature Reviews Molecular Cell Biology. https://doi.org/10.1038/s41580-024-00715-1 Piscitelli, M. A., McLellan, W. A., Rommel, S. A., Blum, J. E., Barco, S. G., & Pabst, D. A. (2010). Lung size and thoracic morphology in shallow- and deep-diving cetaceans. Journal of Morphology, 271(6), 654-673. https://doi.org/https://doi.org/10.1002/jmor.10823 Plikus, M. V., Guerrero-Juarez, C. F., Ito, M., Li, Y. R., Dedhia, P. H., Zheng, Y., Shao, M., Gay, D. L., Ramos, R., Hsi, T.-C., Oh, J. W., Wang, X., Ramirez, A., Konopelski, S. E., Elzein, A., Wang, A., Supapannachart, R. J., Lee, H.-L., Lim, C. H., . . . Cotsarelis, G. (2017). Regeneration of fat cells from myofibroblasts during wound healing. Science, 355(6326), 748-752. https://doi.org/10.1126/science.aai8792 Prabhu, V., Rao, B. S. S., Rao, A. C. K., Prasad, K., & Mahato, K. K. (2022). Photobiomodulation invigorating collagen deposition, proliferating cell nuclear antigen and Ki67 expression during dermal wound repair in mice. Lasers in Medical Science, 37(1), 171-180. https://doi.org/10.1007/s10103-020-03202-z Raverty, S., Duignan, P. J., Jepson, P. D., & Morell, M. (2018). Marine mammal gross necropsy. In CRC handbook of marine mammal medicine (pp. 249-266). CRC Press. Robin, W. B. (2009). Sightings of Dwarf (Kogia sima) and Pygmy (K. breviceps) Sperm Whales from the Main Hawaiian Islands. Pacific Science, 59, 461-466. https://doi.org/10.1353/psc.2005.0031 Rognoni, E., Pisco, A. O., Hiratsuka, T., Sipilä, K. H., Belmonte, J. M., Mobasseri, S. A., Philippeos, C., Dilão, R., & Watt, F. M. (2018). Fibroblast state switching orchestrates dermal maturation and wound healing. Mol Syst Biol, 14(8), e8174. https://doi.org/10.15252/msb.20178174 Rolfe, K. J., & Grobbelaar, A. O. (2012). A review of fetal scarless healing. ISRN Dermatol, 2012, 698034. https://doi.org/10.5402/2012/698034 Sarrazy, V., Billet, F., Micallef, L., Coulomb, B., & Desmoulière, A. (2011). Mechanisms of pathological scarring: role of myofibroblasts and current developments. Wound Repair Regen, 19 Suppl 1, s10-15. https://doi.org/10.1111/j.1524-475X.2011.00708.x Schmidt, B. A., & Horsley, V. (2013). Intradermal adipocytes mediate fibroblast recruitment during skin wound healing. Development, 140(7), 1517-1527. https://doi.org/10.1242/dev.087593 Schorr, G. S., Falcone, E. A., Moretti, D. J., & Andrews, R. D. (2014). First long-term behavioral records from Cuvier's beaked whales (Ziphius cavirostris) reveal record-breaking dives. PLoS One, 9(3), e92633. https://doi.org/10.1371/journal.pone.0092633 Seifert, A. W., Kiama, S. G., Seifert, M. G., Goheen, J. R., Palmer, T. M., & Maden, M. (2012). Skin shedding and tissue regeneration in African spiny mice (Acomys). Nature, 489(7417), 561-565. https://doi.org/10.1038/nature11499 Shook, B. A., Wasko, R. R., Mano, O., Rutenberg-Schoenberg, M., Rudolph, M. C., Zirak, B., Rivera-Gonzalez, G. C., López-Giráldez, F., Zarini, S., Rezza, A., Clark, D. A., Rendl, M., Rosenblum, M. D., Gerstein, M. B., & Horsley, V. (2020). Dermal Adipocyte Lipolysis and Myofibroblast Conversion Are Required for Efficient Skin Repair. Cell Stem Cell, 26(6), 880-895.e886. https://doi.org/10.1016/j.stem.2020.03.013 Sidney, L. E., Branch, M. J., Dunphy, S. E., Dua, H. S., & Hopkinson, A. (2014). Concise review: evidence for CD34 as a common marker for diverse progenitors. Stem Cells, 32(6), 1380-1389. https://doi.org/10.1002/stem.1661 Singh, D., Rai, V., & Agrawal, D. K. (2023). Regulation of Collagen I and Collagen III in Tissue Injury and Regeneration. Cardiol Cardiovasc Med, 7(1), 5-16. https://doi.org/10.26502/fccm.92920302 Sinha, S., Sparks, H. D., Labit, E., Robbins, H. N., Gowing, K., Jaffer, A., Kutluberk, E., Arora, R., Raredon, M. S. B., Cao, L., Swanson, S., Jiang, P., Hee, O., Pope, H., Workentine, M., Todkar, K., Sharma, N., Bharadia, S., Chockalingam, K., . . . Biernaskie, J. (2022). Fibroblast inflammatory priming determines regenerative versus fibrotic skin repair in reindeer. Cell, 185(25), 4717-4736.e4725. https://doi.org/https://doi.org/10.1016/j.cell.2022.11.004 Spielman, A. F., Griffin, M. F., Parker, J., Cotterell, A. C., Wan, D. C., & Longaker, M. T. (2023). Beyond the Scar: A Basic Science Review of Wound Remodeling. Adv Wound Care (New Rochelle), 12(2), 57-67. https://doi.org/10.1089/wound.2022.0049 Staudinger, M. D., McAlarney, R. J., McLellan, W. A., & Ann Pabst, D. (2014). Foraging ecology and niche overlap in pygmy (Kogia breviceps) and dwarf (Kogia sima) sperm whales from waters of the U.S. mid-Atlantic coast. Marine Mammal Science, 30(2), 626-655. https://doi.org/https://doi.org/10.1111/mms.12064 Struntz, D. J., McLellan, W. A., Dillaman, R. M., Blum, J. E., Kucklick, J. R., & Pabst, D. A. (2004). Blubber development in bottlenose dolphins (Tursiops truncatus). Journal of Morphology, 259(1), 7-20. https://doi.org/https://doi.org/10.1002/jmor.10154 Su, C.-Y., Liu, T.-Y., Wang, H.-V., & Yang, W.-C. (2023). Histopathological Study on Collagen in Full-Thickness Wound Healing in Fraser’s Dolphins (Lagenodelphis hosei). Animals, 13(10), 1681. https://www.mdpi.com/2076-2615/13/10/1681 Su, C. Y., Hughes, M. W., Liu, T. Y., Chuong, C. M., Wang, H. V., & Yang, W. C. (2022). Defining Wound Healing Progression in Cetacean Skin: Characteristics of Full-Thickness Wound Healing in Fraser's Dolphins (Lagenodelphis hosei). Animals (Basel), 12(5). https://doi.org/10.3390/ani12050537 Towers, J. R., Tixier, P., Ross, K. A., Bennett, J., Arnould, J. P. Y., Pitman, R. L., & Durban, J. W. (2018). Movements and dive behaviour of a toothfish-depredating killer and sperm whale. ICES Journal of Marine Science, 76(1), 298-311. https://doi.org/10.1093/icesjms/fsy118 Tran, K. V., Gealekman, O., Frontini, A., Zingaretti, M. C., Morroni, M., Giordano, A., Smorlesi, A., Perugini, J., De Matteis, R., Sbarbati, A., Corvera, S., & Cinti, S. (2012). The vascular endothelium of the adipose tissue gives rise to both white and brown fat cells. Cell Metab, 15(2), 222-229. https://doi.org/10.1016/j.cmet.2012.01.008 Tyack, P. L., Johnson, M., Soto, N. A., Sturlese, A., & Madsen, P. T. (2006). Extreme diving of beaked whales. Journal of Experimental Biology, 209(21), 4238-4253. https://doi.org/10.1242/jeb.02505 Volk, S. W., & Bohling, M. W. (2013). Comparative wound healing--are the small animal veterinarian's clinical patients an improved translational model for human wound healing research? Wound Repair Regen, 21(3), 372-381. https://doi.org/10.1111/wrr.12049 Wang, K., Wen, D., Xu, X., Zhao, R., Jiang, F., Yuan, S., Zhang, Y., Gao, Y., & Li, Q. (2023). Extracellular matrix stiffness-The central cue for skin fibrosis. Front Mol Biosci, 10, 1132353. https://doi.org/10.3389/fmolb.2023.1132353 Wang, M.-C., Walker, A. W., Shao, K.-T., & Chou, L.-S. (2002). Comparative Analysis of the Diets of Pygmy Sperm Whales and Dwarf Sperm Whales in Taiwanese Waters. 53-62. Retrieved 2002, from http://tair.lib.ntu.edu.tw:8000/20060927114815945275 Wilmink, J. M., Stolk, P. W., van Weeren, P. R., & Barneveld, A. (1999). Differences in second-intention wound healing between horses and ponies: macroscopic aspects. Equine Vet J, 31(1), 53-60. https://doi.org/10.1111/j.2042-3306.1999.tb03791.x Xue, M., & Jackson, C. J. (2015). Extracellular Matrix Reorganization During Wound Healing and Its Impact on Abnormal Scarring. Adv Wound Care (New Rochelle), 4(3), 119-136. https://doi.org/10.1089/wound.2013.0485 Xue, M., Zhao, R., March, L., & Jackson, C. (2021). Dermal Fibroblast Heterogeneity and Its Contribution to the Skin Repair and Regeneration. Advances in Wound Care, 11(2), 87-107. https://doi.org/10.1089/wound.2020.1287 Zasloff, M. (2011). Observations on the remarkable (and mysterious) wound-healing process of the bottlenose dolphin. J Invest Dermatol, 131(12), 2503-2505. https://doi.org/10.1038/jid.2011.220 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94980 | - |
| dc.description.abstract | 皮膚傷口癒合是一個複雜的過程,包括止血、炎症、增生、重塑和傷疤形成等不同階段。本研究調查了深潛海洋哺乳動物的全層皮膚傷口癒合過程,重點研究了小抹香鯨科,包括侏儒抹香鯨和小抹香鯨。研究發現,小抹香鯨科展現出獨特的傷口癒合機制,在增生和重塑階段的傷口中產生大量的III型膠原蛋白(Col III),表明它們具有類似於鹿角、蠑螈和人類胎兒的無疤傷口癒合過程。在重塑階段,小抹香鯨科的細胞外基質呈現不規則的膠原蛋白結構,與人類和弗氏海豚中規則排列的疤痕組織形成鮮明對比。免疫螢光染色顯示,在重塑階段,小抹香鯨科的傷口組織呈現近似人類傷疤的CD34-/α-SMA+/Ki67-表型,這與其不規則的膠原蛋白結構相衝突,表明小抹香鯨科的重塑階段與典型疤痕的形成不同。此外,染色結果還暗示了休止狀態的纖維母細胞及肌纖維母細胞的存在,這可能促成了小抹香鯨科的無疤癒合。小抹香鯨科在增生階段即開始脂肪細胞的重新生成,而弗氏海豚則要到重塑階段才開始。小抹香鯨科較早的脂肪細胞生成可能由血管生成和脂肪前驅細胞的分化所驅動。本研究顯示,小抹香鯨科與弗氏海豚在皮膚傷口癒合過程中存在顯著差異,這可能是由於小抹香鯨科的深潛行為和環境適應所致。結果表明,大量的Col III生成和早期脂肪細胞生成可能促進小抹香鯨科在高壓和低溫環境下快速恢復受損皮膚。本研究為深潛鯨類的傷口癒合機制提供了寶貴的見解,並為獸醫和人類再生醫學提供了潛在的應用。進一步研究這些獨特的過程可能發展出新的組織修復策略。 | zh_TW |
| dc.description.abstract | Cutaneous wound healing is a complex process comprising several distinct stages: hemostasis, inflammation, proliferation, remodeling, and scar formation. This study investigates the full-thickness skin wound healing process in deep-diving marine mammals, focusing on the Kogia species, which includes pygmy and dwarf sperm whales. This research reveals that Kogia species exhibit a unique wound healing mechanism characterized by a unique ratio of type III collagen (Col III) to type I collagen (Col I). Unlike the well-known process in humans, Kogia species exhibit an extremely high ratio of Col III to Col I throughout the proliferation and remodeling stages, suggesting a capability for scarless wound healing similar to that observed in deer antlers, salamanders, and human fetuses. During the remodeling stage, the extracellular matrix of Kogia species shows a disorganized collagen structure, in contrast to the organized scar tissue seen in humans and Fraser’s dolphins. Immunofluorescence staining revealed that during the remodeling stage, the wound tissue in Kogia species exhibited a CD34-/α-SMA+/Ki67- pattern, similar to that of human scars. This finding contrasts with the disorganized collagen structure observed in Kogia species, suggesting that the remodeling stage in Kogia differs from typical scar formation. This pattern suggests the presence of quiescent fibroblasts and myofibroblasts, which may contribute to the observed scarless healing. Additionally, Kogia species demonstrate early adipocyte restoration during the proliferation stage, a trait not seen in Fraser’s dolphins until the remodeling stage. This early adipocyte recovery is potentially driven by angiogenesis and the differentiation of adipose progenitor cells. The findings in this study highlight significant differences in the skin wound healing processes between Kogia species and Fraser’s dolphins, likely influenced by their deep-diving behavior and environmental adaptations. These results suggest that the high ratio of Col III to Col I and the early adipocyte restoration play crucial roles in facilitating rapid skin integrity restoration in high-pressure and low-temperature environments. This study provides valuable insights into the wound healing mechanisms of deep-diving cetaceans, offering potential applications for regenerative medicine in both veterinary and human contexts. Further research into these unique processes could lead to innovative strategies for enhancing tissue repair and regeneration. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-23T16:15:02Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-23T16:15:02Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書……………………………………………………………………....i
誌謝……………………………………………………………………………………...ii 中文摘要………………………………………………………………………………..iii 英文摘要Abstract………………………………………………………………………iv 目次Contents…………………………………………………………………………...vi 圖次List of Figures…………………………………………………………………....viii 表次List of Tables………………………………………………………………………xi Chapter 1 Introduction…………………………………………………………………...1 Chapter 2 Materials and Methods………………………………………………………11 2.1 Tissue sample collection………………………………………………………11 2.2 Tissue preparation and hematoxylin and eosin staining………………………11 2.3 Herovici’s staining…………………………………………………………….11 2.4 Immunofluorescence staining…………………………………………………12 Chapter 3 Results……………………………………………………………………….14 3.1 Normal skin…………………………………………………………………...14 3.1.1 Hematoxylin and eosin staining in normal skin of pygmy sperm whale................................................................................................................14 3.1.2 Hematoxylin and eosin staining in normal skin of dwarf sperm whale…………………………………………………………………………14 3.1.3 Herovici’s staining in normal skin……………………………………...15 3.2 Wounds………………………………………………………………………..15 3.2.1 Gross appearance of each cutaneous wound healing stage……………..15 3.2.2 Hematoxylin and eosin staining in cutaneous wound healing process...15 3.2.2.1 Inflammation; Stage2……………………………………….…..16 3.2.2.2 Proliferation; Stage3……………………………………….……16 3.2.2.3 Remodeling; Stage4…………………………………………….17 3.2.2.4 Restoration; Stage5……………………………………………..18 3.2.3 Herovici’s staining in cutaneous wound healing process………….……19 3.2.3.1 Proliferation; Stage 3……………………………………….…...19 3.2.3.2 Remodeling; Stage 4……………………………………………20 3.2.3.3 Restoration; Stage 5……………………………………….…….21 3.3 Scar types……………………………………………………………………...21 3.3.1 Immunofluorescence staining with anti-CD34 antibody…….……21 3.3.2 Immunofluorescence staining with anti-α-SMA antibody…..…….22 3.3.3 Immunofluorescence staining with anti-Ki67 antibody……..…….23 3.3.3.1 Immunofluorescence staining with anti-Ki67 antibody in stage 4 wound……………………………………………………...23 3.3.3.2 Immunofluorescence staining with anti-Ki67 antibody in stage 3 wound……………………………………………….……..23 Chapter 4 Discussion…………………………………………………………….……...25 Tables…………………………………………………………………………………...36 Figures……………………………………………………………………………….....38 References……………………………………………………………………………...68 | - |
| dc.language.iso | en | - |
| dc.subject | 鯨豚 | zh_TW |
| dc.subject | 皮膚傷口癒合 | zh_TW |
| dc.subject | 物種差異 | zh_TW |
| dc.subject | 侏儒抹香鯨 | zh_TW |
| dc.subject | 小抹香鯨 | zh_TW |
| dc.subject | Pygmy sperm whale | en |
| dc.subject | Dwarf sperm whale | en |
| dc.subject | Species variation | en |
| dc.subject | Cetacean | en |
| dc.subject | Cutaneous wound healing | en |
| dc.title | 小抹香鯨科全層皮膚傷口癒合之組織病理學研究及其對再生醫學的影響 | zh_TW |
| dc.title | Histopathological Study of Full-Thickness Skin Wound Healing in Kogia spp. and Its Implications for Regenerative Medicine | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林頌然;王浩文 | zh_TW |
| dc.contributor.oralexamcommittee | Sung-Jan Lin;Hao-Ven Wang | en |
| dc.subject.keyword | 皮膚傷口癒合,鯨豚,小抹香鯨,侏儒抹香鯨,物種差異, | zh_TW |
| dc.subject.keyword | Cutaneous wound healing,Cetacean,Pygmy sperm whale,Dwarf sperm whale,Species variation, | en |
| dc.relation.page | 76 | - |
| dc.identifier.doi | 10.6342/NTU202403832 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-10 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 獸醫學系 | - |
| 顯示於系所單位: | 獸醫學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 9.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
