請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94966
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張淑惠 | zh_TW |
dc.contributor.advisor | Shu-Hui Chang | en |
dc.contributor.author | 游皓婷 | zh_TW |
dc.contributor.author | Hao-Ting Yu | en |
dc.date.accessioned | 2024-08-22T16:08:11Z | - |
dc.date.available | 2024-08-23 | - |
dc.date.copyright | 2024-08-16 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-05 | - |
dc.identifier.citation | Muggeo, V. M. (2003). Estimating regression models with unknown break‐ points. Statistics in medicine, 22(19), 3055-3071.
Radu, A. F., & Bungau, S. G. (2021). Management of rheumatoid arthritis: an overview. Cells, 10(11), 2857. Robins, J. M. (1997). Causal inference from complex longitudinal data. Latent variable modeling and applications to causality, Robins, J. M., & Greenland, S. (1994). Adjusting for differential rates of prophylaxis therapy for PCP in high-versus low-dose AZT treatment arms in an AIDS randomized trial. Journal of the American Statistical Association, 89(427), 737- 749. Robins, J. M., Hernan, M. A., & Brumback, B. (2000). Marginal structural models and causal inference in epidemiology. Epidemiology, 550-560. Robins, J. M. (2004). Optimal structural nested models for optimal sequential decisions. In Proceedings of the Second Seattle Symposium in Biostatistics: analysis of correlated data (pp. 189-326). New York, NY: Springer New York. Rubin, D. B. (1980). Randomization analysis of experimental data: The Fisher randomization test comment. Journal of the American Statistical Association, 75(371), 591-593. Rust, J. (2008). Dynamic programming. The new Palgrave dictionary of economics, 1, 8. Schulz, J., & Moodie, E. E. (2021). Doubly robust estimation of optimal dosing strategies. Journal of the American Statistical Association, 116(533), 256-268. Scott, D. L., & Huskisson, E. C. (1992). The course of rheumatoid arthritis. Baillière's clinical rheumatology, 6(1), 1-21. Simoneau, G., Moodie, E. E., Nijjar, J. S., Platt, R. W., & Investigators, S. E. R. A. I. C. (2020). Estimating optimal dynamic treatment regimes with survival outcomes. Journal of the American Statistical Association, 115(531), 1531-1539. U.S. Food & Drug Administration (2018). Precision medicine. Retrieved from https://www.fda.gov/medical-devices/in-vitro-diagnostics/precision-medicine Wagner, E. H., Austin, B. T., Davis, C., Hindmarsh, M., Schaefer, J., & Bonomi, A. (2001). Improving chronic illness care: translating evidence into action. Health affairs, 20(6), 64-78. Wallace, M. P., Moodie, E. E., & Stephens, D. A. (2017). Dynamic treatment regimen estimation via regression-based techniques: Introducing r package dtrreg. Journal of Statistical Software, 80, 1-20. Wang, S. (2018). G-estimation of dynamic treatment regimes in the presence of shared parameters. McGill University (Canada). Wiering, M. A., & Van Otterlo, M. (2012). Reinforcement learning. Adaptation, learning, and optimization, 12(3), 729. Willems, S. J., & Fiocco, M. (2014). Inverse probability censoring weights for routine outcome monitoring data. Leiden, The Netherlands: Universiteit Leiden. Zhang, Z., Yi, D., & Fan, Y. (2022). Doubly robust estimation of optimal dynamic treatment regimes with multicategory treatments and survival outcomes. Statistics in Medicine, 41(24), 4903-4923. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94966 | - |
dc.description.abstract | 慢性病或反覆發作疾病的患者通常需要經歷一段長時間且多階段的治療過程。 動態治療方案 (DTRs) 為一系列的治療規則,強調在這類疾病的治療需要隨著個別病患本身的特徵與過去的治療動態改變,並根據這些資訊給予最佳的治療建議。最佳 DTR 即是使病患整體緩解時間的最大化的 DTR。然而傳統估計最佳 DTR 研究的模擬或分析通常在較為簡單的情境下,忽略實際上臨床資料的歷史 相依(history-dependent)。本研究提出多種歷史相依模型,反映階段與共變數歷史對於最佳 DTR 的影響,並在與治療有交互作用的連續共變數中加入轉換點 (change points),以期能夠更符合臨床情境。另外,過去研究在評估模型表現時,僅透過比較真值與最佳 DTR 的點估計,計算模型判斷正確的比例,然而此方式未將參數估計的標準誤納入考慮。因此,本研究進一步提出了兩個考量區間 估計的評估指標:第一個是區間估計正確的比例,第二個是排除無法確定最佳 DTR 的信賴區間(即統計上不顯著)後計算出來的正確比例。在模擬中,本研究考慮三階段治療過程與兩種治療的情境,在七個不同的模型下生成事件發生時間; 這七個模型中,有三個僅使用該階段的治療與共變數,稱為歷史獨立模型,其餘四個包含所有過去與現階段的治療與共變數,即為本研究提出的歷史相依模型。在每個真值模型下,使用這七個模型來配適資料,並計算傳統和本研究提出的評估指標,以比較配適模型的表現。模擬結果顯示,整體而言,配適這四種歷史相依模型皆可以得到與配適真值模型相似的校正區間估計之正確比例,得到穩健的估計。 | zh_TW |
dc.description.abstract | Patients with chronic or recurrent diseases often undergo prolonged, multi-stage treatment processes. Dynamic Treatment Regimes (DTRs) represent sequences of treatment rules that emphasize the need for treatments to dynamically adapt to individual patients' characteristics and treatment histories, ultimately guiding the recommendation of the treatment. Optimizing DTRs for time-to-event outcomes aims to maximize overall remission time in certain diseases. However, traditional optimal DTR estimation research settings are typically under simple conditions and overlook the complexities of clinical reality such as stage and history dependency. In this study, we provide various history-dependent models to reflect the influences of covariate and treatment histories on the optimal DTRs, aiming to better align with the complex realities of medical situations. For example, models with change-points in continuous covariate which interact with treatment are introduced. The traditional evaluation index of the model performance in estimation of optimal DTRs is the correct proportion of individuals with the optimal treatments correctly predicted for the proposed model based on the point estimates of optimal DTRs. However, such point-estimation evaluation index disregards the standard errors of the estimators. On this basis, we further propose two interval-estimation evaluation indices regarding correct proportion. One is the interval-estimation correct proportion of the individuals’ confidence intervals of optimal DTRs for the proposed model contain the true values with statistical significance. The second one is a modified version of the first interval-estimation evaluation index by excluding the confidence intervals without statistical significance which cannot decide optimal treatments. In the simulation study, consider binary treatments at three stages and generate time to event under seven different models. Among the seven models, three models only including the treatment and covariate at the current stage are called history-independent models. The remaining four models that include both the treatment and covariate at the current stage and those at previous stage are called history-dependent models. Under each true model scenario, all of seven these models are used to fit the data and provide the traditional and proposed evaluation indices to compare the performance of the fitted models. The simulation results show that, overall, fitting these four history-dependent models and fitting the true model can achieve similar modified correct proportions based on interval estimation, leading to robust estimates. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-22T16:08:08Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-22T16:08:11Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii 英文摘要 iv 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 2 第二章 文獻回顧 4 第一節 因果推論與治療效果 4 第二節 從單階段到多階段的最佳治療方案估計 5 第三節 估計資料 7 第四節 以迴歸為基礎的最佳動態治療估計 I: Q 學習 8 第五節 逆機率治療加權 (IPTW) 10 第六節 逆機率設限加權 (IPCW) 11 第七節 以迴歸為基礎的最佳動態治療估計 II: G 估計 12 第八節 分段線性迴歸與轉換點選擇 17 第三章 研究方法與步驟 18 第一節 符號定義 18 第二節 資料結構 18 第三節 研究假設 19 第四節 模型與估計修正 19 第五節 模型表現評估 21 第四章 模擬 25 第一節 資料生成 25 第二節 歷史相依模型建構與模擬設計 30 第三節 模擬結果 35 第五章 結果與討論 39 參考文獻 41 附錄一 模擬真值設定 44 附錄二 模擬資料生成結果 60 附錄三 模擬完整結果 63 附錄四 模型表現比較 98 附錄五 錯誤轉換點模擬結果 119 | - |
dc.language.iso | zh_TW | - |
dc.title | 應用歷史相依模型於複雜醫療情境下最佳動態治療方案的穩健估計 | zh_TW |
dc.title | Robust Estimation of Optimal Dynamic Regime in Complex Clinical Scenarios Using History-Dependent Modeling | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 杜裕康;蔡政安 | zh_TW |
dc.contributor.oralexamcommittee | Yu-Kang Tu;Chen-An Tsai | en |
dc.subject.keyword | 最佳動態治療方案,逆推法,歷史相依,模型表現,Q學習,穩健, | zh_TW |
dc.subject.keyword | Optimal dynamic treatment regimes,Backward induction,History- dependent,Model performance,Q-learning,Robustness, | en |
dc.relation.page | 132 | - |
dc.identifier.doi | 10.6342/NTU202402487 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-08-06 | - |
dc.contributor.author-college | 公共衛生學院 | - |
dc.contributor.author-dept | 健康數據拓析統計研究所 | - |
顯示於系所單位: | 健康數據拓析統計研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 3.97 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。